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Gain-Scheduled Steering Control for Autonomous Vehicles

This paper presents an Linear Parameter Varying (LPV) approach for the lateral control of autonomous vehicles, in order to take into account the whole operating domain of longitudinal speeds, as well as the variation of the look-ahead distance. Combining a dynamical vehicle model with look-ahead dynamics, together with an identified actuator model including an input delay, the closed-loop performances can be achieved and the tracking capabilities can be improved for every speed. This is obtained in particular through ad hoc representation of the look-ahead time as a parameter-dependent function. An H ∞ /LPV control problem is formulated considering parameterdependent weighting functions, allowing the control adaptation for all speeds. The synthesis is performed using the gridding approach, in order to account for varying parameter rate. The proposed steering control system has been implemented on a real electric Renault Zoe car. The performances are therefore assessed experimentally on a real test track with a varying longitudinal speed profile, and compared with a classical LPV polytopic controller, which proves the advanced lane-tracking capabilities of the proposed methodology.

I. INTRODUCTION

Automated vehicles will enhance road safety, increase highway capacity, reduce carbon emission, and make transportation more accessible to disable and older people. But they are complex systems since engineers have to take into account multi-parametric requirements, such as vehicle and passenger safety, fuel and power economy and efficient driving [START_REF] Gruel | Assessing the long-term effects of autonomous vehicles: a speculative approach[END_REF].

Intelligent vehicles' architecture is at the intersection of multiple research fields ranging from location or perception to path planning and control [START_REF] González | A review of motion planning techniques for automated vehicles[END_REF]. Among them the control architecture can be classified into different categories according to the considered dynamics (and degrees of freedom) such as: Lateral control, Longitudinal control, Integrated Lateral/Longitudinal control and higher control issues [START_REF] Shladover | Review of the state of development of advanced vehicle control systems (AVCS)[END_REF].

Lateral control refers to as the ability of automatically steer a vehicle, and perform maneuver such as lane changes. If lateral control can be tackled using several actuators, as active front steering with an additional yaw moment (see [START_REF] Guo | Nonlinear model predictive lateral stability control of active chassis for intelligent vehicles and its FPGA implementation[END_REF] for a nonlinear MPC method and [START_REF] Doumiati | Integrated vehicle dynamics control via coordination of active front steering and rear braking[END_REF] for an H ∞ /LPV one) it is still of high interest to deal with the steering control only.

Major contributions have been achieved the previous decades on the steering control for autonomous vehicles.

Ackermann [START_REF] Ackermann | Advantages of active steering for vehicle dynamics control[END_REF] was one of the first that made a breakthrough on lateral control by applying active steering with yaw rate error compensation to decouple the yaw and lateral dynamics. In 1995, Carnegie Mellon University demonstrated the Navlab car [START_REF] Jochem | Life in the fast lane: The evolution of an adaptive vehicle control system[END_REF] completing a cross-country journey, whose steering control minimized the lateral deviation of the vehicle and its heading error. In 1998, Broggi [START_REF] Broggi | The ARGO autonomous vehicle's vision and control systems[END_REF] leading the ARGO project, performed a journey through Italy in autonomous mode and its control implementation was based on a variable gain proportional controller minimizing a lateral offset at a look-ahead distance according to the reference trajectory. In 2005, Stanley vehicle [START_REF] Thrun | Stanley: The robot that won the DARPA Grand Challenge[END_REF] won the second DARPA Grand Challenge whose steering action was a non-linear function of the cross-track error and the vehicle's orientation error, measured relatively to the nearest path segment. In [START_REF] Xu | System architecture of a driverless electric car in the grand cooperative driving challenge[END_REF], the authors demonstrated in the Grand Cooperative Driving Challenge of 2016 a driverless electric vehicle whose control system was a state feedback with pole placement using the kinematic bicycle model of the vehicle, minimizing the crosstrack and heading errors of the vehicle.

More recently, various control techniques have been successfully applied for lateral control. To cite a few, in [START_REF] Falcone | Predictive active steering control for autonomous vehicle systems[END_REF], Model Predictive Control (MPC) approaches were formulated using a non-linear model in the first case and in the second an on-line linearization vehicle model, solving a finite horizon optimal control problem respecting the state constraints for the stabilization of the car. [START_REF] Xu | Preview Path Tracking Control With Delay Compensation for Autonomous Vehicles[END_REF] proposes a preview steering control design that tackles communication delay, steering lag and is implemented as a state feedback controller that uses as a feedforward term the future road curvature information. In AUTOPIA program different steering systems were implemented in mass-produced cars focused on fuzzy logic: A cascade control architecture [START_REF] Pérez | Cascade architecture for lateral control in autonomous vehicles[END_REF] was implemented mimicking a human driver's behaviour and in [START_REF] Onieva | Automatic lateral control for unmanned vehicles via genetic algorithms[END_REF] genetic algorithms were used to adjust automatically a fuzzy steering controller. Moreover, fuzzy logic was used in [START_REF] Nguyen | Fuzzy steering control for autonomous vehicles under actuator saturation: Design and experiments[END_REF], where they demonstrated a constrained Takagi-Sugeno control method using fuzzy Lyapunov control framework for automatic lane keeping. In [START_REF] Tan | Design of a high-performance automatic steering controller for bus revenue service based on how drivers steer[END_REF], a PID controller was proposed as a model of how drivers steer based on observations and was validated on a bus revenue service. The output of the controller is the rate of the steering angle with a single gain that minimizes desired and current yaw rate values.

