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ABSTRACT

Many pricing problems boil down to the computation of a high dimensional integral, which is usually
estimated using Monte Carlo. In fact, the accuracy of a Monte Carlo estimator with M simulations is
given by σ√

M
. Meaning that its convergence is immune to the dimension of the problem. However,

this convergence can be relatively slow depending on the variance σ of the function to be integrated.
To resolve such a problem, one would perform some variance reduction techniques such as importance
sampling, stratification, or control variates.

In this paper, we will study two approaches for improving the convergence of Monte Carlo using
Neural Networks. The first approach relies on the fact that many high dimensional financial problems
are of low effective dimensions[15]. We expose a method to reduce the dimension of such problems
in order to keep only the necessary variables. The integration can then be done using fast numerical
integration techniques such as Gaussian quadrature. The second approach consists in building an
automatic control variate using neural networks. We learn the function to be integrated (which
incorporates the diffusion model plus the payoff function) in order to build a network that is highly
correlated to it. As the network that we use can be integrated exactly, we can use it as a control
variate.

Keywords Monte Carlo · Neural Networks · Variance reduction · Control Variate · effective dimension



1 Introduction

Classic methods for pricing and hedging can be very slow at times. With the new regulatory context and as we seek
high level performances, the demand for efficient pricing and hedging methods becomes very pressing. The question is
how efficient are the methods commonly used. Depending on a number of factors such as the diffusion model or the
number of underlying assets, different pricers can be considered. However, we notice that Monte Carlo is the most
commonly used one. In fact, it offers a big flexibility since it can be used under any diffusion model and with as many
underlying assets as needed. Moreover, its variance is immune to the dimension of the problem which makes it very
suitable for high dimensional integration problems which are very common in finance. So how does the Monte Carlo
method work and how do we use it in financial problems?

We consider the following SDE governing the diffusion of the underlying assets Si

dSit = µi(t, S
i
t)dt+ σi(t, S

i
t)dB

i
t. (1)

where the Bi’s are correlated Brownian motions and let g be a payoff function depending on the processes (Sit)0≤t≤T .
The computation of g’s price often bounds to the computation of an expectation of the form E(f(X)) which using the
strong law of large numbers may be approached with the estimator SM = 1

M

∑M
i=1 f(Xi), where the Xi’s are random

samples of X and M a sufficiently large number. SM is the Monte Carlo estimator. We pose σ2 = Var(f(X)), the
variance of SM is given by

Var(SM ) = Var

(
1

M

M∑
i=1

f(Xi)

)
=
σ2

M
. (2)

Note that the variance of the estimator is proportional to the variance of the integrand. Therefore, it is always interesting
to find a variable Y such that {

E(Y ) = E(f(X)),

Var(Y ) < Var(f(X)).

There are several techniques to find such a variable Y . Here, we will focus on control variates.

Let Y = f(X)− h(X) + E(h(X)) where we assume that we can compute E(h(X)) exactly. writing thatVar(Y ) = Var(f(X)) + Var(h(X))− 2 Cov(f(X), h(X)),

Cov(f(X), h(X)) >
1

2
Var(h(X))

(3)

We deduce that Var(Y ) < Var(f(X)).

In [5] and [6], the authors study control variates that depend on some parameter θ, the control variate has
then the form h(X, θ)− E (h(X, θ)) and suggest two adaptive algorithms to find an adequate parameter θ∗ optimising
the control variate. The first one uses a stochastic approximation scheme where the parameter θ∗ is chosen as to
minimise the variance of the estimator and the minimisation algorithm is based on stochastic gradient descent. The
second algorithm is based on a sample average algorithm where θ∗ is estimated using a first random sample of X so as
to minimise the variance of the estimator. Then a second sample of X is drawn independently from the first one to
estimate the actual expectation. A similar work has been conducted in [9], the authors work on adaptive Monte Carlo
which is a generalisation of this parametric control variate problem. Actually, one can write E(X) as E(H(θ,X)).
The problem is then to find such a parametric representation of X and then solve for θ∗. Another issue that needs to
be addressed is how to find the actual h(X) that approximates f(X) appropriately. In [10], the author suggests to
use a projection of f(X) on the first p terms of an orthonormal basis (ek)1≤k≤p in L2(D) where D is the domain of
integration of f . So h(X) writes

