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Abstract: The phAPEC6 genome encodes 551 predicted gene products, with the vast majority (83%)
of unknown function. Of these, 62 have been identified as virion-associated proteins by mass
spectrometry (ESI-MS/MS), including the major capsid protein (Gp225; present in 1620 copies), which
shows a HK97 capsid protein-based fold. Cryo-electron microscopy experiments showed that the
350-kbp DNA molecule of Escherichia coli virus phAPEC6 is packaged in at least 15 concentric layers
in the phage capsid. A capsid inner body rod is also present, measuring about 91 nm by 18 nm and
oriented along the portal axis. In the phAPEC6 contractile tail, 25 hexameric stacked rings can be
distinguished, built of the identified tail sheath protein (Gp277). Cryo-EM reconstruction reveals the
base of the unique hairy fibers observed during an initial transmission electron microscopy (TEM)
analysis. These very unusual filaments are ordered at three annular positions along the contractile
sheath, as well as around the capsid, and may be involved in host interaction.

Keywords: cryo-EM; jumbo phage; HK97-fold

1. Introduction

Jumbo phages are tailed phages with a genome size of more than 200 kb [1]. Although the
largest described jumbo phage, Bacillus megaterium phage G (498 kb), was discovered over 40 years
ago, most giant phages primarily remained unnoticed, due to their large virion size in combination
with classical phage isolation techniques. Generally, 0.22-µm filters are used to remove bacterial cells,
thereby unintendedly also retaining bigger viral particles. Moreover, semi-solid media with relatively
high agar concentration are often used. However, jumbo phages are too large to diffuse efficiently
through these denser gels, so no visible plaques can be formed. In recent years though, more and
more jumbo phages infecting different bacterial genera like Bacillus, Escherichia, Klebsiella, Pseudomonas,
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Yersinia, Erwinia and Ralstonia [2,3] have been isolated from a range of different environments, including
water, soil, marine sediments, plant tissues, silkworms, composts and animal feces. Jumbo phages
show diverse virion morphologies that can be much more complex than those of smaller phages [3–5],
because they mostly contain more structural proteins, as is the case for Pseudomonas phages 201phi2-1 [6]
and phiKZ [7]. Available capsid structures of jumbo phages usually show a canonical phage HK97
major capsid protein (MCP)-fold [8]. Additionally, large viruses can display specific structures like
long, wavy and curly tail fibers, which have rarely been observed [9], and their large genomes encode
DNA polymerases, RNA polymerases, endolysins, chitinases, glycoside hydrolases, lyases and many
other genes with unknown functions [3]. As such, they are a distinct and diverse group of phages,
but only roughly 100 different jumbo phages have been isolated since their discovery [10,11], and only
a few have been structurally classified [8,12]. Therefore, the function of the proteins encoded by
many uncharacterized genes they harbor, how they package such large genomes and the mechanism
leading to their evolution remain largely unknown. Isolating more of these phages and studying their
characteristics at the structural but also functional level could allow us to learn how such large genomes
are packaged and how phages with new characteristics can be evolved or engineered, which will help
us design more diverse phage cocktails against multidrug resistant bacteria.

In this study, we used cryo-electron microscopy (cryo-EM) to determine the capsid and tail
structure of jumbo coliphage phAPEC6, a phage against avian pathogenic Escherichia coli (APEC),
causing major economic losses in poultry production worldwide. With a dimension of 136 nm, the T =

28,d head is able to carry its 350,175-bp-long viral DNA.

2. Results and Discussion

2.1. Coliphage phAPEC6 is A Jumbo Phage

Avian pathogenic Escherichia coli virus phAPEC6 was isolated during a search for candidates
for phage therapy applications, but this phage drew our attention because of its large phage head,
“whisker-like” tail fiber proteins and hairy appendages on the capsid and tail (Figure 1). With a diameter
of 136 nm, the phAPEC6 capsid is able to carry its 350,175-bp-long viral DNA. It can thus be classified
as a jumbo phage. By comparison, the coliphage 121Q head was first measured to be 116 nm [13] but
corrected to be 132 nm by cryo-electron microscopy and three-dimensional reconstruction [8] and the
Klebsiella phage RaK2 heads 123 nm for genomes of 349 and 346 kb, respectively [14,15].