On the other hand, to deal with complex non-linear systems, gain-scheduling control is a key design procedure which arises in many applications. Indeed LPV control theory emerged to handle robustness and performance guarantees for the whole operating domain of the varying parameters of dynamical system [START_REF] Mohammadpour | Control of linear parameter varying systems with applications[END_REF]. Let us mention that LPV gain-scheduling control has been successfully applied to the control synthesis for many aerospace applications as in the problem of active flutter suppression [START_REF] Barker | Comparing linear parameter-varying gainscheduled control techniques for active flutter suppression[END_REF] but also in the automotive sector. Thus this approach has shown its value for various complex intelligent vehicle applications [START_REF] Sename | Robust control and linear parameter varying approaches: Application to vehicle dynamics[END_REF], such as global chassis control, semi-active suspension control [START_REF] Gáspár | Robust control design for active driver assistance systems[END_REF], or active anti-roll bar system of heavy vehicles [START_REF] Sename | H ∞ /LPV controller design for an active anti-roll bar system of heavy vehicles using parameter dependent weighting functions[END_REF]. See [START_REF] Hoffmann | A Survey of Linear Parameter-Varying Control Applications Validated by Experiments or High-Fidelity Simulations[END_REF] for an interesting survey of LPV applications. However, as far as our knowledge is concerned, its potential with regard to autonomous vehicles has so far been very little explored. As illustration, LPV theory has been used for automatic lane keeping in [START_REF] Hingwe | Linear parameter varying controller for automated lane guidance: experimental study on tractor-trailers[END_REF], where a grid-based approach is used to synthesize LPV controller which is implemented and tested on a tractor-trailer. The velocitydependent controller is designed imposing performance constraints via H ∞ weighting functions. In [START_REF] Kang | Linear Parameter Varying Design for Lateral Control using Kinematics of Vehicle Motion[END_REF] a kinematic vehicle model is used and an LPV state feedback steering control has been designed using the polytopic approach, with varying parameters the longitudinal speed and the look-ahead distance. Furthermore, LPV control theory has been used to tackle an online planning application for race autonomous vehicles [START_REF] Alcalá | LPV-MP planning for autonomous racing vehicles considering obstacles[END_REF], where LPV was used to reformulate a nonlinear vehicle model into a pseudo-linear expressing it in an LPV form and consequently convexify an objective function to be included in a MPC formulation. The main objective and contribution of this paper are to develop an LPV gain-scheduling (i.e. gridded-based) strategy for the design of a lateral controller for autonomous vehicles able to handle the whole operating domain of longitudinal speed (i.e. speed is treated as varying parameter) as well as the variation of the look-ahead time. Combining a dynamical vehicle model with look-ahead dynamics, together with an identified actuator model including an input delay, the closed-loop performances can be achieved and the tracking capabilities can be improved for every speed. This is obtained in particular through ad hoc representation of the look-ahead time as a parameter-dependent function. An H ∞ /LPV control problem is formulated considering parameter-dependent weighting functions, allowing the control adaptation for all speeds. The synthesis is performed using the gridding approach, in order to account for varying parameter rate. Therefore stability and performance are maintained along all parameter trajectories. It is worth noting that the development and experimental validation of the proposed gridded-based approach is new in this context. The main contributions are summarized below:

• Using LPV theory combined with look-ahead and actuator dynamics, the lateral control problem can be parameterized by only one parameter i.e. the longitudinal speed.

• The proposed gain-scheduled controller can handle the whole operating domain of longitudinal speeds, using a tunable H ∞ parameter-dependent weighting function. • That function is the look-ahead time that limits the steering command properly to satisfy the current control objectives, which is of great importance in real cars: the higher the speed, the lower the vehicle turning capabilities.

• The tracking performance can achieve small lateral errors, as its shown experimentally from the testing of the embedded gain-scheduled controller on a Electric Renault Zoe.

This paper is organised as follows. Section 2 describes the modelling of the vehicle combining the look-ahead dynamics and the actuator model. Section 3 introduces briefly the LPV polytopic controller and presents the basics of the LPV gain-scheduled control theory. Then, the LPV model formulation as well as the control objectives are introduced. Moreover, the control synthesis procedure is detailed and the validation of the proposed control in the frequency domain. Section 4 describes the simulation scenario and the associated results for the two LPV controllers. Section 5 shows the experimental results in a test track for a varying speed profile and the analysis of the implementation of the LPV controllers. Section 6 concludes the paper.