∑p
k=1 akek(x). The paper works on finding an optimal estimation for the coefficients

ak. In [3], Glynn and Szechtman show how to construct a control variate in the case where the simulation of X involves
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simulating V1, V2, . . . , Vτ iid with E(Vj) known for all j and τ a stochastic variable. In [11], the authors suppose that
for a multivariate scope, if we replace all the variables but one with their means, the resulting function’s expectation
becomes easy to compute and it has a lot of information about the multivariate function. they then combine all these
resulting functions to construct the control variate. In, [12], the authors study the combination of multiple control
variates and the convergence limit of Monte Carlo when the number of control variates grows to infinity.

In this paper, we want to create sophisticated control variates which automatically adapt to the function f . To
do so, one needs to find a function h, highly correlated to f , and such that we have an exact method for computing
E(h(X)) or at least a numerical method that is more precise than Monte Carlo. We suggest two main methods for
creating automatic control variates. The first one, deals with high dimensional problems with low effective dimensions
(see [15] and [14]). For these cases, the function f only relies on some components of X that we find using an adequate
neural network and thus f can be integrated using a simple numerical integration method such as Gaussian quadratures.
The idea of reducing the dimension of X before searching for the control variate has been exposed in [2] where the
authors use Principal Component Analysis to reduce the dimension of the problem before using an adaptive integration
algorithm based on quasi Monte Carlo. In the second method, we suggest to use a neural network H as the control
variate. The network learns f(X) so that it is naturally correlated to it (we actually learn the diffusion model, the
discretization and the payoff function all at once). The architecture of the network is chosen wisely, so as E(H(X)) can
be computed easily.

2 Feed forward networks in a nutshell

A feed forward network is composed of a stack of layers each of which is a composition of a linear transformation with
an activation function (a non linear function). The idea behind these networks comes from the Universal Approximation
Theorem which states that a neural network with one hidden layer can approximate any continuous function for inputs
within a specific range (see [8]). More formally, let ψ : Rp −→ Rq (for our case p = N and q = 1) be an unknown
function that we wish to approximate. We will construct a feed forward network containing a stack of L layers as
follows:

y = aL(x) ∈ Rq

aL(x) = WLaL−1(x) + bL

ak(x) = σa(Wkak−1(x) + bk) ∀k ∈ [|1, L− 1|]
a0(x) = x ∈ Rp

a0 is the input layer, it simply contains the input of the network. a1, . . . , aL−1 are hidden layers that apply (non linear)
transformations to their inputs. Finally, aL is the output layer which contains the output of the network. Each layer
k is parametrized by some weights Wk and bias bk. Training the network consists in finding the best parameters to
approximate ψ.

We define a loss function lθ(ψ(x), aL(x)) measuring the distance between the real function and the estimated
values where θ represents the whole set of weights and bias. We run a minimisation algorithm on l (for example
stochastic gradient descent, Adam or RMSprop) in order to find the optimal weights and biases. The optimisation
problem writes

min
θ

lθ(ψ(x), aL(x)) (4)

All the optimisers that we might use are first order methods, which means that we need to compute the gradient of the
objective function with respect to each parameter Wk or bk. Computing all these gradients can become very consuming.
However, we use the back propagation algorithm which allows to compute only the gradients with respect to the last
layer’s parameters and propagate them backward to obtain all the rest of the gradients. More details on back propagation

3



can be found in [1]. In the following, we use the euclidean distance as a loss function, i.e l(z, y) = ||y− z||2 and Adam
for optimisation (more details on this algorithm can be found in [7].

