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Abstract 
Mass spectrometry (MS) is an effective approach for determining the mass of biomolecules 
with high accuracy, sensitivity and speed. Over the past 25 years, MS performed under non-
denaturing conditions ("native MS”) has been successfully exploited to investigate non-
covalently associated biomolecules. Here we illustrate native MS applications aimed at 
studying protein-ligand interactions and structures of biomolecular assemblies, including 
both soluble and membrane protein complexes. Moreover, we review how the partial 
dissociation of holo-complexes can be used to determine the stoichiometry of subunits and 
their topology. We also describe "native top-down MS", an approach based on Fourier 
Transform MS (FT MS), whereby non-covalent interactions are preserved while covalent 
bonds are selectively fragmented. Overall, native MS plays an increasingly important role in 
integrative structural biology, helping researchers to elucidate the three dimensional 
architecture of intricate macromolecular complexes. 
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Abstract 
Mass spectrometry (MS) is an effective approach for determining the mass of biomolecules 
with high accuracy, sensitivity and speed. Over the past 25 years, MS performed under non-
denaturing conditions – native MS – has been successfully exploited to investigate non-
covalently associated biomolecules. Here we illustrate the use of native MS to study protein-
ligand interactions and structures of biomolecular assemblies, including both soluble and 
membrane protein complexes. Moreover, we review how the partial dissociation of holo-
complexes can be used to determine the stoichiometry of subunits and their topology. We 
also describe native top-down MS, whereby non-covalent interactions are firstly preserved 
and then covalent bonds are selectively broken. This allows the detailed probing of 
intersubunit and subunit-ligand interactions within a biomolecular assembly. Overall, native 
MS plays an increasingly important role in integrative structural biology, helping researchers 
to elucidate the three dimensional architecture of intricate macromolecular complexes. 
 
Keywords 
Top-down mass spectrometry (MS), protein-ligand interactions, macromolecular complexes, 
stoichiometry, 2D interaction map, integrative structural biology 
  



2 

 

1. Introduction 
Knowledge of the three-dimensional (3D) structure of a macromolecular complex is 

often critical for achieving a detailed understanding of its biological role and of the molecular 
mechanisms that underlie its functional activity. Traditionally, methods such as X-ray 
crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy and cryo-electron 
microscopy (cryo-EM) have been used to decipher the atomic organization of biomolecules. 
Recently, mass spectrometry (MS) has emerged as an important tool in structural 
proteomics for investigating 3D structures [1-5]. Several MS-based methods have been 
introduced for monitoring the structural and conformational changes of biomolecules and for 
characterizing their non-covalent interactions both in well-defined biochemical conditions and 
in complex biological environments such as cell lysates and intact cells. These techniques 
include MS coupled to: chemical cross-linking (XL) [6], hydrogen/deuterium exchange (HDX) 
[7-9], hydroxyl radical footprinting (HRF) [10, 11], limited [12] or pulse proteolysis [13], 
cellular thermal shift assay (CETSA) [14], Drug Affinity Responsive Target Stability (DARTS) 
[15, 16] and Stability of Proteins from Rates of Oxidation (SPROX) [16]. XL-MS allows the 
identification of spatially proximal residues and can be used to validate an experimentally 
determined 3D structure or to deduce the structure of a complex for which the individual 
subunit structures are known [17]. MS combined with HDX, HRF or limited proteolysis can 
be used to identify residues whose surface accessibility becomes altered upon complex 
formation, thereby providing information on intermolecular interfaces and on the 
conformational dynamics of complexes. MS coupled to pulse proteolysis, CETSA, DARTS 
and SPROX can identify the protein targets of small-molecule ligands.  

Below we review the role of native MS in investigating the structure and dynamics of 
biomolecular assemblies, including soluble and membrane protein complexes. In particular, 
we describe the different approaches used to assess the stoichiometry and topology of non-
covalent complexes. These include the partial dissociation of assemblies under controlled 
conditions in the gas phase and in solution. Moreover, we present recent progress in native 
top-down MS, whereby both covalent bonds and non-covalent interactions (i.e., primary and 
quaternary structures) can be investigated using the same mass spectrometer. Finally, we 
outline prospects for the future development of native MS and its application to the study of 
macromolecular complexes. 

 
2. Native MS and its role in investigating macromolecular complexes 
Over the last 25 years native MS (also known as structural MS [18]) has emerged as a 

key tool for investigating macromolecular and protein-ligand complexes because it allows 
non-covalent interactions (hydrogen bonds and van der Waals, electrostatic, hydrophobic 
and π-interactions) to be preserved during experimental analysis [19-21]. This distinguishes 
native MS from other types of biological MS (such as MS-based proteomics) which generally 
require denaturing conditions that disrupt such interactions. Using native MS one can 
determine the mass and stoichiometry of intact macromolecular complexes, identify direct 
interactions between their components and, in the case of multi-subunit assemblies, identify 
stable subcomplexes and assign the relative position (core vs. periphery) of subunits [22-27] 
(Figure 1). One can deduce the hierarchy of an assembly pathway by mixing subunits in a 
stepwise manner [18] or by using different sample buffer conditions to induce a change in 
oligomeric state [28, 29]. Equilibrium dissociation (Kd) constants for protein-protein and 
protein-ligand interactions can also be determined by native MS [30-32]. The Kd values 
obtained by native MS were consistent with those obtained by isothermal titration calorimetry 
(ITC) [30-33]. Native MS combined with “double-mutant cycle” analysis successfully 
determined pairwise interaction energies [33]. Native MS coupled with ion mobility (IM; MS-
related abbreviations are summarised in Table 1) allows one to investigate the shape of 
macromolecular assemblies [34-38], and has been combined with bioinformatics to study the 
evolutionary history of protein complexes [17, 39].  

  
 
3. Strengths and limitations of native MS 
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Native MS presents several advantages compared to other structural approaches. First, 
it can be used to study a wide diversity of biological samples that differ in mass, 
polydispersity, symmetry and dynamic flexibility [2]. Second, native MS does not require 
samples to be labelled or crosslinked. Third, different oligomeric states can be investigated 
simultaneously. Specific information is obtained for each individual species present, without 
data being averaged over different species. Therefore, the dynamics of quaternary structure 
can be studied in real time [40, 41]. Finally, native MS represents a quite sensitive approach. 
Successful analyses have been reported in which only a few microliters of sample at 
relatively low (μM) concentration were required.  

Nonetheless, native MS experiments can be biased because (as all MS analyses) they 
are performed under vacuum conditions and so macromolecular complexes are detected in 
the gas phase [42, 43]. Therefore, the relative abundances of detected assemblies may 
differ from those in solution because distinct complexes may present different ionisation, 
transmission and detection probabilities [30]. Moreover, hydrophobic bonds are weaker in 
the gas phase than in solution, whereas electrostatic interactions become stronger. 
Therefore, certain assemblies need to be stabilized by crosslinking to enable their detection 
[44]. Nevertheless, computational and experimental data indicate that the transition from 
solution to the gas phase does not drastically alter biomolecules [45, 46]. For instance, 
enzymes such as lysozyme and trypsin retain their catalytic activity after their ionisation, 
mass selection, and soft-landing onto surfaces [47]. Also, when solution conditions such as 
pH and concentration were modified, the gas-phase spectra correspondingly changed [30]. 
Changes in MS spectra that mirror pH changes have been recently confirmed using 
designed homo-trimers (3-mers) and hetero-dimers (2-mers) engineered to undergo a pH-
responsive conformational change upon protonation of buried histidine residues [48]. These 
complexes were stable above pH 6.5, but underwent cooperative, large-scale conformational 
changes when the pH was lowered, as shown by native MS and size-exclusion 
chromatography [48]. Recent evidence regarding the stability of folded biomolecules in 
vacuum has been obtained by low-energy electron holography [49]. Using electrospray 
ionisation (see next section) and soft-landing, two monomeric (1-mer) proteins (cytochrome 
C and BSA) and a hetero-4-mer (haemoglobin) were deposited on freestanding graphene. 
Then, sub-nanometer resolution images of individual biomolecules were obtained. These 
low-energy electron micrographs showed that the samples were in a folded state after being 
subjected to ultrahigh vacuum [49]. 