II. LATERAL CONTROL FRAMEWORK

The lateral vehicle dynamics can be modeled as a twowheeled bicycle model [START_REF] Rajamani | Vehicle Dynamics and Control[END_REF]. Using this model and by parameterizing the longitudinal speed of the vehicle, the yaw dynamics can be decoupled and a steering controller can be designed regardless of the longitudinal dynamics of the vehicle.

Fig. 1 shows the resulting vehicle model which is expressed by the parameters where v x and v y are the longitudinal and lateral velocity accordingly. ψ is the yaw rate of the car. α f , α r are the tire side-slip angles of the front and rear wheels respectively. β is the side slip angle of the vehicle body. δ is the steering wheel angle. L f , L r are the distances of the front and rear wheel from the center of the gravity of the car and C f , C r the front and rear cornering stiffness. The lateral tire forces are approximated as linear functions:

F y f = C f α f F yr = C r α r (1) 
Using small angles approximations, the side slip angles can be written as:

α f = δ - v y + L f ψ v x α r = -v y + L r ψ v x (2)
Using Newton's second law and the moment balance at the z axis, the next equations are derived:

ma y = m( vy + v x ψ) = F y f + F yr I z ψ = L f F y f -L r F yr (3) 
where a y is the lateral acceleration, m the mass and I z the car inertia.

Considering v y and ψ as state variables and combining the equations (1), ( 2), (3) the linear vehicle model in state space form is derived:

  vy ψ   =         - C f +C r mv x -v x + C r L r -C f L f mv x -L f C f + L r C r I z v x - L 2 f C f + L 2 r C r I z v x           v y ψ   +      C f m L f C f I z      δ (4) 
A. Look-ahead Dynamics Fig. 2 presents the look-ahead system [START_REF] Taylor | A comparative study of vision-based lateral control strategies for autonomous highway driving[END_REF], where y L is the lateral offset from the reference trajectory at a target point in a distance L away from the vehicle. ε L is the angular error between the reference heading at the target point and the vehicle's orientation. Considering y L and ε L as state variables, the equations that describe their evolution are: 

ẏL = -v y -L ψ + v x ε L εL = ψre f - ψ (5) 

B. Combined vehicle model

Combining the state space equations ( 4), ( 5), and considering that only the lateral error y L is measured, the proposed vehicle model is derived as follows:

ẋv (t) = A v x v (t) + B v 1 w(t) + B v 2 u(t) y(t) = C v x v (t) (6) 
x v (t) =           v y ψ y L ε L           , B v 1 =           0 0 0 1           , B v 2 =              C f m L f C f I z 0 0              , A v =               - C f +C r mv x -v x + C r L r -C f L f mv x 0 0 -L f C f + L r C r I z v x - L 2 f C f + L 2 r C r I z v x 0 0 -1 -L 0 v x 0 -1 0 0               , C = 0 0 1 0 .
where x v (t) is the combined state vector, w(t) = ψre f is the exogenous input, u(t) = δ the control input and y(t) = y L is the measurement used for feedback.

C. Extended vehicle-actuator model

Steering actuator dynamic plays a key role when it comes to design a lateral control system. A second order transfer function of the actuator model has been identified in the form below:

G act = k s 2 + 2ζ w n s + w 2 n e -T d s
where k, ζ , w n and T d are the static gain, the damping, the natural frequency and the time delays respectively. In state space the actuator model can be written as follows:

ẋact (t) = A act x act (t) + B act u(t) u act (t) = C act x act (t) + D act u(t) (7) 
For control design purpose, a second order Padé approximation of the time delay has been chosen. Therefore, x act ∈ R 4 is the vector expressing the states of the actuator,

A act ∈ R 4×4 , B act ∈ R 4×1 , C act ∈ R 1×4 , D act ∈ R 1×4
are the systems matrices and u act ∈ R is the output.

Considering the output of the actuator as the input of the vehicle model leads to the extended equation:

ẋv (t) = A v x v (t) + B v 1 w(t) + B v 2 [C act x act (t) + D act u(t)]
Consequently, the extended model can be given as:

ẋ = Ax(t) + B 1 w(t) + B 2 u(t) y = Cx (8) 
where

x(t) = x v (t)
x act (t) ∈ R 8 is the extended state vector,

A = A v B v 2 C act 0 A act ∈ R 8×8 , B 1 = B v 1 0 ∈ R 8 , B 2 = B v 2 D act B act ∈ R 8 and C = [C v 0] ∈ R 1×8
are the extended system matrices.

III. LPV CONTROLLER DESIGN

This section presents the LPV methodology developed in this study to design a dynamic output controller. Let us recall that three approaches are mostly used for the representation of an LPV model and then for LPV control synthesis: 1) Polytopic Set of Parameters; 2) Linear Fractional Transformation; and 3) Set of Gridded Parameter Points. The last one is proposed in this paper using a gainscheduling approach for the lateral vehicle control system. For comparison purposes, a more classical approach based on a LPV polytopic controller is also carried out. Benefits of the gridded-based approach are theoretically and experimentally demonstrated with respect to polytopic one.