Figure 1. Electron microscopy of phAPEC6. (A) Negative staining image of phAPEC6. Six short tail
fibers (arrows) on the base plate are clearly visible. (B) Different phAPEC6 particles display hairy
appendages, sticking out from the tail but also from the capsid (arrows). Those attached to the capsid
seem to be trimers (inset). The scale bar represents 50 nm.
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2.2. Most of the phAPEC6 Genome Encodes for Unknown Proteins

The phAPEC6 genome encodes 551 predicted open reading frames (Figure 2), which exceeds that
of the smallest free-living bacterium, Mycoplasma genitalium (encoding 484 proteins) [16]. PhAPEC6 can
be considered as an isolate from the same species as coliphages SP27 (97% coverage, 99.77% identity)
(Azam et al., 2019; unpublished; accession LC494302.1), PBECO4 [17] (95% coverage, 98.26% identity)
(accession KC295538.1) and 121Q [8,13] (96% coverage, 98.94% identity) (accession KM507819.1),
belonging to the Asteriusvirus genus. A functional annotation of the genome (GenBank accession
number MK817115) revealed that phAPEC6 encodes most DNA replication proteins, like two DNA
polymerases, a clamp loader, a primase and three helicases, as well as a phage-encoded RNA polymerase
sigma factor.

Figure 2. Circular representation of the genome of the giant Escherichia phage vB_EcoM_PhAPEC6.
The inner circle represents a GC plot. The 551 identified coding sequences (CDS) are depicted by
arrows or boxes if a function could be predicted or not, respectively. The 62 CDS in green, scattered
along the genome, are structural proteins detected in the mature virion by mass spectrometry. The CDS
indicated in light blue are exonucleases; dark blue corresponds to DNA-associated proteins such as
DNA polymerases, topoisomerases, helicases and ssDNA-binding proteins; orange to proteases and
dark grey to chromosome condensation domains. CDS in purple and red are involved in general
metabolism and host lysis, respectively.

Noteworthy, phAPEC6 has acquired different methods to efficiently invade its host. First,
two DNA methyltransferases (N-6-adenine and C-5-cytosine) were identified, suggesting protective DNA
methylation. Moreover, phAPEC6 might counter the Prr abortive infection mechanism, carried by some
E. coli strains [18]. Large genomes often carry genes that augment or replace host functions for nucleotide
synthesis, as demonstrated in the phiKZ-related giant phages [19]. PhAPEC6 is no exception on this rule,
since it encodes a deoxynucleoside monophosphate kinase, a thymidylate synthase, a dCMP deaminase
and a ribonucleotide reductase to make sure all nucleotides are available according to its own needs.

However, the vast majority (83%) of predicted proteins remained unknown after in silico analysis.
Therefore, mass spectrometry (ESI LC-MS/MS) analysis was performed to identify virion-associated
proteins. A total of 62 different structural proteins were identified in the phage particle (Table 1)—of
which, 25 have a predicted function. The specific function of the other detected structural proteins
remains unknown, but most of them are unique to giant phages. Gp225 was identified as the phAPEC6
major capsid protein (MCP). This 42-kDa protein shows an identical amino acid sequence with the
MCP of bacteriophage 121Q, which follow the canonical HK97 major capsid protein fold [8].
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Table 1. Structural proteome of PhAPEC6.

Protein Function MW (kDa) Unique Peptide Count Sequence Coverage (%)