To conclude, native MS presents many advantages for investigating biomolecular 
assemblies in terms of accuracy, selectivity, sensitivity and speed of analyses. However, the 
limitations of native MS should be kept in mind when the results of such experiments are 
evaluated. 

 
4. Preserving non-covalent interactions in the gas phase 

Native MS requires a gentle ionisation of macromolecular complexes that preserves 
non-covalent interactions. Although in some cases this has been achieved using matrix-
assisted laser desorption/ionization (MALDI) [50-54], by far the more prevalent method is 
electrospray ionisation (ESI) [55-57], which more easily preserves non-covalent interactions. 
ESI-MS investigations can be influenced by the nature of the intermolecular interactions, by 
the composition, ionic strength and pH of the sample buffer, and by the voltages and 
pressures within the mass spectrometer. Consequently, it is important to consider these 
parameters during data acquisition and analysis. Unlike other types of ESI-MS analyses that 
require the use of acidic conditions or organic solvents, native MS experiments are usually 
performed using volatile buffers such as ammonium acetate [58], ethylenediammonium 
diacetate [59] or alkylammonium acetate [60]. Typically the sample buffer is exchanged 
immediately prior to native MS analysis [23], although in some cases the sample purification 
protocol may also require modification.  

Generally, non-covalent assemblies are investigated using nano-electrospray ionisation 
(nano-ESI), which requires a sample emitter with an orifice diameter (1–10 μm) smaller than 
that used for conventional ESI (approximately 100 μm) [61, 62]. The small opening enables 
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the use of a low flow rate (20-200 nL/min) to analyse a 2-5 μL sample volume at micromolar 
concentrations [63]. Recently, 0.5 μm emitter tips have been introduced to study proteins 
and their complexes using buffers containing non-volatile salts (such as Na+ or K+) at 135-
150 mM concentration that more closely resemble the intracellular environment [64-66]. 
Therefore, experiments can be performed utilizing widely used biochemical buffers, such as 
phosphate and Tris. It has been hypothesized that the ESI droplets generated by 
submicrometer emitters contain a lower salt-to-biomolecule ratio than those generated by 
traditional nano-ESI needles [64]. Another advantage of submicrometer ESI tips is that they 
do not require buffer exchange into volatile solutions. These emitter tips have also been 
used for the study of membrane proteins [67]. Overall, controlled experimental conditions 
using appropriate buffers and ionisation conditions allow the maintenance of weak non-
covalent interactions during native MS experiments. 
 
5. Native MS experiments are performed using Q-TOF and Orbitrap instruments 

Native MS requires mass spectrometers able to transmit and detect large fragile 
assemblies. Early studies showed that relatively small complexes could be analysed by 
conventional nano-ESI-spectrometers [68-71] (see Figure 2 for timeline). However, larger 
complexes (>60 kDa) generate ions with mass-to-charge (m/z) ratios above 4000 that 
exceed the detection limit of such instruments. This led in the 2000s to customise nano-ESI-
quadrupole-time-of-flight (Q-TOF) mass spectrometers to detect non-covalent complexes 
[43, 72]. The use of modified Q-TOFs made it possible to investigate remarkably massive 
particles, such as an 18 MDa viral capsid [73], and to analyse membrane protein complexes 
[74-80] (see section 11 below). Fourier transform (FT) based mass spectrometers have also 
successfully been used to study non-covalent interactions. These include Orbitrap 
instruments [81-84], which in 2012 were used to analyse intact protein complexes 150-800 
kDa in mass [85-88], and were subsequently utilized to study virus-like nanoparticles with a 
mass up to 4.5 MDa [89]. To perform such analyses, the Orbitrap m/z range was extended 
up to 40000 to transmit “heavy ions” [85, 90]. Using only a 1 nM sample concentration, this 
modified instrument reached an excellent resolution at high m/z, deciphering different 
glycosylated forms of IgG antibodies [86]. Such high resolution enabled the characterisation 
of the type (ADP or ATP) and number of nucleotides bound to a large assembly such as 
GroEL (800 kDa) [85]. The performance of Orbitrap instruments utilised for native MS is 
continuously being improved by different groups [42, 91-93]. For example, in 2017 a Q 
Exactive Plus™ mass spectrometer was further modified to enhance its sensitivity and 
increase transmission up to 70 000 m/z [92, 93]. 
 
6. Dissociation of macromolecular complexes in the gas phase and subunit 
fragmentation  

Tandem MS (also called MS2 or MS/MS) is based on two MS steps, whereby selected 
ions are broken down in the gas phase and the product ions are analysed [94]. It is possible 
to distinguish between (a) the breaking of non-covalent interactions to dissociate complexes 
and (b) the fragmentation of covalent interactions to study the primary sequences of subunits 
and their post-translation modifications (PTMs). Here we outline the most common 
dissociation/fragmentation methods, including collision-induced dissociation [known as 
Higher Energy Collisional Dissociation (HCD) in Orbitrap instruments [42, 91]], surface-
induced dissociation, photodissociation and electron-based dissociation techniques (e.g., 
electron-capture and electron-transfer dissociation) [95-97].  

 
(i) Collision-induced dissociation (CID). Normally, dissociation/fragmentation 

experiments require that a single ion population, characterised by a specific mass (m) and 
charge state (z) and referred to as a “precursor ion”, is selected according to its m/z ratio. In 
the case of CID, when non-covalent assemblies are investigated, a precursor ion is selected 
according to its m/z ratio in a first mass analyser (e.g., a quadrupole in the case of Q-TOF 
instruments) and then accelerated toward a cell filled with a collision gas such as argon or 
xenon. Precursor ions are subjected to numerous, low-energy collisions that convert part of 
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their kinetic energy into vibrational energy, causing the internal energy of the precursor ions 
to increase. Since many small steps of energy conversion take place, CID is considered a 
“slow heating” process [98]. Non-covalent interactions are broken by collisions and the 
dissociation products are further analysed (e.g., in a TOF region). With some exceptions [99-
101], 1-meric proteins are ejected from biomolecular assemblies one after the other and this 
phenomenon allows the assessment of stoichiometry with high accuracy. Ion charges are 
distributed across the dissociated particles in a highly asymmetric manner. For instance, a 
dodecamer (12-mer) generates highly charged 1-mers and lowly charged “stripped” 11-mers 
that can further dissociate into 1-mers and 10-mers [99].  

