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ABSTRACT
This paper aims at providing an original Riemannian geom-
etry to derive robust covariance matrix estimators in spiked
models (i.e. when the covariance matrix has a low-rank plus
identity structure). The considered geometry is the one in-
duced by the product of the Stiefel manifold and the manifold
of Hermitian positive definite matrices, quotiented by the uni-
tary group. One of the main contributions is to consider a
Riemannian metric related to the Fisher information metric
of elliptical distributions, leading to new representations for
the tangent spaces and a new retraction. A new robust covari-
ance matrix estimator is then obtained as the minimizer of
Tyler’s cost function, redefined directly on the set of low-rank
plus identity matrices, and computed with the aforementioned
tools. The main interest of this approach is that it appears well
suited to the cases where the sample size is lower than the di-
mension, as illustrated by numerical experiments.

Index Terms— Covariance Matrices, Spiked Models,
Robust Estimation, Riemannian Optimization

1. INTRODUCTION

Covariance matrix estimation is a crucial step in many ma-
chine learning and signal processing algorithms. This is still
challenging at low/insufficient sample support (“small n large
p” problems), where standard approches such as the tradi-
tional sample covariance matrix (SCM) fail to provide an ac-
curate estimate.

In numerous applications, one can rightfully assume that
the relevant information lies in a low dimensional subspace,
leading to a low-rank structured covariance matrix (also re-
ferred to as spiked model [1]). This is the central idea of
principal component analysis and related dimension reduc-
tion algorithms. In this context, a popular covariance matrix
estimation process is to project the SCM onto the set of low-
rank plus identity matrices (with pre-estimated rank k [2]),
which has also a maximum likelihood (ML) interpretation for
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the Gaussian spiked model [3, 4]. This estimator offers a sig-
nificant gain in terms of accuracy at low sample support, but it
may still be sensitive to heavy-tailed distributed samples and
outliers. This is due to the fact that the SCM is not robust to
the aforementioned issues.

A general and elegant solution to this robustness issue is
to turn to the framework of M -estimators [5]. To enjoy best
of both worlds, one could transpose the previous approach
and project an M -estimator (e.g., Tyler’s estimator [6, 7]) on
the set of interest. However, this plug-in 2-step procedure is
not related to any ML formulation, and a more natural ap-
proach would be to directly derive an estimator as the mini-
mizer of a robust cost function under a spiked structure con-
straint. This approach has been proposed in [8], where several
majorization-minimization (MM) algorithms are proposed to
minimize Tyler’s cost function under various structure con-
straints (cf. section V.A. of [8] for the spiked one), that out-
perform the projection approach at low sample support.

However, several issues remain unanswered, notably for
the insufficient sample support, because Tyler’s estimator is
not well defined for n < p, n being the sample size (number
of observations) while p corresponds to the observation di-
mension. Furthermore, the tractability of constrained Tyler’s
estimators is also an opened question (cf. assumption 2 in [8])
in that case. Specifically for the spiked structure, the MM
algorithm can present convergence issues in some practical
case. To address these problems, we propose in this paper
to leverage the Riemannian Geometry approach, in order to
formulate an estimation procedure to optimize Tyler’s cost
function directly on the the manifold H+

p,k (p × p Hermitian
positive semi-definite matrices of rank k).

The manifold H+
p,k has recently attracted much atten-

tion and different geometries have been proposed for it; see
e.g. [9–13]. In this work, we consider the geometry induced
by the quotient (Stp,k ×H++

k )/Uk, i.e. the product manifold
of the complex Stiefel manifold Stp,k of orthogonal matrices
in Cp×k (with p > k) and the manifold H++

k of Hermi-
tian k × k positive definite (HPD) matrices, quotiented by
the unitary group Uk. The geometry of (Stp,k × H++

k )/Uk
has already been studied in the context of low-rank matrices



in [9, 11]. However, our framework differs from these works:
we propose a new Riemannian metric on Stp,k ×H++

k which
has an interest when dealing with elliptical distributions. As a
direct consequence, the representations of the tangent spaces
of (Stp,k × H++

k )/Uk and the Riemannian gradient used for
optimization are different from the one previously consid-
ered. We also introduce a new retraction, which is obtained
from a second order approximation of the geodesics.