3 First Approach: Network dimension reduction

Let f be a function depending on N independent identically distributed standard normal variables (Z1, . . . , ZN ). We
will search for n normal directions summarising the variance of f of the form Z̃i =

∑N
k=1 uikZk ∀i = 1, . . . , n

with the condition
∑N
k=1 u

2
ik = 1 ∀i = 1, . . . , n. This condition allows the directions to be standardised (i.e

Var(Z̃i) = 1 ∀i = 1, . . . , n). For this purpose, we will build a network that predicts the payoff function given as inputs
the random variables (Z1, . . . , ZN ). It will be constituted of a number of hidden layers which we divide into two
sections. The first section is the dimension reduction cell. It contains one hidden non activated layer (this means we
only apply a linear transformation to its input) with exactly n units. We also omit the bias from this layer so as it takes
the form WZ. The output of this layer should contain the Z̃i’s. The second section may contain as many hidden layers
as needed. Its main role is to reconstitute the payoff function given only the directions obtained in the output of the
first part of the network. As the network will try to converge, the dimension reduction cell will find the variables that
summarise best the variance, this way allowing the second part of the network to recover the payoff function easily.
This idea is summarised in Figure 1

Figure 1: Architecture of the network used for dimension reduction

Once the network is trained, we have Z̃i =
∑N
k=1 uikZk ∀i = 1, . . . , n with U being the normalised weight

matrix of the first layer.

When the network outputs the directions of interest, it becomes "useless". We extract the weights and get
rid of the rest of the network. We will look for a matrix V such as Im(U) ⊕⊥ Im(V ) = RN . To do so, we write,

Z =

 Z1

...
ZN

 and Z̃ =

 Z̃1

...
Z̃n

 such as
(

Z̃

Z̃⊥

)
=

(
U

V

)
Z = MZ.

as Z̃⊥ = V Z and Z̃ = UZ are independent, i.e.
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0 = Cov(Z̃, Z̃⊥) = Cov(UZ, V Z) = U Cov(Z,Z) V T = UV T

which means that

Im(V T ) ⊆ ker(U). (5)

In addition we have the following results

1. dim(Im(U)) = n because the network will output independent directions, otherwise the effective dimension
is smaller than the number of directions we impose on the network. This implies that dim(ker(U)) = N − n

2. On one hand, by adding the Z̃⊥ variable, we wish to complete the original space, meaning that dim(Im(V )) =

N − n and dim(ker(V )) = n. On the other hand Im(V T ) = ker(V )T which means that dim(Im(V T )) =

dim(ker(V )T ) = N − n

dim(Im(V T )) = dim(ker(U)) = N − n. (6)

Finally, we conclude from Equations 5 and 6 that Im(V T ) = ker(U). To determine V , it suffices to find a basis of
ker(U). The determination of such a basis can be done using Gaussian elimination as follows

We consider the matrix U of size n×N . We construct the row augmented matrix
(

U

IN

)
where IN is the N ×N

identity matrix. We perform Gaussian elimination on this new matrix (column wise) and we obtain a matrix
(
A

B

)
. A

basis of ker(U) consists in the non-zero columns of B for which the corresponding column in A is a zero column. If the
method is correct, this matrix should be of rank N − n. If not, this means that the columns of U were not independent
and the number n of directions is bigger than the effective dimension of the problem.
Once this is done, we simulate Z̃ ∼ Nn(0, UUT ) and Z̃⊥ ∼ NN−n(0, V V T ) since Cov(Z̃) = Cov(UZ) = UUT

and Cov(Z̃⊥) = Cov(V Z) = V V T . The price of the option is given by E(f(Z)) and since

E (f(Z)) = E
(

E
(
f(Z)/Z̃

))
= E

(
f
(

E
(
Z/Z̃

)))
+ E

(
E
(
f(Z)/Z̃

)
− f

(
E
(
Z/Z̃

)))
= E

(
f

(
M−1

(
Z̃

0

)))
+ E

(
f

(
M−1

(
Z̃

Z̃⊥

))
− f

(
M−1

(
Z̃

0

))) (7)

We will use the variable f(E(Z/Z̃)) as a control variate. Since it depends only on the new variables Z̃ of small
dimension, we can use a numerical integrator much faster and more precise than Monte Carlo. Also we can use Sobol
Sequences for Z̃ simulation to have better convergence results (for more details on Sobol Sequences please refer to
[13]). Z̃⊥ is simulated using standard normal random variables.