The dissociation behaviour of assemblies during CID has been studied, but many 
questions remain open [29, 59, 102-104]. Behaviour can be influenced by sample features 
such as charge density, salt bridges, flexibility of subunits, isoelectric point (pI) and strength 
of intersubunit interfaces [99-101, 105]. For example, the pI of subunits has been shown to 
affect the dissociation of protein complexes [105]. Leney studied two 6-mers (i.e., 
phycoerythrin and allophycocyanin), composed of alternating alpha and beta subunits [105]. 
The subunits of the phycoerythrin presented identical pIs and in the CID experiments both 
types of subunits were ejected. In contrast, the alpha and beta subunits of allophycocyanin 
showed distinct pIs and only alpha 1-mers were detected upon CID. CID is very useful for 
investigating biomolecular complexes because it provides an insight into the location (core 
vs. periphery) of subunits within the complex [106], as peripheral subunits are expelled at 
lower energy compared to the core subunits [18]. CID can also provide important structural 
information such as subunit interactions and their relative spatial arrangements [99, 100]. 

 
(ii) Surface-induced dissociation (SID). In the case of SID, an ion population is 

accelerated toward a surface [97, 98, 107]. The non-covalent interactions are broken by 
collision against the surface and the masses of the dissociation products are further 
assessed using, for example, a TOF analyzer [108] or an Orbitrap [109]. Compared to the 
slow-heating effects of CID, SID is regarded as a fast, single-step, and energetic activation 
process [98]. SID makes non-covalent complexes dissociate into folded subunits that carry 
ion charges proportional to their mass without major structural rearrangements. This means 
that ion charges are distributed across the dissociated particles in a symmetric manner and 
that oligomers (as opposed to only 1-mers in the case of CID) are ejected from assemblies. 
For instance, a 4-mer composed of a 2-mer of 2-mers could be dissociated into individual 2-
mers at low SID energy, and these in turn could be further dissociated into 1-mers at higher 
SID energy [108].  

 
(iii) Photodissociation (PD). PD is based on the use of photons irradiated on target 

ions [95, 97, 110]. Different sources of photons have been used. For instance, ultraviolet 
(UV) lasers can deposit a large amount of energy into ions, allowing dissociation and 
fragmentation pathways different from those generated by other MS2 methods. Remarkably, 
it has been shown that ion charges can be distributed across the dissociated particles in 
both symmetric and asymmetric manners by modulating the laser power [103]. Moreover, 
UVPD induced covalent bond cleavage of the 1-meric subunits, most frequently within highly 
flexible loop regions.  

(iv) Electron-based techniques. In techniques such as electron-capture dissociation 
(ECD) [111-114] and electron-transfer dissociation (ETD) [96, 115], the fragmentation of 
biomolecules is based on the addition of electrons to the target molecules. In the case of 
ECD low-energy photoelectrons are released and captured by even-electron (M+nH)n+ 
biomolecular ions (peptides, proteins or macromolecular assemblies) [116, 117]. Thus, 
radical charge-reduction products (M+nH)(n-1)+∙are generated and selective cleavage of the 
N-Cα bond, a highly bond specific process, takes place. ETD is a fragmentation method 
based on the transfer of electrons originating from radical anions [96, 118, 119]. Similarly to 
ECD, N–Cα bonds are broken in ETD experiments. Both ECD and ETD allow non-covalent 
bonds and PTMs to be preserved [120, 121], whereas covalent interactions such as peptide 
bonds are fragmented. The mechanism of ECD and ETD has been extensively studied 
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theoretically and experimentally, but remains a subject of debate [116]. ECD and ETD are 
mainly used in FT instruments, but can also be incorporated in ion traps [113], [114, 122] IM 
mass spectrometers (such as Synapt® instruments [123]) and Q-TOF mass spectrometers. 
For instance, ETD was utilised to sequence fragments of a non–covalent protein complex 
(ADH) using a Q-TOF instrument [124].  

To conclude, a diversity of dissociation/fragmentation methods are available that enable 
one to dissociate non-covalent assemblies or fragment covalent bonds with distinct 
outcomes. These techniques are of key importance for confirming stoichiometry, studying 
protein-ligand interactions and determining protein sequences and PTMs (see sections 7, 9 
and 12 below). 

 
7. Native top-down MS to study non-covalent interactions 

In the late 1990s the use of ECD led to the introduction of top-down MS, an approach to 
efficiently characterise intact proteins [125]. Unlike bottom-up proteomics that requires 
samples to be digested enzymatically [126, 127], samples subjected to top-down MS are 
analysed as intact molecules and fragmented inside appropriate mass spectrometers [128]. 
Top-down MS allows the investigation of different proteoforms [129, 130], protein 
conformations and PTMs [131-135]. Recent developments allowed native top-down MS 
experiments to be performed to study intact assemblies and to localize ligand binding sites 
on proteins [19, 127, 136-139].  

These experiments require three different analysis steps [42, 91, 127, 136, 140] (Figure 
1). In the first (MS) step, the mass of an intact macromolecular complex is assessed. In the 
second (MS2) step, protein assemblies are often dissociated by CID and 1-mers are ejected. 
This step allows the stoichiometry of the complex to be confirmed [127]. In the final (MS3) 
step, the ejected 1-mers are fragmented by backbone cleavage using various methods such 
as ECD or UVPD. This last step is useful to investigate the primary sequence of the ejected 
subunits of interest. According to the type of dissociation/fragmentation utilised, non-covalent 
interactions can be preserved and covalent ones broken [19, 141-143].  

The complexity of samples that can be analysed by this approach has increased over 
the years. In early studies, small non-covalent complexes [144] and a protein-ligand complex 
[145] were fragmented using ECD. Since 2010, the approach has been applied to large non-
covalent assemblies [63, 146-148]. Specifically, a 4-meric yeast alcohol dehydrogenase 
(ADH, 147 kDa) was analysed using an ECD and ESI-FT-ICR instrument [146]. By breaking 
covalent bonds within monomers, Gross and coworkers fragmented ADH subunits without 
disrupting non-covalent interactions. This was the first example in which information on both 
the primary and quaternary structures was obtained using the same instrument.  

A recent example illustrates the use of native top-down MS and of nanodiscs to study a 
copper-dependent membrane metalloenzyme, particulate methane monooxygenase 
(pMMO), composed of three subunits (PmoA, PmoB, and PmoC), each present in three 
copies [149]. Using traditional biochemical and biophysical approaches, the assessment of 
the stoichiometry of metal centers and their localization represents a major challenge for 
large, multisubunit metalloprotein complexes, particularly when these cannot be 
heterologously expressed. In the case of pMMO, spectroscopic and crystallographic studies 
provided inconclusive information regarding the metal stoichiometry [149]. Using the three 
step MS-based approach (MS, MS2, MS3, see above), it was possible to assess the copper 
stoichiometry of the pMMO subunits and to investigate their PTMs. In an MS experiment 
performed to assess the total mass of the pMMO holocomplex, the observed mass of the 
main species was 559.7 Da lower than the theoretical one. Subsequently, the possible 
presence of PTMs and metal cofactors was investigated by MS2 and MS3 experiments. In 
MS2, subunits were ejected from the intact pMMO and their masses were determined. The 
PmoA subunit had an experimental mass 89.1 Da smaller than that expected, consistent 
with removal of the first methionine and acetylation of the new N-terminus. This hypothesis 
was confirmed by MS3. Similarly, these experiments revealed a methylated lysine within 
PmoB and the truncation of six N-terminal residues from PmoC. Moreover, they confirmed 
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the presence of a Cu(II) ion in PmoB and revealed an additional Cu(II) ion bound to PmoC 
that was shown in activity assays to be important for enzyme activity.  