2. RIEMANNIAN GEOMETRY AND OPTIMIZATION

We build a Riemannian framework to optimize cost functions
defined onH+

p,k. To be able to perform Riemannian optimiza-
tion of a criterion f on a manifoldM, we first need to char-
acterize the geometry ofM (tangent spaces and Riemannian
metric). Then, given an iterate θi, the Riemannian gradient
of f can be used to define a descent direction ξi. Given the
step size ti, the next iterate θi+1 is obtained from tiξi with a
retraction, which is a mapping from the tangent spaces back
ontoM. For a full review on this topic, see [14].

By exploiting a decomposition inMp,k = Stp,k × H++
k

of every matrix in H+
p,k, we explain how H+

p,k is isomorphic
to the quotient manifold Mp,k = Mp,k/Uk. Thus, the ge-
ometry of Mp,k can be used in order to describe the one of
H+
p,k, as proposed in [9, 11]. Then, the needed geometrical

objects ofMp,k are studied. We introduce a new Riemannian
metric of interest when dealing with elliptical distributions.
We study the resulting representations of the tangent spaces
ofMp,k, which are subspaces of the tangent spaces ofMp,k;
and the associated geodesics, which generalize the concept
of straight lines on Mp,k. Finally, the needed Riemannian
optimization tools are provided: the Riemannian gradient re-
sulting from our proposed geometry and a retraction, which
is obtained by taking a second order approximation of the
geodesics on Mp,k. Due to space limitation, the proofs of
the propositions will be presented in a forthcoming paper.

2.1. Quotient manifoldMp,k

Every H ∈ H+
p,k can be decomposed as H = UΣUH ,

where (U ,Σ) ∈ Mp,k. Thus, ϕ(U ,Σ) = UΣUH defined
fromMp,k onto H+

p,k is surjective. However, ϕ is not injec-
tive as the considered decomposition is not unique: given any
O ∈ Uk, one hasH = ϕ(U ,Σ) = ϕ(UO,OHΣO).

As done in [9, 11], to account for the action of the unitary
matrices, we define the quotient manifold

Mp,k = {π(U ,Σ) : (U ,Σ) ∈Mp,k}, (1)

where the equivalence class π(U ,Σ) is
π(U ,Σ) = {(UO,OHΣO) : O ∈ Uk}. (2)

As shown in [9,11], it follows that the function ϕ onMp,k

induced by ϕ onMp,k, i.e., such that ϕ = ϕ◦π, is an isomor-
phism from Mp,k onto H+

p,k. Thus, the geometry of Mp,k

can be exploited to treat problems defined onH+
p,k.

2.2. Riemannian geometry

To describe the geometry of the quotientMp,k, we exploit the
submersion π : Mp,k → Mp,k defined in (2). This allows
to work with representatives of the geometrical objects of the
quotient inMp,k. In particular, θ ∈ Mp,k is represented by
any (U ,Σ) ∈ Mp,k such that θ = π(U ,Σ). The tangent
space TθMp,k at θ = π(U ,Σ) in Mp,k is represented by
a well chosen subspace of the tangent space T(U ,Σ)Mp,k at
(U ,Σ) in Mp,k. Moreover, a Riemannian metric on Mp,k

can be defined through a metric on Mp,k that is invariant
along the equivalence classes (2).

In the following, ϑ = (U ,Σ), ξ = (ξU , ξΣ) and η =
(ηU ,ηΣ). First recall that

TϑMp,k = {ξ ∈ Cp×k ×Hk : UHξU + ξHUU = 0}.