4 Second Approach: Automatic control variate

Let H : RN −→ R be a neural network that approximates the payoff function f given the normal variable Z =

(Z1, . . . , ZN ). We write

Y = f(Z)−H(Z) + E(H(Z))

If the network is well trained, H(Z) is highly correlated to f(Z) and we just need to know how to compute E(H(Z))

analytically in order to use it as a control variate. We suggest two ideas for doing so.
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4.1 Numerical integration

For this part, we stick to the network architecture given in Figure 1. We may write

H(Z) = (H̃ o a1)(Z)

where a1(Z) = WZ is the first hidden layer of the network (the green block in Figure 1) and H̃ represents the rest of
the layers (the blue block in Figure 1).

E(H(Z)) = E((H̃ o a1)(Z))

= E(H̃(Z̃))

where Z̃ = a1(Z) = WZ ∼ N (0,WWT ). Since Z̃ has a small dimension, the integral can be estimated numerically
using Gauss Hermite polynomials for example. Of course, this should only be used when the effective dimension is
small enough.

4.2 Analytic integration

Here, we suggest a network having a simpler form, which will allow us to integrate it with an exact formula. This will
make the computation much faster since the integration of the whole network can be numerically costly. Moreover, the
network we suggest is capable of dealing with any payoff function with no restriction on the number of neurons of the
first layer. The architecture of this network is described in Figure 2

Figure 2: Architecture for automatic control variates

We consider the Relu activation function

Relu(x) = max(0, x) = x+
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Then, the network H writes

H(Z) = Z2

= W2Z1 + b2

= W2(W1Z + b1)+ + b2

Thus,
E(H(Z)) = W2E((W1Z + b1)+) + b2

But

W1Z + b1 =


∑N
j=1(W1)1jZj + (b1)1

...∑N
j=1(W1)njZj + (b1)n

 =

 σ1Y1 + µ1

...
σnYn + µn


with µi = (b1)i and σ2

i =
∑N
j=1(W1)ij and Yi ∼ N (0, 1). Then, we just have to compute E((σY + µ)+). In fact

E((σY + µ)+) = σ

∫ +∞

−µσ
yfN (0,1)(y)dy + µP

(
Y ≥ −µ

σ

)
= σ

∫ +∞

−µσ

1√
2π
y exp

(
−1

2
y2

)
dy + µ

(
1−N

(
−µ
σ

))
=

σ√
2π

[
− exp(−1

2
y2)

]+∞

−µσ

+ µ
(

1−N
(
−µ
σ

))
=

σ

2π
exp

(
−1

2

µ2

σ2

)
+ µ

(
1−N

(
−µ
σ

))
,

where N is the cumulative distribution function of the standard normal distribution. Finally,

E(H(Z)) = W2

 . . .
σi
2π exp

(
− 1

2
µ2
i

σ2
i

)
+ µi

(
1−N

(
−µiσi

))
. . .

+ b2. (8)

with µi = (b1)i and σ2
i =

∑N
j=1(W1)ij

5 Main numerical results

5.1 Black & Scholes

Let us consider the Black and Scholes model.

dSit = rSitdt+ σiS
i
tdB

i
t

d(BitB
j
t ) = ρijdt

This is a relatively simple model, where each underlying volatility is constant. We will first test our control variates on
this model for different payoffs.

• a call on a basket max(0.0,
∑
i ωiS

i
T −K)

• a put on a worst of max(0.0,K −mini(S
i
T ))
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• an arithmetic Asian option max(0.0, 1
d

∑
i

∑
j ωjS

j
ti −K)

• a binary option (a digit) on the basket G1∑
i ωiS

i
T≥K

We use the following parameters
Si0 = 100.0 ∀i,K = 100.0, ωi = 1

nbsj ∀i, T = 1 year, d = 10, G = 100.0, σi = 0.4 ∀i, ρij = 0.75 ∀i, j, nbsj = 10.