To conclude, native top-down MS experiments combine the ability to study non-covalent 
assemblies with the ability to fragment individual subunits using using a single mass 
spectrometer. 

 
8. Dissociation of macromolecular complexes in solution 

In addition to gas-phase dissociation, macromolecular complexes can also be 
dissociated in solution. Destabilising agents such as dimethyl sulfoxide (DMSO) or methanol 
or an increase in buffer ionic strength are used to selectively break intermolecular 
interactions within a complex before introducing the sample into the mass spectrometer [24]. 
In-solution dissociation of hetero-complexes allows one to identify direct interactions 
between subunits by generating subcomplexes [105, 150-152]. The analysis of these 
subcomplexes can lead to a two-dimensional interaction map that subsequently can be 
combined with other structural data to try to infer 3D organization. In-solution dissociation 
has also been exploited to elucidate the assembly and disassembly pathways of certain 
complexes, revealing that these pathways recapitulate the evolutionary routes by which 
different quaternary structures arise [39, 153, 154]. In summary, the ability to dissociate 
assemblies in solution is highly useful for elucidating intersubunit interactions, 
assembly/disassembly pathways and molecular evolutionary history. 

 
9. Soluble protein-ligand interactions studied by native MS  

The use of native MS to analyse non-covalent interactions between proteins and small 
ligands has been extensively reviewed [19, 34, 37, 136, 155-157]. Here we outline a few 
examples mainly in the context of structural studies [59, 158-162]. For instance, native MS 
was combined with X-ray crystallography to study two nickel import proteins of 
Staphylococcus aureus [163]. One of these was successfully crystallised bound to a Ni-(L-
His)2 ligand. The other protein could not be crystallised, but native MS showed that it bound 
Ni(II) ions via a distinct His-dependent chelator [163]. In another example, native MS 
combined with IM was used to quantify the stabilizing effects of ligands on soluble proteins, 
and of lipid binding on membrane proteins [164]. 

In many cases, the identification of ligand-binding sites within macromolecular 
complexes made use of appropriate dissociation/fragmentation techniques such as ECD, 
SID and UVPD (see above) [165-170]. In one of the first examples of non-covalent binding 
studied by ECD, published in 2002, homo-2-mer formation by different peptides and the 
binding of two glycopeptide antibiotics, vancomycin and eremomycin, to their bacterial 
tripeptide target were investigated [144]. These experiments allowed the authors to localize 
the binding sites and determine primary sequence information.  

In a recent example, ECD was utilised to investigate the interaction between tau, a 
protein implicated in neurodegenerative disorders such as Alzheimer’s disease, and a 
synthetic "molecular-tweezer" compound (CLR01) that inhibits the aggregation of 
amyloidogenic polypeptides through hydrophobic and electrostatic interactions [143]. Using 
ECD, Nshanian et al. identified phosphorylation sites on tau and localized the binding site of 
CLR01 to a 38-residue microtubule-binding region within the protein, providing novel insights 
into the mechanism of CLR01-based inhibition. Another example from the Loo laboratory 
combined ECD with CID to localize the binding sites for cobalt and manganese in an 
intrinsically disordered protein, α-synuclein [142]. 

The usefulness of SID was demonstrated in a recent study involving two homo-5-meric 
complexes, C-reactive protein (CRP) and cholera toxin B (CTB) [141]. These proteins have 
different ligand binding site arrangements: the site is located within each subunit in CRP, but 
between adjacent subunits in CTB. The authors were unable to obtain information on ligand 
location using CID, which caused ligand-bound 5-mers to dissociate into 4-mers and ligand-
free 1-mers in a manner suggesting that ligands were lost or migrated away from their 
binding site. In contrast, SID of 5-mers led to the dissociation into 1-mers, 2-mers, 3-mers 
and 4-mers. The predominant species detected for each CRP n-mer contained n ligands, 
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whereas CTB n-mers contained n-1, n and n+1 ligands, consistent with the known ligand 
binding site locations of these proteins [141]. 

Another fast activation technique, UVPD, has also been proved useful for investigating 
ligand binding sites [171, 172]. For instance, UVPD-MS was used to investigate the catalytic 
cycle of adenylate kinase (AK) [172]. This enzyme, which catalyzes the interconversion of 
adenine nucleotides via phosphoryl transfer from ATP to AMP to generate ADP, undergoes 
a large conformational change from an open inactive state to a closed active state. Native 
MS and top-down UVPD-MS were used to investigate different complexes of AK with four 
ligands (AMP, ADP, ATP, and a small-molecule inhibitor) to monitor different steps of the 
catalysis. Holo fragment ions produced in UVPD experiments revealed specific regions of 
AK that exhibited substantial differences in fragmentation throughout the catalytic cycle. In 
particular, changes in backbone cleavages involving three α-helices and adenosine binding 
regions of AK indicated that these elements were in different structural microstates as AK 
progressed through its enzymatic cycle. Moreover, enhanced fragmentation of the loop 
binding the phosphates of ATP suggested that the metal ion cofactor Mg2+ increases the 
flexibility of this loop, consistent with a role for Mg2+ in disrupting interactions between AK 
side chains and ligand phosphate groups. Changes in backbone cleavage efficiency also 
corroborated the hypothesis that a specific conserved residue (Arg138) stabilizes the donor 
phosphoryl group during catalysis.  

Overall, the above examples illustrate that native MS combined with 
dissociation/fragmentation experiments represents a versatile approach for studying protein-
ligand interactions and characterising binding sites. 
 
10. Employing native MS to probe the structure of soluble protein complexes  

Numerous studies exemplify the great ability of native MS to elucidate structural 
features of soluble protein assemblies (reviewed in [18, 90, 106, 173-179]). The examples 
below illustrate how native MS can be integrated with other structural approaches, provide 
valuable knowledge when high-resolution structural data are unavailable, and elucidate 
assembly pathways of macromolecular complexes. 
(i) Native MS complements other structural methods  
MS based-structural proteomics plays an increasingly important role in characterising the 
architecture of non-covalent assemblies, complementing traditional approaches [178, 180, 
181]. 3D models of macromolecular complexes have been deduced by combining MS 
experiments with data from crystallography, NMR, small-angle X-ray scattering and EM [28, 
182-188]. Computational methods have been developed for merging native MS information 
with other MS-based data (such as IM-MS and chemical crosslinking) to generate pseudo-
atomic models of biomolecular assemblies [189-192].  

For instance, native MS was used in combination with EM to characterise protein cages 
formed by lumazine synthase, a bacterial enzyme that self-assembles into a 60-subunit 
dodecahedral shell (~1 MDa) [193]. Sasaki and colleagues engineered two variants of this 
enzyme that resulted in much larger assemblies of either ~3 MDa or ~6 MDa. Accurate mass 
measurements by native MS revealed that the smaller assembly comprised 180 subunits 
and that the larger assembly formed a distribution of particles comprising 240-420 subunits.  