This section firstly introduces the polytopic controller design. Then, the basics of the LPV gain-scheduled controller are presented. The LPV model formulation and the considered control objectives are presented afterwards. Finally, the LPV control scheme, the problem solution as well as the analysis of the solution in the frequency domain are presented.

A. LPV Polytopic Controller

For comparison purposes, a LPV controller based on the polytopic approach [START_REF] Apkarian | Self-scheduled H ∞ control of linear parameter-varying systems: a design example[END_REF] is designed. The referred-toas polytopic method is restricted to LPV systems whose matrices are depending in an affine way on the vector of parameters. Moreover the parameters are assumed to be known and bounded i.e.:

ρ j ≤ ρ j ≤ ρ j
where ρ j is the j th element of the varying parameter vector , and ρ j , ρ j are the upper and lower bounds respectively. The set of varying parameters is then a polytope with 2 n vertices, where n is the number of the varying parameters, and the system matrices can be written as

A(ρ) B(ρ) C(ρ) D(ρ) = 2 n ∑ i=1 a i A i B i C i D i (9) 
In the LPV/H ∞ framework, the control synthesis problem is treated off-line by solving a set of LMIs at each vertex of the polytope using convex optimization. The solution of the problem are the state space representations of the vertex LTI controllers, K i , where 1 ≤ i ≤ 2 n .

The polytopic LPV controller K(ρ) is computed on-line as the convex combination of the vertex controllers K i .

K(ρ) = 2 n ∑ i=1 a i (ρ)K i a i (ρ) = n ∏ j=1 |ρ j -C c (ω i ) j | n ∏ j=1 (ρ j -ρ j ) > 0 2 n ∑ i=1 a i (ρ) = 1 ( 10 
)
where C c (ω i ) j is the j th element of the vector C c (ω i ), as follows:

C c (ω i ) j = ρ j i f ω i = ρ j ρ j otherwise

B. Background on the LPV Gridding Approach

Before introducing the LPV modelling of the state space equations of the system, let us recall the basics of the LPV Gain scheduled Gridded Controller for a simplified case in order to present the explicit solution. The interested reader may find more details in [START_REF] Wu | Control of Linear Parameter Varying Systems[END_REF], [START_REF] Wu | Induced L 2 -norm control for LPV systems with bounded parameter variation rates[END_REF].

Definition 1. Generalized LPV System A dynamical LPV system can be expressed by the following state space equations:

Σ(ρ) :   ẋ(t) z(t) y(t)   =   A(ρ) B 1 (ρ) B 2 (ρ) C 1 (ρ) D 11 (ρ) D 12 (ρ) C 2 (ρ) D 21 (ρ) D 22 (ρ)     x(t) w(t) u(t)   (11)
where x(t) ∈ R n express the states of the system, w(t) ∈ R n w are the exogenous inputs, u(t) ∈ R n w the control input, z(t) ∈ R n z controlled outputs, y(t) ∈ R n y hold for the system's measurements.

A(ρ) ∈ R n×n , B 1 (ρ) ∈ R n×n w , B 2 (ρ) ∈ R n×n u , C 1 (ρ) ∈ R n z ×n , C 2 (ρ) ∈ R n y ×n , D 11 (ρ) ∈ R n z ×n w , D 12 (ρ) ∈ R n z ×n u , D 21 (ρ) ∈ R n y ×n w and D 22 (ρ) ∈ R n y ×n u . ρ = [ρ 1 (t) ρ 2 (t) .. ρ s (t)] ∈ Ω (convex set) and | ρ(t)| ≤ v i (i = 1, 2, .
., s) is a vector of time varying parameters, assumed to be known and bounded ∀t.

For the purpose of simplification, the following assumptions (∆ 1-4 ) are made on the LPV Generalized state space system. 

S(ρ) :     ẋ(t) z 1 (t) z 2 (t) y(t)     =     A(ρ) B 11 (ρ) B 12 (ρ) B 2 (ρ) C 11 (ρ) 0 0 0 C 12 (ρ) 0 0 I n w 2 C 2 (ρ) 0 I n z 2 0         x(t) w 1 (t) w 2 (t) u(t)     (12) 
where

B 1 (ρ) = [B 11 (ρ) B 12 (ρ)] , C 1 (ρ) = [C 11 (ρ) C 12 (ρ)].
Definition 3. LPV Controller An LPV Controller can be described in the following form:

K(ρ) : ẋc (t) u(t) = A c (ρ) B c (ρ) C c (ρ) D c (ρ) x c (t) y(t) (13) 
where x c (t) ∈ R n c define the states of the LPV controller.