5.1.1 Network dimension reduction

In this first experiment we will compare the two methods that use dimension reduction presented in Section 3 (method
1) and Section 4.1 (method 2). Table 1 shows the price given by Monte Carlo as well as the ones given by the networks
for the different payoffs. We define Cost as the sum of the training time and the price computation time using the
network divided by the Monte Carlo computation time. The speed up represents the ratio between the variances of the
standard Monte Carlo and the one with the control variate divided by Cost

Payoff Basket Asian Digit Worst Of
Monte Carlo Price 15.95 9.75 46.00 26.48

Method 1 price 16.30 9.86 49.51 26.62
Method 1 Var ratio 336.12 166.79 15.28 4.08

Method 1 Cost 24.23 10.22 19.34 23.76
Method 1 Speed up 13.87 16.31 0.79 0.17

Method 2 price 16.19 9.86 47.50 26.55
Method 2 Speed Up 266.93 379.32 35.98 11.44

Method 2 Cost 14.32 3.34 14.97 14.23
Method 2 Speed up 18.64 113.46 2.43 0.80

Table 1: Dimension reduction control variates performances under Black and Scholes

We can see that the control variate is effective for most of the payoffs. Nevertheless, the first method is much
more efficient when the function to be integrated is close to being linear (the first term in 7 converges to the actual
expectation and we do not even need the bias correction represented by the second term of 7). This is the case for the
Basket or the Asian option. In the other cases, the methods still give good control variates and we can see that we have
a significant variance reduction in most cases. Note that the Worst Of and the digit are better approximated with the
second method since the first one will only capture the linear part of the function whilst the second method will learn
the whole payoff function.

5.1.2 Automatic control variates

In this section we study the same payoffs described earlier, we test the automatic control variates described in Section
4.2.
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Payoff Basket Asian Digit Worst Of
Monte Carlo Price 15.86 9.83 46.57 26.68

Control variate 16.22 9.81 46.95 26.64
Var ratio 673.90 119.54 16.07 21.74

Cost 13.82 4.82 12.98 9.75
Speed up 48.76 24.80 1.23 2.23

Table 2: Automatic control variates performances under Black and Scholes

Again, the control variate allows significant speed ups for the different payoffs. We also notice that for the
Digit and Worst Of payoffs the speeds are better than when we use the method of dimension reduction and we learn
only the linear part of the functions.

5.2 Local Volatility model

We consider a local volatility model where we consider the following form for the volatility function

σ(t, x) = 0.6(1.2− e−0.1te−0.001(xert−s)2)e−0.05
√
t

This parametric volatility function is taken from [4], where the authors advise to take s equal to the spot price of the
underlying asset in order for the formula to make sense. This will allow the bottom of the smile to be located at the
forward money. There is no exact simulation method for this model as in the Black Scholes model, thus we need a
discretization scheme. We use an Euler discretization with 100 steps per year. The results are displayed in Table 3.

5.2.1 Network dimension reduction

Payoff Basket Asian Digit Worst Of
Monte Carlo Price 7.91 4.33 60.41 8.56

Method 1 Price 7.92 4.37 61.75 8.56
Method 1 Var ratio 36.58 76.48 2.81 2.68

Method 1 Cost 8.83 3.02 4.89 4.71
Method 1 Speed up 4.14 25.32 0.57 0.56

Method 2 price 7.84 4.36 61.77 8.50
Method 2 Var ratio 48.59 78.95 3.33 8.18

Method 2 Cost 1.21 1.24 1.50 1.21
Method 2 Speed up 40.15 63.67 2.22 6.76

Table 3: Dimension reduction control variates performances under a local volatility model

Here, we have introduced two levels of complexity. First, the model is more complicated than the Black and Scholes
model. Second, the introduction of the time grid increases the inputs for the networks. The first method’s speed ups
decrease a little but are still acceptable. The second method deals better with this complexity and we even have some
improvements in the speed ups.
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5.2.2 Automatic control variates

Payoff Basket Asian Digit Worst Of
Monte Carlo Price 7.90 4.36 60.49 8.54

Control variate 7.85 4.36 60.38 8.49
Var ratio 8.29 9.77 2.06 5.59

Cost 1.85 1.75 2.62 1.85
Speed up 4.48 5.58 0.78 3.02

Table 4: Automatic control variates performances under a local volatility model

The automatic control variate struggles a little bit more with this model than the control variate with numerical
integration. This might be due to the fact that we only use one hidden layer in the network and since this model is more
complicated we think that one hidden layer is not really sufficient to capture its complexity. However, we still have
some interesting speed ups which proves that no matter how complicated the payoff, the model or the time grid can get,
the network will still make the best of what you feed to it to give interesting results.