Native MS was combined with X-ray crystallography in structure/function studies of a 
kinase, Receptor Interacting protein kinase 2 (RIP2). This study investigated the wildtype 
(WT) form of the RIP2 kinase domain as well as two kinase-dead point mutants [194]. While 
both point mutants showed suppressed autophosphorylation activity, native MS revealed 
that they differed significantly in oligomeric state. The WT and one mutant (D146K) formed 
stable 2-mers, whereas the other mutant (K47R) was in a 1-mer/2-mer equilibrium. 
Interestingly, crystallography revealed that the D146K and K47R mutants adopted the active 
and inactive conformations, respectively. The combined findings provided valuable insights 
by revealing a link between dimerization and kinase activation [194].  

Native MS has also been used to shed light on the dynamics of macromolecular 
assemblies. For instance, transthyretin (TTR), an amyloidogenic protein, has been 
extensively studied by this technique [40, 41, 195-197]. Native MS allowed scientists to 
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assess the effect of point mutations and to monitor the exchange of unlabelled and labelled 
TTR subunits over time. In a recent report, MS-based subunit exchange experiments 
combined with neutron crystallography data and modelling studies led to propose a novel 
mechanism of TTR fibrillation [40] (Figure 3). 

Large (several MDa) viral assemblies have also been successfully analysed by native 
MS [90, 198-203] as well as by other MS-based methods such as charge detection MS [204-
206] and nanomechanical resonator MS (NEMS) [207] (see below). For instance, the 
bacteriophage HK97 was investigated by native MS and HDX MS, label-free quantitative 
proteomics and single-particle cryo-EM to gain insights into the function of the HK97 
protease during maturation of the bacteriophage capsid [199]. The masses of protease-free 
and protease-containing procapsids and of the mature capsid (17.9, 21.4 and 12.9 MDa, 
respectively) were determined by native MS, allowing for the number of protease molecules 
in the procapsid and the efficiency of procapsid cleavage to be evaluated. 

 
(ii) Native MS provides useful structural information in the absence of high-resolution 
3D structures  

Native MS provides important structural information even when no high-resolution 3D 
data are available [151, 208-212]. For instance, native MS was combined with size exclusion 
chromatography and multi-angle light scattering (SEC-MALS), isothermal titration calorimetry 
(ITC), epifluorescence microscopy and in vivo functional studies to investigate a bacterial 
complex called MukBEF, a member of the Structural Maintenance of Chromosomes (SMC) 
complexes involved in chromosome organization and segregation [213]. The MukBEF 
complex is formed by an ATPase, MukB, which associates with two other proteins, MukE 
and MukF. When the three proteins were incubated with ADP, three major complexes were 
detected: a 2-mer (MukB2), 6-mer (MukE4:MukF2) and 8-mer (MukB2:MukE4:MukF2). In the 
presence of a non-hydrolysable ATP analogue, an additional 10-mer (MukB4:MukE4:MukF2) 
was detected. Combined with additional biophysical data, these results shed important light 
on the architecture of the MukBEF complex and the changes induced upon ATP binding and 
hydrolysis [213]. 

Another interesting example showed that the energy of SID experiments, which informs 
on the relative strength of intermolecular interfaces (see above), can be used as an 
experimental restraint to improve the ability of computational protein−protein docking studies 
to predict the quaternary structure of protein complexes. Such studies are useful when 
structural data are unavailable for the complex but NMR or crystal structures are individually 
available for the constituent subunits [214]. 

Excellent recent reviews discuss the application of IM-MS and molecular modelling to 
study unknown structures [192, 215]. In one example, the Ruotolo laboratory investigated a 
labile 18-subunit assembly, a urease pre-activation complex from Klebsiella aerogenes 
[216]. By combining previously reported SAXS and chemical crosslinking data with IM-MS 
data and molecular modeling, the authors identified a discrete population of putative 
structures that was consistent with all the available data for this 610-kDa assembly [216]. A 
second example involves studies of the plant photoreceptor UVR8, a homo-2-meric protein 
that dissociates into 1-mers upon UV-B light activation [217]. The authors used IM-MS and 

molecular dynamics simulations to study the UVR8 β-propeller core domain, whose crystal 
structure is known, and the full-length protein that includes intrinsically disordered N- and C-
terminal regions. The authors found that the full-length 2-mer exists in two conformational 
families that differ in the conformation of the terminal regions. Upon UV illumination the C-
terminal tail promotes the destabilization of the core domain of the UVR8 1-mer. 
 
(iii) Native MS allows the investigation of assembly pathways 

An advantage of native MS is the ability to detect several different oligomeric and 
compositional states simultaneously and to monitor how the distribution of these states 
changes in real time. This makes native MS ideally suited for studying the assembly and 
disassembly pathway of macromolecular complexes [73, 218, 219]. Native MS was 
combined with cryo-EM to investigate the assembly behaviour of a circadian oscillator from 
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cyanobacteria composed of three proteins, KaiC, KaiB, and KaiA [187]. Incubation of the 
three purified recombinant proteins with ATP reconstitutes the oscillator, which can maintain 
a stable rhythm autonomously for weeks in vitro. Native MS experiments were used to 
monitor how the stoichiometry and phosphorylation state of Kai protein complexes changed 
during the circadian cycle. These experiments revealed the formation of more than 10 
different complexes (including KaiC6, KaiC6A2, KaiC6A4, KaiC6B1, KaiC6B6 and KaiC6B6A2n, 

n=1-6) that ranged in mass from ~350 to ~820 kDa over the course of 24 h (Figure 4). The 
data allowed the authors to identify conditions in which the KaiA-binding site of the KaiC6B6 
complex was fully occupied, allowing them to determine the cryo-EM structure of a 
KaiC6B6A12 complex. The combined native MS and cryo-EM data allowed them to propose a 
detailed model for the cyclic phosphorylation-dependent assembly of the protein oscillator.  
 
11. Investigation of membrane protein complexes and their binding to ligands 

In the last fifteen years, interactions involving membrane proteins have been studied by 
MS [1, 220-223], including protein-drug interactions [74, 224], protein-lipid complexes [75, 
225-232] and multiprotein assemblies [76, 77, 149, 179]. Heteromeric membrane protein 
complexes containing both soluble and transmembrane subunits were successfully analysed 
by native MS [78, 79, 233-235] (Table 2). Here we point out a few of the most recent 
studies. 

Native MS was instrumental in deciphering the role of lipids in tuning different 
conformational states of membrane proteins and the transfer of small molecules or drugs 
through membranes [224, 236-241]. For instance, native MS was used to investigate the 
bacterial ATP-Binding Cassette (ABC) transporter P-glycoprotein (P-gp) and its binding to 
lipids, nucleotides, and drugs in real time [242]. By determining lipid binding rates and 
apparent Kd values, it was shown that P-gp preferentially binds anionic (versus zwitterionic) 
phospholipids and short-chain (versus long-chain) cardiolipins, and that the interaction with 
cardiolipin is enhanced by the binding of cyclosporin A, a P-gp inhibitor. Other native MS 
studies of bacterial ABC transporters revealed the significance of specific annular lipids in 
the ATPase activity of TmrAB [227], the propensity of the lipid-A flippase MsbA to bind 
negatively charged phosphatidyl glycerol lipids [229], and the influence of substrate and 
nucleotide binding on complex formation by the molybdate importer ModBC-A and by the 
vitamin B12 importer BtuCD-F [230]. 