A c (ρ) ∈ R n c ×n c , B c (ρ) ∈ R n c ×n y , C c (ρ) ∈ R n u ×n c and D c (ρ) ∈ R n u ×n y .
The control objective considered for the closed-loop LPV system is to minimize the L 2 -norm from the disturbance to error signal, i.e. to provide disturbance/error attenuation. Let us recall that the induced L 2 -norm of an LPV system [START_REF] Becker | Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback[END_REF] is defined as:

G = sup ρ∈Ω sup w =0 z 2 w 2 (14) 
Below, is presented the theorem from [START_REF] Wu | Induced L 2 -norm control for LPV systems with bounded parameter variation rates[END_REF] as the solution of the control synthesis problem for the minimization of ( 14). Given a compact set Ω ⊂ R s , non-negative {v i } s i=1 numbers, performance level γ > 0, and the open-loop LPV system in [START_REF] Xu | Preview Path Tracking Control With Delay Compensation for Autonomous Vehicles[END_REF], the LPV synthesis γ-performance/ v-variation problem is solvable if and only if there exist continuously differentiable matrix functions X : R s → R n×n and Y : R s → R n×n , such that for all ρ ∈ Ω, X(ρ) 0, Y (ρ) 0 and the set of Linear Matrix Inequalities (LMIs) expressed by [START_REF] Nguyen | Fuzzy steering control for autonomous vehicles under actuator saturation: Design and experiments[END_REF] is satisfied. where:

Â(ρ) = A(ρ) -B 2 (ρ)C 12 (ρ), Ã(ρ) = A(ρ) -B 12 (ρ)C 2 (ρ).
Using this control synthesis procedure, the existence of such a parameter-dependent controller K(ρ) is determined. That controller will stabilize the closed-loop LPV system and guarantee the induced L 2 -norm performance of the closedloop system less or equal than γ > 0.

Solving the set of LMIs ( 15), an n-dimensional strictly proper controller [START_REF] Pérez | Cascade architecture for lateral control in autonomous vehicles[END_REF] is defined in state space form, which aims at minimizing [START_REF] Onieva | Automatic lateral control for unmanned vehicles via genetic algorithms[END_REF], where:

A c (ρ) = A(ρ) + γ -1 [Q -1 (ρ)X(ρ)L(ρ)B T 12 + B 1 (ρ)B T 1 (ρ)]Y -1 (ρ) + B 2 (ρ)F(ρ) + Q -1 (ρ)X(ρ)L(ρ)C 2 (ρ) -Q -1 (ρ)H(ρ, ρ) , B c (ρ) = -Q -1 (ρ)X(ρ)L(ρ) , C c (ρ) = F(ρ), with Q(ρ) = X(ρ) -Y (ρ) -1 , F(ρ) = -γB T 2 (ρ)Y -1 (ρ) +C 12 (ρ) , L(ρ) = -γX -1 C T 2 (ρ) + B 12 (ρ) , H(ρ, ρ) = -A T F (ρ)Y -1 +Y -1 A F (ρ) + ∑ i ρ ∂Y -1 ∂ ρ + γ -1 C T F (ρ)C F (ρ) + γ -1 Y -1 (ρ)B 1 (ρ)B T 1 (ρ)Y -1 (ρ)
In this way, the LPV control problem is tackled directly avoiding the need of design a LTI controller for each value of the parameter. Scalar differentiable basis functions has to be chosen { f i : R s → R} N i=1 and {g i : R s → R} N i=1 to express X(ρ), Y (ρ) accordingly and optimize [START_REF] Nguyen | Fuzzy steering control for autonomous vehicles under actuator saturation: Design and experiments[END_REF] 

over {X i } N i=1 , X i ∈ R n×n and {Y i } N i=1 , Y i ∈ R n×n . X(ρ) = N ∑ i=1 f i (ρ)X i Y (ρ) = N ∑ i=1 g i (ρ)Y i
As a last step, selecting a grid of the parameter space Ω by M points {ρ k } M k=1 , a finite dimensional convex optimization problem is obtained.

Finally, a grid of LTI state-space controllers is obtained where a linear interpolation between the grid points is performed for the implementation of the LPV gain-scheduled controller.

C. LPV Model Formulation

The state space representation described in (8) can be rewritten as a dynamical LPV system. Defining the lookahead time as a function of speed T (v x ), the only parameter remaining is the longitudinal speed i.e ρ = v x .

An intensive simulation study for fixed speeds has been carried out and the selected values of the look-ahead time per speed are the ones that satisfy the control objectives described in section 3.4. Performing an interpolation to fit the data, has allowed to model the look-ahead time in the following exponential form:

T (v x ) = ae bv x + ce dv x ( 16 
)
where a = 3.83, b = -0.7261, c = 1.154 and d = -0.01453. From (8) it can be seen now that the only matrix or vector that contains the v x is the matrix A. Thus, the LPV model having as states the vehicle model and the states of the actuator model is written as: 

ẋ = A(ρ)x(t) + B 1 w(t) + B 2 u(t) y(t) = Cx(t) (17) 
    Y (ρ) ÂT (ρ) + Â(ρ)Y (ρ) - s ∑ i=1 ± v i ∂Y (ρ) ∂ ρ i -γB 2 (ρ)B T 2 (ρ) Y (ρ)C T 11 (ρ) B 1 (ρ) C 11 (ρ)Y (ρ) -γI n z 1 0 B T 1 (ρ) 0 -γI n w     ≺ 0     ÃT (ρ)X(ρ) + X(ρ) Ã(ρ) + s ∑ i=1 ± v i ∂ X(ρ) ∂ ρ i -γC T 2 (ρ)C 2 (ρ) X(ρ)B T 11 C 1 (ρ) B T 11 (ρ)X(ρ) -γI n w 1 0 C T 1 (ρ) 0 -γI n z     ≺ 0 X(ρ) I n I n Y ( 
(t) = x v (t)
x act (t) ∈ R 8 is the extended state vector,and