We define the Riemannian metric 〈·, ·〉· onMp,k by

〈ξ, η〉ϑ = Re(tr(ξHU (Ip −
1

2
UUH)ηU ))

+ α tr(Σ−1ξΣΣ−1ηΣ) + β tr(Σ−1ξΣ) tr(Σ−1ηΣ), (3)

where α > 0 and β > −αk . The part of the metric that
concerns U is the so-called canonical metric on Stiefel [15],
which is obtained by treating Stp,k as the quotient Up/Up−k.
The one that concerns Σ corresponds to a class of affine in-
variant metrics onH++

k that are of interest when dealing with
elliptical distributions as they are related to the Fisher infor-
mation metric [16]1. It is readily checked that the metric (3) is
invariant along the equivalence classes (2), i.e., for allO ∈ Uk

〈ξ, η〉ϑ = 〈φO(ξ), φO(η)〉φO(ϑ),

where φO(Z) = (ZUO,O
HZΣO). Thus, metric (3) in-

duces a Riemannian metric on the quotientMp,k.
The tangent space TϑMp,k can be decomposed into two

complementary spaces: the vertical and horizontal spaces Vϑ
and Hϑ [14]. The vertical space is the tangent space Tϑπ(ϑ)
to the equivalence class (2), which is given by

Vϑ = {(UΩ,ΣΩ−ΩΣ) : ΩH = −Ω ∈ Ck×k},

as shown in [9, 11]. Hϑ, which provides proper representa-
tives for the elements of Tπ(ϑ)Mp,k, is then defined as the
orthogonal complement to Vϑ according to metric (3). The
horizontal spaceHϑ is given in proposition 1.

Proposition 1. The horizontal spaceHϑ at ϑ ∈Mp,k is

Hϑ = {ξ ∈ TϑMp,k : UHξU = 2α(Σ−1ξΣ − ξΣΣ−1)}.

Finally, the geodesics on Mp,k associated with the met-
ric (3) are given in proposition 2. This completes our study of
the geometry ofMp,k.

1For example, the Fisher information metric for the Gaussian distribution
is obtained with α = 1 and β = 0. Notice that these parameters are however
simply treated as degrees of freedom in the present framework.



Proposition 2. Representatives inMp,k of the geodesics on
Mp,k associated with the metric (3) are, given θ = π(ϑ) ∈
Mp,k and ξ ∈ Hϑ,

γ(t) =

(
[U Q] exp t

(
UHξU −RH

R 0

)[
Ik
0

]
,

Σ exp(tΣ−1ξΣ)
)
,

whereQR is the QR decomposition of (Ip −UUH)ξU .

2.3. Riemannian optimization

Let f : Mp,k → R be an objective function that induces
a function f on the quotient Mp,k, i.e., such that, for all
ϑ ∈ Mp,k and O ∈ Uk, f(ϑ) = f(φO(ϑ)), where φO(ϑ) =

(UO,OHΣO). To perform Riemannian optimization, it re-
mains to define the Riemannian gradient of f along with a
retraction onMp,k. Proposition 3 provides a formula to com-
pute the Riemannian gradient of f on Mp,k from the Eu-
clidean gradient of f onMp,k.

Proposition 3. Given θ = π(ϑ) ∈ Mp,k, the representative
inHϑ of the Riemannian gradient of f at θ is the Riemannian
gradient of f at ϑ ∈Mp,k, which is

grad f(ϑ) =
(
∇fU −U∇fHUU ,

1

α
(Σ herm(∇fΣ)Σ− λΣ) +

λ

α+ kβ
Σ

)
,

where λ = tr(herm(∇fΣ)Σ)
p and ∇f(ϑ) = (∇fU ,∇fΣ) is

the Euclidean gradient of f in Cp×k × Ck×k.