Native MS was also recently used to study a member of the mycobacterial membrane 
protein Large (MmpL) transporters from Mycobacterium tuberculosis [243]. These 
transporters shuttle fatty acids and lipid components to the mycobacterial cell wall, which is 
abundant in mycolic acids (MA), and are critical for mycobacterial physiology and 
pathogenesis. Native MS analysis revealed that the transporter MmpL3 was able to 
specifically bind phosphatidylethanolamine, a previously unknown MmpL3 ligand, as well as 
trehalose monomycolates (TMMs), which are precursors of MA-containing trehalose 
dimycolates (TDMs), but was unable to bind TDMs [243]. 
Native MS was also helpful to study allosteric effects concerning lipid interactions with the 
ammonia channel AmtB from E. coli [241]. Specifically, the authors investigated mixtures of 
a fluorescent-labelled cardiolipin (TFCDL) with one of six other lipids and determined Kd 
values for AmtB binding up to a total of five lipid molecules. This allowed the authors to 
estimate how some lipid-protein interactions influenced the binding of other lipid types to 
AmtB, revealing for example that TFCDL exhibits positive and negative allostery on the 
binding of phosphatidylethanolamine and phosphatidic acid lipids, respectively [241].  

Several MS-based studies employed detergents (such as β-octylglucoside and 
dodecylmaltoside) to maintain membrane protein complexes in their native oligomeric state. 
The development of detergent-free alternatives indicated that native forms of proteins and 
macromolecular assemblies can also be preserved if lipid bicelles, amphipols or nanodiscs 
are used [1, 244-247]. Native MS and nanodiscs were used to study the interactions 
between glycolipids and two toxins (i.e., the B subunit homo-5-mers of cholera toxin and 
heat labile toxin) and their relative affinities ranked by screening the proteins against 
different glycolipid-incorporating nanodiscs [248]. Small, soluble protein-lipid complexes (∼3 



11 

 

nm), named picodiscs, were exploited for time-resolved enzymatic studies, antibody-antigen 
interaction assays and bacterial toxin-glycolipid interaction analyses [249].  

In 2018 a detergent-free approach was developed for obtaining mass spectra of 
biomolecular complexes from native membranes without chemical disruption [250]. Lipid 
vesicles isolated from prokaryotic and eukaryotic membranes were disrupted and multiple 
protein complexes ejected “directly” into the instrument gas phase [250]. Quantitative 
proteomics, lipidomics and native MS allowed the authors to identify numerous complexes, 
including a chaperone-porin complex in the outer E. coli membrane, different subassemblies 
of multidrug efflux pumps in the inner membrane, and a complex between F1F0 ATP 
synthase and the protein translocation channel SecYEG.  
 
12. Analysis of macromolecular complexes by hybrid MS-based methods  

Hybrid MS-based methods address biological problems through the use of more than 
one MS approach and instrument. For example, van de Waterbeemd et al. combined 
bottom-up proteomics, top-down MS and native MS to study ribosomal particles from 
bacteria, plants and humans [93, 251]. Using proteomics, they identified the ribosomal 
proteins and their PTMs. Using top-down MS, they assessed the presence of different 
proteoforms (carrying multiple PTMs and truncations) [129, 135]. Using MS3, they 
determined the composition and stoichiometry of intact ribonucleoprotein complexes, 
including the human 40S ribosomal subunit bound to viral internal ribosome entry site (IRES) 
RNA elements. 

Several studies have reported native MS analyses of membrane proteins and 
membrane macromolecular coupled with lipidomics. The latter approach enables LC-
MS/MS-based identification of extracted lipids to characterize the function of the bound 
lipidome [229, 250, 252]. A hybrid MS approach has also been used to study the 
heterogeneity of monoclonal antibodies [253]. Specifically, native MS was combined with 
targeted glycan profiling (the MS/MS-based investigation of glycans released by PNGase F 
digestion). Native MS analysis provided a general overview of the glycoform distribution and 
indicated the coexistence of antibody modifications such as glycations and truncations. 
Profiling of released glycans elucidated the linkages within carbohydrate residues and 
enabled the differentiation of structural isomers.  

Overall, these examples illustrate the utility of hybrid MS-based methods to gather 
insights on inter-subunit interactions within macromolecular complexes, on primary 
sequences of subunits and on features of bound molecules such as metals, lipids and 
glycans. 
 
13. Concluding remarks and outlook 

Twenty five years ago, the impressive results achieved using bottom-up proteomics 
firmly established MS as a key technology for biological research [254-257]. At that time, 
MALDI- and ESI-MS exhibited excellent sensitivity, exquisite accuracy of mass 
measurement and high speed of data acquisition [258, 259]. Currently, bottom-up 
proteomics allows one to exhaustively describe the complete proteome of a model organism 
in a few hours [257] as well as to profile multiple cancer proteomes per mass spectrometer 
per day, paving the way for proteomics applications in personalized cancer medicine [260]. 
Soon it may even be possible to profile the proteome of individual cells [261]. 
Although the first MS studies of non-covalent interactions were reported over two decades 
ago, [68-71], native MS is currently far less widely used than bottom-up proteomics. 
Nevertheless, native MS-based studies have steadily gained momentum in the field of 
integrative structural biology thanks to its wide applicability, speed of analysis, sensitivity and 
selectivity [179, 262-265]. This latter feature is especially valuable, as it enables several 
species with different masses to be simultaneously analysed and separated. Indeed, the fact 
that mass selectivity was recently exploited to image individual proteins and a protein 
complex by low-energy electron holography demonstrate that MS can be exploited to purify 
heterogeneous assemblies for structural studies [49]. 
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A key strength of native MS that will prove increasingly useful is its ability to inform on 
the identity, solubility, oligomeric state, and stability of overexpressed biomolecules directly 
in crude cell lysates and culture media (i.e., without the need for purification) [266-268]. 
Moreover, the investigation of endogenous macromolecular assemblies without the need for 
their recombinant over-expression in prokaryotic and in eukaryotic hosts is also emerging. 
Several examples of endogenous complexes studied by native MS point to an increasingly 
important role in deciphering the function and regulation of PTMs, cofactors and transient 
complexes assembled in a cellular milieu [150, 250, 251, 263, 269, 270].  

The use of native MS to investigate endogenous complexes will undoubtedly improve 
with technical advances that allow the enhanced purification yield of complexes present in 
cells at their natural expression level [271, 272] and with the development of new 
instruments having increased sensitivity, resolution and ionisation efficiency. Orbitrap mass 
spectrometers already present an improvement in sensitivity and resolution compared to Q-
TOF instruments [85, 86, 88]. Novel ionisation approaches are of key importance for 
increasing the amount of sample introduced in mass spectrometers [273-278]. Moreover, 
new detectors advance the applicability of MS to study biological nanoparticles. For 
instance, nanoelectromechanical systems (NEMS) detect large masses with unprecedented 
sensitivity, requiring only a few hundred single-molecule adsorption events to detect 
megadalton molecules [207, 279]. Recently, empty and DNA-filled bacteriophage T5 capsids 
with masses up to 105 MDa were investigated, using less than 1 picomole of biological 
material and reaching an instrument resolution above 100 [207]. 