A(ρ) = A v (ρ) B v 2 C act 0 A act , with A v (ρ) =               - C f +C r mρ -ρ + C r L r -C f L f mρ 0 0 -L f C f + L r C r I z ρ - L 2 f C f + L 2 r C r I z ρ 0 0 -1 -ρT (ρ) 0 ρ 0 -1 0 0               , C = 0 0 1 0 0 0 0 0
The other matrices remain unchanged. As it was previously stated, lateral error y L is the only measurement used in the feedback control.

D. Control Objectives

According to the Pure-Pursuit algorithm [START_REF] Coulter | Implementation of the pure pursuit path tracking algorithm[END_REF], the control of the vehicle is achieved by minimizing the lateral error at the target point. At the same time, look-ahead time is a design parameter since target points depends on it-i.e the lookahead distance is affected (L = v x T ). For small look-ahead distance, the target points are located close to the vehicle and since the main goal is to reach these points, the vehicle will react quickly. On the contrary, when the target points are chosen to be far from the vehicle's position, then the vehicle will respond slower. Hence, it is clear that the look-ahead time is a parameter that affects the bandwidth of the closed-loop system.

Here lies the question of how far or how close should the target point be in order for the vehicle to follow the desired trajectory and simultaneously keep comfort. This paper combines the look-ahead time with the weight on the lateral error at the target point for low and high speeds to achieve good performance.

The control objectives conceived to perform optimal lanetracking are as follows:

• For low speeds (u x < 10 m/s), fast turning capabilities are required. For that reason, the look-ahead distance is chosen to be small and the weight on the lateral error at the target point to be big. • For higher speeds (u x > 10 m/s), the vehicle has not to steer much in order to reach the control point. Thus, the look-ahead distance is chosen to be higher and the weight on the lateral error decreases for higher speeds. Fig. 4 presents how the proposed methodology is formulated in the LPV framework. In this control scheme is included the LPV plant ( 17), the grid-based controller, the performance output vector z and the weighting functions W r , W n , W u (s) and W y (ρ). The signals n(t) and r(t) represent noise signal imposed additively on the measurement y L and the weighted reference ψre f respectively.

The weighting function W y (ρ) is chosen as W y (ρ) = T (ρ). In this way, the proposed methodology is applied by imposing higher weights for low speeds on the lateral error at the target point.

The filter W u (s) is chosen as W u (s) = s + w bc M εs + w bc with w bc = 0.5 rad/s to respect the corresponding control objective about the bandwidth of the controller (w bc < 1 rad/s), M = 2 (6db) to respect the saturation limits and ε = 0.1 (10 -1 rad/s) that expresses the frequency where the roll-off starts to achieve better noise attenuation. Finally, constant weights are added as: W n = 0.5 and W r = 0.1.

Extending the system [START_REF] Mohammadpour | Control of linear parameter varying systems with applications[END_REF] with the the weighting functions, exogenous inputs and controlled outputs, leads to the generalized plant of the system.

  ẋ(t) z(t) y(t)   =   A(ρ) B 1 B 2 C 1 (ρ) D 11 D 12 C 2 D 21 0     x(t) w(t) u(t)   ( 18 
)
where x is the extended state vector combining the vehicle, actuator and weighting functions state variables, w(t) = [r(t) n(t)] T are the new vector with the exogenous inputs and z = [z 1 z 2 ] T the controlled outputs.

F. Problem Solution & Analysis in the Frequency Domain

Fig. 4 presents the interconnections for the LPV control synthesis. The problem solution has been computed using LPVTools toolbox [START_REF] Hjartarson | LPVTools: A toolbox for modeling, analysis, and synthesis of parameter varying control systems[END_REF]. The generalized plant ( 18) is gridded for frozen values of the parameter ρ = 5 : 1 : 25 m/s and as parameter variation bounds are imposed -9 ≤ ρ ≤ 3 taking into consideration braking and accelerating bounds. The basis functions f i and g i to construct X(ρ) and Y (ρ) are picked as second order polynomial functions judging by simulations, since no concrete methodology exists about their selection.

X

(ρ) = X 0 + ρX 1 + ρ 2 X 2 Y (ρ) = Y 0 + ρY 1 + ρ 2 Y 2
Finally, the set of LMIs ( 15) formed at the grid points of the generalized plant ( 18) are solved for γ and X i and Y i . At that point, with γ = 0.9752, the reconstruction of LTI state space controllers takes place for each grid point of the speed. Figure 5 presents the frequency response for all speeds from steering wheel angle to the reference yaw rate relatively to the specification imposed by the template weighting function W u . Fig 6 shows the bode plot for all speeds from the lateral error at the target point to the reference yaw rate for the closed-loop system. It has to be remarked that since γ < 1, the control objectives are met. Fig. 7 shows the frequency response of the LTI controllers corresponding for all gridded points of speed. As speed increases, the output of the controller decreases as is demanded in the control objectives. 