gp003 DNA condensation protein 41.39 4 11.6

gp005 DNA condensation protein 40.25 2 5.7

gp006 hypothetical protein 41.36 1 3.3

gp007 DNA condensation protein 30.06 3 17.5

gp009 DNA condensation protein 39.30 3 10.8

gp010 hypothetical protein 41.39 1 3.1

gp035c chromosome segregation protein 46.39 8 28.8

gp037c hypothetical protein 14.83 5 48.0

gp077 hypothetical protein 42.88 10 37.8

gp078c hypothetical protein 29.73 4 21.4

gp149c hypothetical protein 25.61 4 29.2

gp150c hypothetical protein 21.33 5 34.8

gp158c hypothetical protein 90.30 9 17.1

gp159c topoisomerase II small subunit 54.54 2 8.1

gp161c hypothetical protein 28.98 6 28.9

gp162c hypothetical protein 60.05 10 25.4

gp167c hypothetical protein 20.66 4 23.4

gp179c hypothetical protein 21.48 2 15.0

gp182c hypothetical protein 12.33 1 11.7

gp192c hypothetical protein 36.90 7 32.0

gp203c RecA-like recombination protein 41.58 2 6.7

gp204c single-stranded DNA binding protein 38.89 4 17.1

gp205c hypothetical protein 48.48 2 8.4

gp210 hypothetical protein 20.92 6 69.8

gp211 hemagglutinin repeat-containing
protein 24.30 13 69.9

gp215c hypothetical protein 26.56 5 26.3

gp225c major head protein 42.18 14 74.9

gp226c scaffolding protein 42.21 2 4.9

gp227c prohead core scaffold and protease 23.01 2 15.0

gp228c hypothetical protein 31.12 5 16.7

gp230c portal vertex protein of head 64.56 9 21.1

gp231c hypothetical protein 79.72 1 1.4

gp238 hypothetical protein 27.50 2 12.8

gp239 hypothetical protein 12.37 1 8.7

gp240 hypothetical protein 85.40 5 10.0

gp241 lysozyme family protein 95.90 7 9.9

gp244 baseplate wedge 131.18 21 24.2

gp245 hypothetical protein 381.88 17 7.6

gp248 proximal tail protein 51.67 4 13.9

gp250c hypothetical protein 40.33 9 40.2

gp251c hypothetical protein 21.95 2 13.4

gp253 hypothetical protein 40.99 14 65.6

gp256 tail fiber protein 180.38 15 15.9

gp259c thymidylate synthase 35.51 3 10.7

gp262c hypothetical protein 25.02 1 6.4

gp265c ATPase 49.52 6 19.0
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Table 1. Cont.

Protein Function MW (kDa) Unique Peptide Count Sequence Coverage (%)

gp267c hypothetical protein 35.96 1 4.9

gp268c hypothetical protein 51.12 6 17.8

gp270c hypothetical protein 16.20 4 41.1

gp273c hypothetical protein 40.42 7 29.9

gp274c hypothetical protein 28.76 3 16.3

gp275c hypothetical protein 25.07 2 9.2

gp277c tail sheath monomer 97.05 36 68.0

gp280c neck protein 29.93 4 20.5

gp306c hypothetical protein 16.90 6 65.8

gp314c tail fiber protein 105.34 8 13.0

gp315c hypothetical protein 4.66 2 69.0

gp323c hypothetical protein 98.62 4 5.6

gp341c PhoH-like protein 53.21 8 30.9

gp347 hypothetical protein 14.10 8 75.2

gp549 DNA condensation protein 41.77 4 13.2

gp551 DNA condensation protein 41.23 5 14.2

2.3. 3D Reconstruction of the phAPEC6 Capsid

The phage capsid structure was determined using cryo-EM and image analysis. The three-dimensional
structure of the head has been solved to 10 Å resolution (Figure 3A). The shell is composed of several
layers of protein. A 40-Å-thick nearly continuous layer is made of the MCP (Figure 3B). This shell is
following icosahedral symmetry with local six-fold symmetry axes located on the facets and five-fold
symmetry axes on the vertices. The capsid has a triangulation number of T = 28 (defined as T = h2 + hk
+ k2), since the path between two pentamers requires four steps over the h axis (h = 4) and two steps
over the k axis (k = 2) going to the right (dextro). The determination of the chirality (dextro vs. laevo) was
possible thanks to the fitting of the HK97 MCP X-ray structure into the EM density (Figure 3D,E).

Thus, the phAPEC6 phage head is constituted of 1620 major capsid proteins ((282 − 12)*6),
according to Baker, Olson and Fuller [12]. The pentameric vertex proteins are probably made by
another capsid protein (circle in Figure 3H) that remains unidentified given the attained resolution.
The giant Pseudomonas phage phiKZ, as well as RSL1, on the other hand, are built of 1560 HK97-like
MCP monomers, with T = 27 [20,21].