Novel detectors were also developed for charge detection mass spectrometry (CDMS), 
whereby the m/z and z are simultaneously measured for each ion [206, 280-282]. Recently 
CDMS was combined with cryo-EM, lipid and glycan analysis to study Sindbis viruses (>50 
MDa) produced from arthropod and vertebrate hosts [283]. These studies revealed 
differences in lipid composition between the Sindbis viruses that influenced the assembly, 
budding and stability of viral particles, explaining differences in infectivity [283]. CDMS was 
also combined with transmission EM to investigate the heterogeneity and polymorphism of 
amyloid fibers [284, 285].  

A key area that requires improvement is data analysis software. Currently, some MS 
software packages are available for the characterisation of macromolecular complexes (e.g., 
[286-289]), but manual evaluation remains critical. Programs as effective as those developed 
for bottom-up proteomics will enable high-throughput studies of non-covalent assemblies. 

Overall, multiple complementary techniques are often necessary to decipher the 
structures of challenging macromolecular complexes. The examples cited in this review 
suggest that native MS will play an increasingly important role in such structural studies.  
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Figure captions 
Figure 1. Native MS and “native top-down MS” experiments provide key knowledge 
about non-covalent assemblies.  
Grey boxes depict a holocomplex and its derivative components, including subcomplexes, 
stripped complexes, individual subunits and polypeptide fragments. MS measurements of 
these species provide information regarding dynamics (green box), binding interactions (blue 
box) and structural organization (purple box) of a macromolecular complex. Coloured arrows 
indicate the flow of information. 
 
The mass of an intact assembly is determined by native MS (MS mode). High-performance 
liquid chromatography (HPLC) performed under denaturing conditions followed by MS 
measurements yields the experimental mass of each individual subunit [23, 290]. 
Experimentally assessessing the masses of individual subunits is important since the 
measured masses often differ from the theoretical ones because of unexpected truncations 
and post-translational modifications. Destabilising conditions [e.g., dimethyl sulfoxide 
(DMSO) or methanol] allow one to partially dissociate the complex in solution before loading 
the sample into the mass spectrometer. These subcomplexes (such as 2-mers and 3-mers) 
enable one to identify direct interactions between proteins [105, 151, 152]. This type of 
experiment also assesses the stability of interfaces between subunits [153][154]. In MS2 
experiments, non-covalent bonds are broken and assemblies are dissociated in the gas 
phase [19, 43]. According to the type of dissociation methods, 1-mers or oligomers can be 
ejected from the assembly (see section 6 of text). In MS3 experiments of “native top-down 
MS” [42, 91, 136, 140], subunits are fragmented by backbone cleavage using various 
methods (e.g., ECD or UVPD) (see section 7). These experiments provide access to 
information about primary sequence, PTMs and sites of protein-ligand interactions [141-143, 
171, 172] 
 
Dynamics. The dynamic behaviour of complexes can be studied by MS. For instance, the 
presence of different oligomeric states and their changes in equilibrium induced by different 
solution pH values and concentrations can be monitored by MS [28, 30, 48]. By incubating 
light and heavy isoforms of a protein (such as those labelled with 13C and 15N), the changes 
in subunit composition can be studied as a function of time. The subunit exchange revealed 
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distinct behaviour for wild-type and mutant proteins (e.g., involved in amyloidosis [40, 196]). 
Native MS can be instrumental in providing information about allostery [59, 241]. 
 
Binding. The experimental masses assessed by native MS, HPLC-MS, dissociation in 
solution and MS2 allow one to determine the direct interactions between proteins [105, 150-
152], stability of interfaces between subunits [39, 153, 154] and stoichiometry of subunits 
[23, 150]. The MS3 experiments [42, 91, 136, 140] provide access to information about 
primary sequence, PTMs and sites of protein-ligand interactions [141-143, 162, 171, 172]. 
 
 
Organization. Overall, the data collected during native MS and “native top-down MS” 
experiments allows the reconstruction of a two dimensional (2D) map of the interactions 
between subunits within a macromolecular complex. These data can be combined with 
structural information (obtained by X-ray crystallography and SAXS) [28, 182-188], to model 
a 3D architecture of an assembly [189, 291]. Moreover, individual proteins or subcomplexes 
can be mixed in solution to assess the formation of (sub-) complexes. In this case, a mass 
shift is detected [292] and allows one to characterise the assembly pathway of a complex 
and its evolution [39, 153, 154].  
 
 
Figure 2. Timeline of MS-based investigations of non-covalent assemblies 
ESI [259, 293] and nano-ESI [294] paved the way for the advent of native MS. For the first 
time, the MS investigation of macromolecular complexes was performed in 1991 and 
electron capture dissociation (ECD) was developed in 1998 [112]. Non-covalent complexes 
were fragmented by ECD in 2002 [144] and during the same year MS2 experiments on 
protein complexes were described [43]. The first ECD fragmentation of a ligand-protein 
complex was reported in 2006 [145]. After four years, intact protein complexes were 
fragmented by ECD [146] and using an Orbitrap instrument subunits ejected from intact 
protein assemblies were broken down in 2013 during MS3 experiments [42]. In 2018 NEMS 
measurements of T5 bacteriophage capsids took place [207] and during the same year 
membrane proteins were successfully ejected from native membranes [250].  
 
Figure 3. Native MS experiments to study the kinetics of dissociation of transthyretin 
(TTR). 
Dissociation of 4-meric TTR is thought to be a key step in the formation of amyloid fibrils. 
Using native MS, the exchange of TTR subunits was monitored for 11 days. In particular, the 
effect of two mutations (i.e., S52P and T119M) and that of a drug (tafamidis) on the rate of 
dissociation of TTR were assessed. A-D) Mass spectra of subunit exchange experiments 
when deuterated S52P TTR was mixed with hydrogenated (A) WT, (B) S52P, (C) T119M, 
and (D) S52P bound to tafamidis, respectively. The spectra were recorded at the beginning 
of the reaction (left panel) and after 11 days (right panel). The mass-to-charge ratio is 
indicated as m/z. E) Scheme of the native MS experiments: 4H (hydrogenated) and 4D 
(deuterated) 4-mers were mixed in equal parts; following dissociation, four hetero- 4-meric 
species were formed. F) Results of the subunit exchange experiments of D-S52P with H-
WT, H-S52P, H-T119M, and H-S52P bound to tafamidis, respectively (from the left panel to 
the right one). Changes in relative abundance of homo- and hetero- 4-meric species over the 
course of 11 days are shown, along with an estimate of their association/dissociation rates. 
These figures were reproduced with permission from [40], ©(2019) Nature publications, 
under a Creative Commons Attribution 4.0 International License. 
 
 
Figure 4. The dynamic assembly of KaiCBA can be efficiently monitored during native 
MS experiments. 
A) Native mass spectra of the circadian oscillator recorded at 30°C. Peaks corresponding to 
KaiC, KaiCA, KaiCB, and KaiCBA are highlighted with different colours. The relative signal 
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intensity (RSI) is shown on the y axis and the m/z on the x axis. B) Labelled mass spectrum 
of Kai system after 12 hours of incubation at 30°C. The identified Kai complexes are 
schematically drawn and colour-coded as follows: KaiC6, blue and green; KaiA, yellow; KaiB, 
pink. In the spectrum the peaks corresponding to the Kai complexes are labelled with 
different coloured diamonds and circles. Light pink diamonds: KaiC6; pink diamonds: 
KaiC6A2; light violet circles: KaiC6B1 and KaiC6B6; violet circle: KaiC6B6; blue KaiC6B6A4; light 
blue: KaiC6B6A6. This figure was reproduced with permission from [187]© (2017) The 
American Association for the Advancement of Science. 
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Table 1. Summary of main abbreviations mentioned in the text. 