One can obtain a representative of a descent direction
of f at θ = π(ϑ) ∈ Mp,k by selecting ξ ∈ Hϑ satisfying
〈grad f(ϑ), ξ〉ϑ < 0. A new point on the manifold is then
achieved by a retraction on Mp,k. A natural choice is to
take the Riemannian exponential map defined through the
geodesics of proposition 2. However, it is also acceptable to
choose a second order approximation of this exponential map,
which, for θ = π(ϑ) ∈Mp,k and ξ ∈ Hϑ, is represented by

Rϑ(ξ) =

(
[U Q] uf ◦Γ

(
UHξU −RH

R 0

)[
Ik
0

]
ΣΓ(Σ−1ξΣ)

)
, (4)

where uf returns the orthogonal factor of the polar decom-
position and Γ(X) = I + X + 1

2X
2 is a second order ap-

proximation of the matrix exponential. This approximation
is essentially motivated for numerical stability reasons. The
Riemannian gradient descent algorithm, which simply takes
− grad f(ϑi) as a descent direction, is the

ϑi+1 = Rϑi(−ti grad f(ϑi)) (5)

where ti is the step size, which can for example be computed
using a line search, or Armijo backtracking rule [14].

3. TYLER’S ESTIMATOR IN SPIKED MODELS :
COST FUNCTION AND ALGORITHM

Given n observations {xi}ni=1, Tyler’s M -estimator [6] is the
minimizer of the cost function

f++(C) = n log det(C) + p

n∑
i=1

log(xHi C
−1xi). (6)

on H++
p . For n > p and when the samples span the whole

space, this estimator exists and is unique (up to a scale factor)
[7]. Moreover, it satisfies the following fixed-point equation:

R̂Ty =
p

n

n∑
i=1

ziz
H
i

zHi R̂
−1

Tyzi

∆
= HTy(R̂Ty), (7)

and can be computed with the fixed-point algorithm

Rt+1 = HTy(Rt). (8)

This estimator presents good robustness properties [5–7],
however it does not account for a spiked model, i.e. for the
structure

R = Ip +H, H ∈ H+
p,k. (9)

Imposing this structure in the estimation process can improve
the estimation accuracy and/or deal with cases where n < p.
For this purpose, [8, Sec. V.A.] proposed a MM algorithm to
minimize (6) under the constraint (9). However, the tractabil-
ity of this estimators is an open question for n < p (cf. as-
sumption 2 in [8]), and this algorithm can present a conver-
gence issue in some practical case.

We aim at dealing with this issue by leveraging the pre-
sented Riemmanian framework. To that end, one needs a
counterpart of Tyler’s cost function that is properly defined
directly onMp,k: consider the function f : Mp,k → R de-
fined for all θ = π(ϑ) ∈Mp,k by

f(θ) = f++(Ip + ϕ(θ)), (10)

where ϕ(θ) = ϕ(ϑ) = UΣUH as in Section 2.1 and f++ :
H++
p → R corresponds to the Tyler estimator’s cost func-

tion (6).
As explained in Section 2, in order to minimize the cost

function (10) within our Riemannian optimization frame-
work, we simply need the Euclidean gradient of f = f ◦ π. It
is provided in proposition 4.

Proposition 4. The Euclidean gradient ∇f(ϑ) of f at ϑ is

∇f(ϑ) = (2∇f++(Ip + ϕ(ϑ))UΣ,

UH∇f++(Ip + ϕ(ϑ))U),

where∇f++(C) is the Euclidean gradient of (6), which is

∇f++(C) = C−1

[
nC − p

∑
i

xix
H
i

xHi C
−1xi

]
C−1



Proof. One has

D f(ϑ)[ξ] = D f++(Ip + ϕ(ϑ))[Dϕ(ϑ)[ξ]]
= Re(tr(∇f++(Ip + ϕ(ϑ))H Dϕ(ϑ)[ξ])).

The result is then obtained by using Dϕ(ϑ)[ξ] = UΣξHU +
ξUΣUH + UξΣU

H and basic manipulations of the trace.

Finally, applying the Riemmanian gradient descent algo-
rithm (5) with this proposition allows to propose a procedure
for robust covariance matrix estimation in the spiked model.