The available X-ray structure of the phage HK97 MCP has been fitted into the EM map (Figure 3D,E).
The quality of the fit (see, for example, the long alpha helix; arrow in Figure 3D) suggests that the
phAPEC6 MCP belongs to the HK97-fold family. One main difference is, of course, the geometry of the
hexamer. Due to the difference in diameter of the two bacteriophages, the radius of curvature is much
smaller in phAPEC6 compared to HK97, which make the hexamer flatter.

At the vertex level (excluding the one on which the tail is connected, i.e., Gp230), the MCP
seem to be absent and replaced by a more globular protein, forming a dome-like structure. However,
no putative vertex protein was found for phAPEC6 in silico.

There is a second layer of protein stabilizing the capsid shell. This protein is elongated, forming a
hexagonal network on the surface of the MCP and interacting with its neighbor over the local two-fold
axis (oval in Figure 3C). This protein is also present at the vertex level and in association with the
globular one closing the vertex. This protein is present in as many copies as the MCP but cannot be
assigned based on mass spectrometry analysis. Even if the HK97 and phAPEC6 MCP are of the same
size, it cannot be completely excluded that this cylindrical density is an additional domain of the MCP.
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Figure 3. Detailed 3D reconstruction of the phAPEC6 capsid: (A) Isosurface representation of the
phAPEC6 head 3D reconstruction at a 10-Å resolution. The particle is colored according to its diameter
(from red to blue). (B) Central slice of the phAPEC6 head visualizing 15 concentric layers of DNA
(black arrows). (C) Close-up view of one 6-fold axis. The major capsid protein (MCP) is colored in
orange and the decoration protein in yellow. The black oval highlights a local 2-fold axis. (D) Fitting of
the HK97 MCP X-ray structure into the phAPEC6 hexamer density seen from the outside of the particle
(an arrow highlights the long alpha helix present in both HK97 and phAPEC6 MCP) and (E) seen from
the inside of the particle. (F) Detail of the hexamer central protein along a 2-fold axis, displaying the
fiber-anchoring protein. (G) Side view of the fiber-anchoring protein. (H) Close-up view of the 5-fold
axis. The pentamer is colored in blue and highlighted by a black circle. The same protein as the one
colored in yellow in part C is visible around the 5-fold axis.

The last visible protein is a fibrous protein anchored in the center of each hexamer and protruding
out from the shell. Even if no symmetry was imposed at the hexamer level, the extension clearly
exhibits a dimeric shape: two arms are visible at a lower threshold (Figure 3F,G). At a higher contour
level, the fibers are more difficult to see and are not continuous, probably because of their flexibility.
However, in negative staining, fibers decorating the capsid are visible (Figure 1B top-left), and in some
cases (Figure 1B top-right), the trimeric nature is recognizable (triskelion shape). No similarity with
known decorating proteins was identified among the predicted proteins; hence, these fibers probably
account for some of the functionally unassigned proteins of this phage.

A triangulation number T = 28,d like the one of phAPEC6 has only been encountered in the
jumbo Escherichia coli phage 121Q [8]. This phage has a head dimension of 132 nm, very close to that of
phAPEC6. Structural comparison between phAPEC6 and the coliphage 121Q did not reveal significant
differences at the current resolution: the capsid but, also, all the decorating proteins are identical. This
confirms the fact that the two viruses, even if isolated and purified independently, are two isolates of
the same species.

The size of the phage head is mainly determined by the number of major capsid proteins, as the
size of this protein does not vary substantially among different phages. For example, HK97 contains a
genome of 40 kb in a shell with T = 7, composed of 31-kDa major capsid proteins, processed from a
42-kDa protein. A much-higher triangulation number is necessary to contain the 351-kb phAPEC6
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genome in a shell built of the same-size capsid proteins (Gp225, 42 kDa). For phage phiKZ, as well
as RSL1, with only a difference of 60 monomers with phAPEC6 (T = 27 vs. T = 28), the difference in
diameter can be quite important (123 nm vs. 136) [20,21].