Acronym Technique Description 

CID (or CAD) Collision induced dissociation 
(Collisionally activated 
dissociation) 

Approach to dissociate ions in the gas phase, whereby ions are 
accelerated by an electrical potential and collide with neutral gas 
molecules such as argon or xenon. 

ECD Electron capture dissociation Technique for fragmenting ions in the gas phase. Ions directly interact 
with low-energy free electrons. 

ESI Electrospray ionisation Soft ionisation technique whereby ions are produced in the gas phase by 
applying a voltage to a solution of sample and creating an aerosol. 

ETD Electron transfer dissociation Approach for fragmenting ions in the gas phase by transferring electrons 
to them from a radical anion (e.g., anthracene and azobenzene). 

FT MS Fourier Transform based MS Technique for determining the m/z ratio of ions through the frequency 
signals that the ions generate within the instrument. The mass spectrum 
is derived by applying a Fourier transform to the frequency data. 

FT-ICR Fourier Transform ion cyclotron 
resonance 

Type of FT-based MS in which mass spectra are determined from the 
cyclotron resonance frequencies produced by ions when they rotate in a 
magnetic field.  

HCD 
 
 
HDX 

Higher energy C-trap (or 
collisional) dissociation 
 
Hydrogen/deuterium exchange 
 

A CID technique specific to Orbitrap instruments in which the 
fragmentation of ions takes place outside the Orbitrap analyser. 
 
Technique used to monitor covalently bonded hydrogen atoms replaced 
by deuterium atoms. Overall, it can be utilized to investigate 
conformations of individual proteins and macromolecular complexes. 
 

IM Ion mobility Technique that separates molecular ions in the gas phase based on their 
mobility in a buffer gas under the influence of a weak electric field. 
 

ISCID In-source collision induced 
dissociation 

Type of CID whereby ions are fragmented in the source region of a mass 
spectrometer. 

IRMPD Infrared multiphoton dissociation Approach to fragment ions in the gas phase by the absorption of multiple 
infrared photons. 

MALDI Matrix-assisted laser 
desorption/ionisation 

Soft ionisation technique whereby molecules are embedded in a solid 
organic acid (known as matrix) and subsequently desorbed and ionised 
by a pulse of laser light. 

MS/MS or MS2 

 
 
 
 
 
MS3 
 

Tandem MS 
 
 
 
 
 
- 
 

Method of analysis involving two stages of MS selection. The first MS 
stage separates sample components according to their m/z. During the 
second MS stage, the selected ions are subsequently subjected to 
fragmentation/dissociation and mass spectra of the products are 
obtained. 
 
Using Orbitrap instruments, the 1-mers, ejected during MS2 experiments, 
are fragmented by backbone cleavage using various methods such as 
ECD or UVPD. 
 

- Orbitrap A FT-based analyser composed of an inner spindle-like electrode and an 
outer barrel-like one. Ions are trapped in an orbital motion around the 
spindle and the frequency signals, which arise from the resulting image 
current, are utilised for calculating mass spectra.  

NEMS nanoelectromechanical systems A nanoscale device that resonates at high frequency and functions as a 
highly sensitive mass sensor. When species are adsorbed on NEMS, the 
sensors register changes in frequencies that are directly proportional to 
the mass of the adsorbed species. 

Q 
 
 
 
 
 
SID 

Quadrupole 
 
 
 
 
 
Surface-induced dissociation 
 

An analyser composed of four parallel metal rods to which a radio 
frequency (RF) voltage and direct current (DC) voltage are applied. For a 
given ratio of voltages, only ions with the appropriate m/z ratio can travel 
through the analyser, while others present unstable trajectories and 
collide with the rods. 
 
Technique for dissociating ions in the gas phase, whereby ions are 
accelerated to collide against a surface such as that self-assembled 
monolayers of CF3(CF2)10CH2CH2S- on gold serve. 
 

TOF 
 
 

Time-of-flight 
 
 

A type of analyser in which ions are accelerated in an electric field and 
then allowed to drift through a field-free region to a detector. The square 
of the time taken to reach the detector is directly proportional to the m/z 
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UVPD 

 
 
Ultraviolet photodissociation 
 

of the ions. 
 
Absorption of photons by gas-phase ions leads to energization that 
induces the fragmentation of the ions. 

   

 
 
 
 
Table 2. Examples of soluble and membrane protein complexes analysed by native 
MS 
 

Complex 
Mass 
(kDa) 

Outcome of analysis 
Prior atomic 

structure known 
References 

Soluble Complexes   
  

  
  Cascade 405 Two dimensional map  N [210] 

  Csy (CRISPR 
system yersinia) 

350     “            “            “ N [295] 

  EcoP15I, EcoPI, PstII 
 

63-311 
 

Functional insights         
 

N 
 

[296] 
 

  Structural Maintenance of 
Chromosomes complex 
(SMC) 

424-589 
 

      “                 “          
 

N 
 

[213] 
 

  Kinase domain of RIP2 
(receptor Interacting protein 2) 

34-69 
 

      “                 “         Y 
 

[194] 
 

  Lumazine synthase 
 

3000-
6000 

 

      “                 “         
 

Y 
 

[193] 
 

   
Transthyretin 
 

 
55 
 

 
      “                 “         

 
Y 
 

 
[40] 

  Bacteriophage HK97 capsid 18000 Assembly pathway N [73] 

  TrV virions (from Triatoma 
infestans) 

8300       “                 “             N [219] 

  Norwalk virus-like particles 10100       “                 “             N [218] 

  Kai system 624-823       “                 “             Y [187]. 

  HK97 Prohead-1 particles ~21400       “                 “             Y [199] 

  DegP oligomers 143-575 Model for the transition between the 
resting and active states of an 
enzyme 

Y [297] 

  Protruding (P) domain of the 
norovirus capsid protein 
oligomers 

72-1361 Discovery of multiple oligomeric 
states controlled by buffer 
conditions (e.g., pH) 

Y [198] 

     

Membrane Complexes        

  E. coli Translocon (ColE9-Im9 
complex, BtuB, OmpF trimer, 
and TolB) 
 

296 Functional insights Y [234] 

  MscL 78       “                 “             Y [298] 

  DgkA, pSRII, LacY-GFP 13-78 Reconstitution in detergent, 
amphipols, bicelles and nanodiscs 

Y [244] 
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 PagP and OmpT, Mhp1 and 
GalP  

20-54 Same as above. Y [245] 

 Many complexes 7-809 Complexes ejected from native 
membranes into the gas phase 

Y [250] 

  ATP-Binding Cassette 
transporter P-glycoprotein (P-
gp) 

141-147 Ligand binding affinities Y [242] 

  MsbA 134     “            “            “ Y [229]. 

  ModBC-A and BtuCD-F 29-159    “            “            “ Y [230] 

 MscL, AqpZ and AmtB 85-126     “            “            “ Y [225] 

  B subunits of cholera and heat 
labile toxins  

58-62     “            “            “ Y [248] 

 Mycobacterial membrane 
protein Large 3 
 
AmtB 
 

83-110 
 
 

127 

    “            “            “ 
 
 
Allosteric interactions 
 

Y 
 
 

Y 

[243] 
 
 
[241]. 
 

 
 
 
 

 

 