4. NUMERICAL EXPERIMENT

This section illustrates the theoretical results by performing
covariance estimations of simulated data drawn from the mul-
tivariate Student t-distribution with d = 3 degree of freedom;
see [5] for details. The covariance matrix of the simulated
data follows the model R = Ip + UΣUH , where U is a
random matrix in Stp,k and Σ is a diagonal matrix whose el-
ements are randomly drawn from the chi-squared distribution
with expectation 1 and multiplied by 50. We generate sets
{xi}ni=1, with n ∈ {10, 15, 17, 20, 30, 50}, from the multi-
variate Student t-distribution with covariance R. For each
value of n, 500 sets {xi}ni=1 are simulated and the aim is to
estimate the structured covariance matrixR in each case.

Here are the considered estimators in the simulations: (a)
projected sample covariance matrix R̂pSCM = Ip + ĤpSCM,
obtained by projecting n−1

∑
i xix

H
i on Ip +H+

p,k with [8,
equation (53)]; (b) the MLE R̂TLR-MM = Ip + ĤTLR-MM,
solved with a block MM algorithm [8, algorithm 5]; (c) the
proposed MLE ĤTLR-RO = Ip + ĤTLR-RO, solved with a
Riemannian gradient descent on Mp,k performed with the
manopt toolbox [17]. We choose α = p+d

p+d+1 and β = α− 1

in the Riemannian metric (3)2.
To measure the performance of the considered estimators,

two different criteria are considered. The first one, which
measures the error between the true covariance R and its es-
timate R̂, is the Riemannian distance onH++

p

δ2
H++

p
(R, R̂) = α

∑
j

log(λj)
2 + β

∑
j

log(λj)

2

, (11)

where λj is the jth eigenvalue of R−1R̂. With α = p+d
p+d+1

and β = α−1, it is the distance onH++
p corresponding to the

Fisher metric of the multivariate Student t-distribution [16].
The second one, which measures the error between the true
subspace span(U) of R = Ip + UΣUH and its estimate

2These α and β correspond to the parameters of the Fisher information
metric for the multivariate Student t-distribution in H++

p (cf. [16] for de-
tails). However, notice that these parameters do not influence the obtained
results in this context. This will be shown in a forthcoming paper.
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Fig. 1. Mean of performance measures (11) (top) and (12) (bottom)
over 500 simulated sets {xi} (p = 16 and k = 4) with respect to
the number of samples n for the three considered estimators.

span(Û), is the Riemannian distance on the Grassmann man-
ifold [18]

δ2
Gp,k(span(U), span(Û)) = ‖Θ‖2F , (12)

where Θ is the diagonal matrix obtained by the singular value
decomposition UHÛ = O cos(Θ)Õ

H
.

In figure 1, one can observe that for n > p, the perfor-
mance of TLR-MM and TLR-RO are similar for both criteria
and better than the one obtained with projected SCM. How-
ever, for n < p, TLR-MM fails to converge toward a satis-
fying solution and is outperformed by the other methods. In
contrast, our proposed algorithm, TLR-RO, which minimizes
the same criterion as TLR-MM, remains competitive as com-
pared to the projected SCM.

5. CONCLUSIONS AND PERSPECTIVES

This work focused on the problem of robust covariance ma-
trix estimation in spiked models through the prism of Rie-
mannian geometry. First, a Riemannian geometry for H+

p,k

involving the Fisher information metric of elliptical distribu-
tions has been proposed, leading to new representations for
the tangent spaces, and a new retraction. Then, a new robust
estimator has been formulated as the minimizer of Tyler’s cost
function, redefined directly on the set of low-rank plus iden-
tity matrices. A corresponding Riemannian gradient descent
algorithm (using the aforementioned tools) has been derived
in order to compute this estimator. Interestingly, the proposed
approach is able to deal with insufficient sample support set-
tings (n < p), as illustrated by numerical experiments and
opens the way for more general estimation problems.
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