5.3 Stochastic volatility model

We consider the Heston model for the diffusion of the assets:

dSit = rSitdt+
√
σitS

i
tdB

i
t

dσit = κi(ai − σit)dt+ νi

√
σit(γidB

i
t +

√
1− γ2

i dB̃
i
t)

d〈B〉t = Γdt, d〈B̃〉t = INdt

Γ is the correlation matrix between the different assets, IN is the N ×N identity matrix, κ is the reversion rate of the
volatility process, a is the mean level of the volatility process, ν is the volatility of the volatility process and γi is the
correlation between an asset and its volatility process which we consider constant for the sake of simplicity. the model
can be equivalently written

dSit = rSitdt+
√
σitS

i
tdB

i
t

dσit = κi(ai − σit)dt+ νi

√
σitdB̂

i
t

Where B and B̂ are Wiener processes satisfying

d〈B〉t = Γdt, d〈B, B̂〉t = γΓdt, d〈B̂〉t =
(
γ2Γ + (1− γ2)IN

)
dt

The process (B, B̂) with values in R2N is a Wiener process with covariance

Γ̃ =

(
Γ γΓ

γΓ γ2Γ + (1− γ2)IN

)
Hence, the pair of processes (B, B̂) can be easily simulated by applying the Cholesky factorization of Γ̃ to a standard
Brownian motion with values in R2N . We use the following model parameters
∀i κi = 2, σi(0) = 0.04, ai = 0.04, νi = 0.01, γi = −0.2
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5.3.1 Network dimension reduction

We test the Heston model with the payoffs described earlier. The results are shown in Table 5

Payoff Basket Asian Digit Worst Of
Monte Carlo Price 9.69 5.76 56.92 12.40

Method 1 9.49 5.58 56.37 12.43
Method 1 Var ratio 20.91 32.83 1.00 2.54

Method 1 Cost 13.85 13.54 11.70 13.82
Method 1 Speed up 1.51 2.42 0.08 0.18

Method 2 price 9.57 5.92 55.19 12.58
Method 2 Var ratio 31.03 502.49 1.63 5.44

Method 2 Cost 1.28 1.27 1.36 1.35
Method 2 Speed up 24.24 395.66 1.19 4.03

Table 5: Dimension reduction control variates performances under a stochastic volatility model

We added again more complexity to the model and also we doubled the size of the networks inputs. However,
the results haven’t been degraded in comparison to the local volatility model. This means that the performance of the
networks isn’t really a decreasing function of the model’s complexity. Surprisingly enough we notice that for the Asian
payoff the performance of the second method is even much better with this more complicated model.

5.3.2 Automatic control variates

Payoff Basket Asian Digit Worst Of
Monte Carlo Price 9.48 5.96 55.78 12.48

Control variate with analytic integration 9.57 5.71 56.24 12.53
Var ratio 4.02 4.40 1.73 3.98
C2 2.37 2.27 4.20 2.73

Speed up 1.69 1.93 0.41 1.46
Table 6: Automatic control variates performances under a stochastic volatility model

This is an even more complicated model and the dimensions are again bigger than before. However, we still have some
important speed ups and the computation times are still very acceptable.

6 Robustness of the control variates

In this part, we test whether the networks presented in Section 3 are capable of resisting changes in the variables of the
payoff and the model. Since this method only learns the most important directions for the payoff and the model and not
the actual combination of the two, we hope it will be resisting to some parameters changes.
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6.1 Asian price sensitivity

To study this interesting aspect, we first consider an arithmetic Asian option ( 1
d

∑d
i=1 Sti −K)+. We train The network

with the following set of parameters
K = 100.0, σ = 0.2, S0 = 100.0, T = 1 year and d = 20.
Once the network is trained, we test it for a range of parameters larger than the ones used for the training. The prices
given by the network in the following figures are the raw prices without using them as control variates. Since this
example is relatively simple, those prices are quite accurate without the need to correct the bias through the Monte
Carlo.