Frequency (rad/s) Fig. 6. Frequency response y L r of the closed-loop system. The arrow shows the direction of the increasing parameter

IV. PERFORMANCE ASSESSMENT USING TIME-DOMAIN

SIMULATIONS

A. About the design of the polytopic controller

The LPV controller based on the polytopic approach is designed for comparison based on the vehicle model presented in [START_REF] Ackermann | Advantages of active steering for vehicle dynamics control[END_REF] without the actuator model. This choice is taken in order to avoid higher order controller and implementation issues that may occur.

It is worth noting that the LPV matrices in (6) can not be written in an affine form from the only parameter ρ = v x , since the term 1 v x is also included in the A v matrix. Therefore, to apply the polytopic aprroach, we must consider two parameters, ρ 1 = v x and ρ 2 = 1 v x . Thus, the vertices ω i of the polytope will be 2 2 = 4 defined by the combinations of the upper and lower bounds of these two parameters, where v x ∈ [START_REF] Doumiati | Integrated vehicle dynamics control via coordination of active front steering and rear braking[END_REF][START_REF] Alcalá | LPV-MP planning for autonomous racing vehicles considering obstacles[END_REF].

To avoid further enlargement of the polytope, the lookahead time is here selected constant T = 1.2s, which is a limitation. Note that, in the case where the look-ahead time is treated as a parameter, a structure with three parameters must be considered which leads to very conservative results. Solving a set of LMIs at each vertex of the polytope via Yalmip [START_REF] Lofberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF], the solution of the problem occurred which are the vertex LTI controllers,

K i = A i B i C i D i
, where 1 ≤ i ≤ 4 and on-line the polytopic LPV controller is calculated according to [START_REF] Xu | System architecture of a driverless electric car in the grand cooperative driving challenge[END_REF].

B. Comparison of the Results

A simulation scenario that combines an initial lateral error with a sharp turn is designed to evaluate controller capabilities to handle initial errors and tracking capabilities in turns. Figure 8 plots the reference trajectory. The vehicle starts with an initial error of a meter away from the reference, then it follows a straight line and finally, it should track a turn with a radius R = 100m.

First, Fig. 9 shows the lateral error at center of gravity of the vehicle for the two LPV controllers for speed v x = 5m/s where the look-ahead time is T = 1.2s for both controllers. Fig. 10, 11, 12, 13 show the lateral error at center of gravity of the vehicle for the two LPV controllers for speeds v x = 10, 15, 20, 25m/s respectively where T = 1.2s remains constant for the polytopic and for the gain-scheduled changes according to [START_REF] Tan | Design of a high-performance automatic steering controller for bus revenue service based on how drivers steer[END_REF].

For speeds v x ≤ 10m/s in Fig. 9, 10, starting from one meter away, the polytopic controller reaches the desired lane without overshoots. As speed increases, oscillations start to appear as a sign of losing performance for the polytopic controller. On the contrary, the gain-scheduled controller is capable of handling even such an initial error and only for v x = 25m/s small oscillations appear in Fig. 13.

At the part of the turn, the polytopic controller provides good performance (i.e. small lateral errors less than 0.5m) again for v x = 5, 10m/s (see Fig. 9, 10). It has to be remarked that even when the look-ahead time T = 1.2s is the same for both controllers in Fig. 9, the gain-scheduled achieves smaller lateral error than the polytopic one. As the speed increases in the case of the polytopic controller, the lateral error continues to increase in the turn reaching even 1.5m for v x = 25m/s in Fig. 13. Instead, in the case of the gridded controller, it can be seen that for speeds v x ≤ 15m/s, the lateral error never exceeds 0.2m (see Fig. 9, 10, 11), and for v x = 20, 25m/s never gets more than 0.4m (see Fig. 12,13). V. EXPERIMENTAL RESULTS The proposed lateral controller has been implemented on an automated Renault ZOE (see Fig. 14). Experiments were carried out in a private test track located in Satory, 20 km away of Paris, France. The vehicle is equipped with a Real-Time Kinematic Differential Global Positioning System (RTK-DGPS) that serves as precise positioning system. A MicroAutoBox is installed in the trunk. It receives both the vehicle positioning and reference trajectory via Ethernet connection from an industrial computer.