HK97 lacks a scaffolding protein that promotes inter-subunit interactions for particle formation.
This function is instead fulfilled by a segment of the major capsid protein [22]. PhAPEC6, on the contrary,
possesses a putative scaffolding protein, Gp226. Furthermore, a subunit of the DNA topoisomerase
(Gp159) was detected as part of the structural proteome. The presence of proteins in the phage head
without a structural function is not rare. The major characteristic of N4-like phages is their large
RNA polymerase carried by the mature virion [23]. Moreover, a DNA topoisomerase has also been
identified in the proteome of a jumbo Ralstonia solanacearum phage [24]. The detected single-stranded
DNA binding protein (Gp204) in the phAPEC6 particle is putatively involved in origin-dependent and
recombination-dependent replication, like its T4 counterpart Gp32 [25].

Organization of the genomic phAPEC6 DNA indicates a high density of the packaged DNA
(Figure 3B). The DNA molecule is highly organized, packed in concentric layers. At least 15 clear layers
were identified (arrows in Figure 3B), each separated by ~23Å. This large number is in agreement with
the DNA length. In comparison, in phage T4, only eight layers have been visualized 25 Å apart from
each other [26], and phiRSL1 has 13 visible layers for a DNA of size 240-kb [21].

Under a high electron dose (300 e-/Å2), the cryo-EM images revealed the formation of bubbles
in the head of phAPEC6 (Figure 4A). A cylindrical protein structure became visible, which is called
the inner body. This structure, 91-nm-long and 18-nm-wide, is oriented nearly perfectly along the
portal axis and becomes visible due to the formation of gaseous bubbles, resulting from the disruption
of radiation-sensitive proteins. It is assumed that their sensitivity results from the fact that these
proteins are embedded in DNA, as no bubbling is observed in DNA-free particles. This characteristic
bubblegram has only been described in phiKZ-like phages and in coliphage 121Q [8,27–29], although
internal protein structures (a core) have also been observed in several phages, like T7 and the Salmonella
phage epsilon15. The genomes of those podoviruses are evenly wound around the core, which is
involved in the DNA injection process [30].

Figure 4. Cryo-electron microscopy of phAPEC6. (A) Low-dose and high-dose cryo-electron microscopy
images of phAPEC6 demonstrate the presence of an inner body. (B) Cryo-electron microscopy images
of the contracted form of phAPEC6. The capsid has released all the DNA, the tail is contracted and the
presence of a little piece of host cell membrane is visible (arrow).
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This radiation-sensitive cylindrical structure in phiKZ is thought to be also involved in DNA
ejection and packaging. Rapid and efficient ejection of such a large genome requires a highly ordered
structure, which would be provided by inner-body proteins with DNA spooled around them [31].
The inner body of phiKZ is constituted of six different proteins. However, none of those phiKZ
inner-body proteins shows sequence similarity to any of the phAPEC6 proteins. Among the proteins
with predicted functions, the ones with a “regulator of the chromosome condensation (RCC1)” domain,
might have the highest potential in the creation of an ordered DNA structure because of their known
interaction with DNA. RCC1 proteins have been identified in the genomes of many eukaryotes,
forming interactions with nucleosomes and regulating the condensation of DNA [32]. Unfortunately,
no information is available on their function in prokaryotic organisms. Only one phage-encoded
RCC1-like protein was found in the related GAP32 (GAP32 Gp1). Surprisingly, phAPEC6 encodes
eleven similar RCC1-like proteins, suggesting an abundant role in phage biology.

2.4. 3D Reconstruction of the Entire Phage Tail

The structure of the tail of phAPEC6 was also determined by single-particle image analysis
imposing a C6 symmetry. The 3D structure determined only at around a 25-Å resolution can be
divided in three different parts: the collar, the contractile tail and the baseplate (Figure 5). The capsid
is connected to the tail via a classical collar made of a double-hexameric ring (Figure 5B, blue part) and
a connector (red in Figure 5B). Based on our MS analysis, Gp280 has sequence similarity with a neck
protein and is thus part of the neck section of phAPEC6.