Figure 3: Asian price as a function of the spot

Trained with a spot value 100. The network is capable of approaching the model for a range of spots going
from 60 to 150. This is very interesting, because it means we will not have to retrain the networks for every change in
the market spot.
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Figure 4: Asian price as a function of the strike

The network is also robust to the change of the strike parameter. Meaning that with one network we can cover
a huge range of products having different strikes.

Figure 5: Asian price as a function of the maturity (Monte Carlo vs Network)

The price as a function of the maturity time has some bias, using the network as a control variate corrects this
error as shown in the following figure.
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Figure 6: Asian price and stdev as a function of the maturity (Monte Carlo vs Control Variate)

Clearly, the control variate which is trained with a maturity 1 year performs some interesting variance
reduction for a much larger and smaller maturities.

6.2 AutoCall price sensitivity

We now consider a more industrial payoff : The AutoCall. This payoff pays the following:
At each recall date ti the option pays the following conditional coupon

Πi = Ci1Pti≥ABi

i−1∏
j=0

1Ptj<ABj .

At maturity, if no AutoCall event has occurred, the option pays the following

ΠT = −(K − PT )+1PT<DB

d∏
i=0

1Pti<ABi .

Where Ci is the value of the cash coupon at the date ti, Pti is the performance of the underlyings at date ti (in this
context, we consider a basket performance type), ABi is the AutoCall barrier at date ti. If at some recall date, the
performance goes above the AutoCall barrier, the client receives the corresponding coupon, and the product life ends
immediately. At the maturity if the performance goes very low (lower than the Down And In Barrier DB), the client
pays a put on the basket with strike K.
We train the network with the following set of parameters: T = 3 years, recall dates every year. C1 = 20.0, C2 =

25.0, C3 = 30.0, ABi = 100.0 ∀i, K = 80.0, and DB = 40.0. However this network will be tested on parameters
that it has never seen. The results are shown in Figure 5
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(a) AutoCall price and stdev in function of the AutoCall Barrier (b) AutoCall price and stdev in function of the spot

(c) AutoCall price and stdev in function of the PDI strike (d) AutoCall price and stdev in function of the PDI barrier

Figure 7: Control Variate for pricing Autocall

The interest of the dimension reduction method lies in its resistance to parameters change. In fact, this is
due to the fact that we learn the directions where the variance of the payoff is concentrated rather than the actual
payoff/model. The previous examples show that by learning a certain payoff given fixed parameters, the obtained
network can be used to price the same payoff with different parameters.

6.3 Some Greeks profiles

Since the dimension reduction control variate is resistent to some parameters changes, we will use it to compute some
greeks which are quantities representing the sensitivity of the payoff to some parameters. We consider for this section
the basket option described earlier. We compute by finite difference some of the option’s Greeks using the network.
Notice that these Greeks are computed with the raw network without using it as a control variate. We compare them
with the Greeks given by Monte Carlo.
We define the following Greeks:

• Delta δi = ∂Π
∂Si where Π is the option price and Si the i’th underlying.

• Vega νi = ∂Π
∂σi where σi the i’th underlying volatility.

These Greeks profiles are shown in Figure 6
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(a) Delta as a function of the spot (b) Vega as a function of the spot

Figure 8: Basket Greeks using dimension reduction control variate

The Greeks profiles are very smooth and fit nicely to the curves given by Monte Carlo. This shows that the
method can not only be used to reduce the variance of Monte Carlo price, but also in Greeks computation.

7 Conclusion

We have presented three new techniques for creating control variates using neural networks. We have tested our methods
under different models and showed through numerical examples that the control variates allow significant speed ups
without being time consuming. The first method we suggested represents a major quality of resistance to parameters
change. So even if in some tests the method had us believing that it works better with payoffs that are close to being
linear, we still highly recommend using it for this aspect of robustness to parameters change that it has. We have proven
through numerical examples that even for highly complicated payoffs (such as the Autocall example) the method is
still efficient. The other two methods are much more intuitive since we use a given network to approximate a payoff
function. they work better with non linear functions and give very important speed ups. The last method which uses
only one hidden layer is less efficient with complicated models but it has the advantage of being very fast because the
expectation of the control can be computed analytically.
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