A. Implementation Issues

The implementation of the polytopic and gridded LPV controllers on the experimental platform is a two-step procedure:

1) The LTI controllers (for every vertex for the polytopic case and for every selected frozen value of the speed for the polytopic, for the gain-scheduled from eq. ( 16). Polytopic is in blue and gain-scheduled in red. (Simulations)

for the gridding one) have been discretized for a sampling period T s = 0.01s, 2) At each sample time the controller K(ρ) is realized as a linear interpolation of the two discretized LTI controllers K i-1 , K i for values of the gridded points of the parameters ρ i-1 , ρ i respectively, for which ρ ∈

[ρ i-1 , ρ i ]. K(ρ) = a(ρ)K i + (1 -a(ρ))K i-1 a(ρ) = ρ -ρ i-1 ρ i -ρ i-1 (19) 
where a(ρ) is a scaling factor computed on-line for the measured parameter ρ whose value is between ρ i-1 and ρ i . It is worth noting that, to reduce the complexity of the implementation, it was chosen a smaller number of controllers to be interpolated according to [START_REF] Sename | Robust control and linear parameter varying approaches: Application to vehicle dynamics[END_REF] to treat the whole Vehicle Response for v_x=25m/s Fig. 13. Lateral deviation response for speed test v x = 25m/s and T = 1.2s for the polytopic, for the gain-scheduled from eq. ( 16). Polytopic is in blue and gain-scheduled in red. (Simulations) range of speed. More specifically, the controllers chosen were for frozen values of v x = 5, 10, 15, 20, 25m/s, i.e K i with i = 1, .., 5.

Remark: the implementation for the polytopic controller on-line is a convex combination (10) of the discretized vertex LTI controllers. It is worth saying that the discretization of the polytopic controller, since it was carried out for each vertex of the polytope, cannot guarantee the performance/stability that were ensured during the synthesis of the continuous time control. However, this was checked a posteriori before the implementation.

B. Experimental results

Both LPV controllers were implemented on the real vehicle for comparison purposes. Speed profile is provided by the navigation system and, if no interaction with other traffic agents occurs as in this case (tests are done in a Fig. 14. Automated Electric Renault Zoe private test track), is identical for both controllers. It is adapted accordingly to the road curvature, assuring comfort on-board. Fig. 15 presents the speed profile during the tests. The autonomous mode is activated when the speed is about 4m/s. Then, the vehicle accelerates until 14m/s in a straight stretch, maintaining the same speed up to second 40 where smoothly decelerates up to 9m/s. Figure 16 shows the experimental area, which combines a straight stretch with two turns with variable radius, and the trajectories of the two LPV controllers measured during the test.

To assess the lane-tracking capabilities of the two designed LPV controllers, the lateral offset at the vehicle's center of gravity is examined in Fig. 17 and the steering wheel angle in degrees computed from each controller in Fig. 18.

At the beginning of the test where the vehicle accelerates, oscillations are observed under the polytopic control. This can be explained from Fig. 18, where the vehicle turns even 100 degrees. Instead the gridded controller handles this continuous change of speed smoothly without having an increase of lateral error neither by turning jerkily. The steering wheel angle is not changing abruptly keeping comfort at all times. On the other hand, the polytopic controller cannot handle the turns: the lateral error increases more than 1m and the controller's output presents oscillations when the speed changes quickly.

Experimental results validate the interest and efficiency of the proposed LPV gain-scheduling control approach for lateral control of autonomous cars.

VI. CONCLUSIONS & FUTURE WORKS

This paper presents the design, implementation and testing of a novel LPV gain-scheduled controller combined with the Pure-Pursuit algorithm for the lateral control of an autonomous vehicle.

Simulation and experimental results in comparison with a polytopic LPV controller, shown that the LPV gainscheduled controller has the advantage of including the a priori knowledge of the rate bounds in the design and as a result, there is no deterioration of the performance for quick changes of the parameter, whereas the polytopic introduced oscillations and huge lateral errors. Moreover, its flexible design allows to choose the appropriate lookahead time for different values of speed to fulfill the control objectives for low and high speeds. In addition, the LPV gain-scheduled controller makes feasible to choose which LTI state space controllers captures the best the vehicle dynamics for the implementation, avoiding in that way the switching between multiple controllers and simultaneously sustaining the desired performance for the vehicle via merely a linear interpolation.

Future works may include the investigation of the robustness of the proposed controller by considering disturbances on the frequency domain, and uncertainties on the vehicle model parameters. Another future step is the design of a prediction-based control scheme to alter the longitudinal speed of the vehicle, taking into account its braking/acceleration capabilities, for overtaking and highspeed maneuvers. 
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 7 Fig. 7. Frequency response of the LTI gain-scheduled controller K i . The arrow shows the direction of the increasing parameter ρ.
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 89 Fig. 8. Reference trajectory used for simulation. (Simulations)
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 1011 Fig.10. Lateral deviation response for speed test v x = 10m/s and T = 1.2s for the polytopic, for the gain-scheduled from eq. (16). Polytopic is in blue and gain-scheduled in red. (Simulations)
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 12 Fig.[START_REF] Xu | Preview Path Tracking Control With Delay Compensation for Autonomous Vehicles[END_REF]. Lateral deviation response for speed test v x = 20m/s and T = 1.2s for the polytopic, for the gain-scheduled from eq. (16). Polytopic is in blue and gain-scheduled is in red. (Simulations)

Fig. 15 .Fig. 16 .

 1516 Fig. 15. Longitudinal speed profile during test. (Experiments)
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 1718 Fig. 17. Lateral deviation response of the vehicle throughout the test. Polytopic is in blue and gain-scheduled in red. (Experiments)
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