The collar is decorated by 12 elongated proteins (brown). Some fibers are also anchored just below
the collar (pink 1*). The same pair of structures (12 brown elongated proteins and, just underneath,
the same kind of pink fibers 3*) can also be found on the opposite part of the tail. The contractile tail
section (94-nm-long) is built by 25 hexameric stacked rings of the identified tail sheath protein (Gp277).
Upon receptor recognition, contraction of those tail sheath proteins results in phage DNA injection
into the host. They represent, together with the major capsid protein, the most abundant structural
proteins. The predicted molecular weight of the phAPEC6 tail sheath monomers is 97 kDa.

The three-dimensional reconstruction allows determining the base of the hairy fibers observed
during TEM analysis. These very unusual filaments are ordered in rings at three positions along the
contractile sheath (light pink in Figure 5B,C; they are called 1*, 2* and 3*). Two fiber locations are
visible at a normal isosurface threshold, but the third one only becomes visible at a higher contour
level (Figure 5B, right). This, together with the fact that only the start of the fibers is visible, indicates
that they are not rigid enough to allow their complete visualization after image analysis averaging.
The length and fibrous nature of these “hairy” proteins support the hypothesis of their role during the
host interaction, possibly by entanglement. Decoration proteins of the same shape and size as the one
present at the collar level can also be found at the distal part of the tail.

At the baseplate, six tail fibers can be observed (Figure 1A, Figure 3B–E, Figure 3). In silico,
different putative tail fiber proteins have been identified: Gp248, Gp256 and Gp314. All three proteins
were recovered in the MS data. From the two predicted lysozymes, Gp241 and Gp293, only Gp241 could
be detected by MS. Finally, the putative baseplate wedge protein Gp44 was identified in the structural
proteome. The putative tail fiber assembly protein, Gp220, could not be detected by LC-MS/MS. In the
isosurface view of the tail part, one can notice the presence of a lipid patch containing probably the
bacterial receptor (arrow in Figure 4B). This kind of structure has already been observed for other
phages like P2 [33]. In the 3D reconstruction at a high contour level (Figure 5D), visualization of this
small membrane piece is possible. Moreover, it is also possible to observe the fibers connected to the
membrane and, therefore, shed light onto the first step of infection (red part in Figure 5D).
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Figure 5. 3D reconstruction of the entire tail. (A) A negative staining image of phAPEC6. The different
fibers are labeled 1*, 2*, 3* and 4* (for the baseplate one). (B) 3D reconstruction of the entire tail at a
normal threshold (resolution 25 Å). The baseplate plus fiber are colored in yellow and pink; the different
fibers anchored in the tail (1*, 2* and 3*) are in light pink; a decoration protein present at 2 levels of the
tail is colored in brown and the collar and the portal are colored respectively in blue and red. (C) Distal
part of the tail at a high contour level: the fibers located at the 2*-level are visible. The same color code
as in B has been used. (D) Detail of the baseplate at a higher contour level. The host membrane patch
(green), as well as some fibers connected to the membrane, are visible (red). (E) Bottom view of the
baseplate showing the complex organization of this part.

In conclusion, apart from the extreme large phage G, phAPEC6 is, together with 121Q, an isometric
bacterial virus with one of highest triangulation numbers (T = 28,d). Hua et al. [8] postulated that one
way the jumbo phage genomes have expanded is through tandem duplication of preexisting genes.
The presence of an array of closely related genes in phAPEC6 appears to confirm this hypothesis.
Although we have established the structural basis for the tail-associated “hairy” whiskers, their specific
role remains to be elucidated. However, the recent identification of the Erwinia, Pectobacterium and
Cronobacter infecting phage CBB suggests a role in more widespread ecological niches [34]. From an
applied perspective, this phage has been shown to encode several enzymes associated with biofilm
and exopolysaccharide degradation and cell lysis, in addition to replication and transcription enzymes,
all of which can be exploited as antimicrobial enzymes and as biotechnological tools [35,36].

3. Materials and Methods

3.1. Molecular Analysis of phAPEC6

Bacterial virus PhAPEC6 (vB_EcoM_PhAPEC6) was isolated serendipitously as an impurity
associated with an N4-related phage, isolated from a farm environment within the context of establishing
phage cocktails targeting APEC infections [37]. PhAPEC6 was purified using CsCl gradient ultracentrifugation,
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as described previously [37]. Subsequently, genomic DNA was isolated and sequenced using the Illumina
MiSeq platform. This generated two-times 2,844,230 reads and a 53.3 x coverage after trimming and assembly
using Shovill [38]. The phage genome was annotated according to Adriaenssens et al. [39]. The large
terminase shows the highest homology to the corresponding proteins from coliphages T4 and RB49 and
Vibrio phage KVP40. Therefore, phAPEC6 has a headful packaging strategy, according to Merrill et al. [40].
Since there are no real physical ends for these types of genomes, the starting point of the genome was
chosen by alignment to Cronobacter phage GAP32 [41], the closest characterized phage at the time of
analyzing the phAPEC6 genome.

To analyze the structural proteome, 1-mL methanol and 750-µl chloroform were added to 1-mL
1011 purified phages. After 5 min centrifugation at 16,000× g, the top layer was removed, and the
same amount of methanol was added once more. The sample was centrifuged again; after which,
the supernatant was removed. The pellet was air-dried, resuspended in SDS-PAGE-loading buffer
and loaded on a 12% polyacrylamide gel. After migration, the gel was Coomassie-stained. Across the
complete length of the lane, gel slices were picked and trypsinized [42] for further mass spectrometry
analysis using LC-MS/MS on an Easy-nLC 1000 liquid chromatograph (Thermo Scientific, Waltham,
MA, USA) that was online-coupled to a mass-calibrated LTQ-Orbitrap Velos Pro (Thermo Scientific),
as described previously [43]. The analysis of the mass spectrometric RAW data was carried out using
Proteome Discoverer software v.1.3 (Thermo Scientific).

3.2. Electron Microscopy

For TEM, the phages were stained using 2% ammonium molybdate, pH 7.5, and imaged in a T12
FEI EM using an Orius SC1000 CCD camera according to the method described by Mas et al. [44].

For cryo-EM, on the other hand, the CsCl in the sample was removed using 100-kDa cutoff

centricon filter units (Amicon, Merck Millipore, Burlington, MA, USA). Four microliters of sample
were loaded onto a glow-discharged Quantifoil R2/1 holey grid (Quantifoil Micro Tools GmbH,
Großlöbichau, Germany), vitrified using a Mark IV vitrobot (FEI) (blot force 1, 2s, 100% humidity
and 20 ◦C). The frozen grid was transferred onto a Polara electron microscope working at 300 kV.
The images were taken manually under low-dose conditions (less than 20 e-/Å2) and with a nominal
magnification of 31,000 on KODAK SO-163 films. The negatives were developed in a full-strength D19
developer for 12 min [42]. Selected micrographs have been digitized on a Zeiss scanner (photoscan
TD) at a step size of 7 µm, giving a pixel size of 2.25 Å.

3.3. Phage Head Reconstruction

Phage head images have been analyzed with the model-based PFT2/ EM3DR2 package [45].
Particles (6915) have been selected by hand into 587 × 587 pixels2 boxes using X3D [46] and corrected
for the Contrast Transfer Function (CTF), as described previously (CTFMIX, 44). The 3D structure of
phiRSL1 [21] has been scaled to the same size as phAPEC6, low-pass-filtered to 45 Å and used as the
starting model. Determination of particle origin and orientation were performed with the model-based
PFT2 programs using an RSL1 [21] low-resolution structure as the starting model. The finer angular
step used for the refinement was 0.2 degrees. Particles (4149) out of 6915 were used for the final
reconstruction and the final resolution. The resolution of the final map was estimated to be around 10 Å
by the Fourier shell correlation [47] calculated between independent half-dataset maps and applying
a correlation limit of 0.5 (not shown). Map visualization and HK97 MCP fittings were done with
CHIMERA [48].

3.4. 3D Reconstruction of phAPEC6 Full Tail

Due to overlapping with other phage particles, bad orientations and partial views, only 1024 tails
images were selected into 988 × 988 pixel2 boxes. These full tail images were phase-flipped according
to the CTF, binned two times and subjected to projection-matching image analysis imposing only 6-fold
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symmetry using SPIDER [49]. Five-hundred images out of 1024 were including in the 25-Å resolution
final reconstruction.
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