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Abstract

This paper presents a multiscale model developed for the modelling of multiphase
flow in fractured reservoirs, particularly in coal seams during coalbed methane recov-
ery (or carbon dioxide storage). The variation of gas content in the matrix induces a
shrinkage/swelling of the material which is likely to affect the fractures and thus the
permeability of the rock. In addition, the permeability is also sensitive to the effective
stress evolution. In order to simulate the reservoir production taking into account the
cleat-scale phenomena on their specific length, a cleat-scale model is used for the mod-
elling of the Representative Elementary Volume (REV at microscale). This cleat-scale
model is integrated in a multiscale approach using the finite element square method.
It consists to localize the macroscale deformation to the microscale by applying ap-
propriate boundaries, then resolve the boundary value problem on the microscale with
finite elements, then homogenize the microscale stresses with appropriate averages to
compute macroscopic quantities, and finally resolve the boundary value problem on
the macroscale with finite elements. This approach has the advantage that it does not
require to write some constitutive laws at the macroscale but only at the REV-scale.
The model is developed and implemented in a finite element code and then used for
reservoir modelling. A synthetic case is first considered to demonstrate the ability of
the model to obtain some bell-shape production curves as expected for unconventional
reservoirs. Finally, a history matching exercise is carried out.

Keywords: Numerical model, unsaturated fractured medium, permeability,
hydro-mechanical couplings, Langmuir, shrinkage

1. Introduction

Changes of coal properties during methane production (or carbon storage) are a
critical issue. Indeed, ignoring geomechanical processes certainly leads to errors in the
evaluation of coalbed methane (CBM) production as the permeability of the reservoir is
affected (Gu et al., 2005). In existing CBM models, sorption- and stress-induced coal
permeability alteration is a remarkable aspect which is often improperly simplified
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(Wei et al., 2007) and it is clear that further work is required in order to improve our
understanding of the reservoir behaviour of coal permeability (Moore, 2012).

Coal is generally naturally fractured, the divisions are known as cleats. Fracturing
is often most abundant in bright bands of coal (Paterson et al., 1992). Fracture spacing
can range from fractions of a millimeter in vitrain layers to few centimeters or even
non-apparent in durain (Dawson and Esterle, 2010). Coal rank plays also a role in the
cleat development, cleat frequency increases from lignite to low-volatile bituminous
coal and then decreases above that rank (Moore, 2012). This cleat network is of course
very important for the permeability.

Ideally, a numerical model would detail the material microstructure with separate
descriptions of each constituent, matrix blocks and cleats. This approach was followed
in one of our previous paper (Bertrand et al., 2019) where a model was developed
at the cleat-scale. Two major couplings are considered: the swelling/shrinkage of the
material with the gas content and the cleat aperture opening/closure with the (effective)
stress state.

However, direct modelling of the entire microstructure is usually not possible due
to the high computational expense it would require at the scale of a reservoir. In con-
sequence, large-scale models are generally phenomenological in nature: the behaviour
of all the constituents is represented collectively by closed-form macroscopic consti-
tutive equations. The phenomenological approach has limits because improving the
macroscale models by taking into account more and more micromechanical effects
makes it more and more difficult to formulate. Over the past few decades, many perme-
ability models have been developed for coal reservoirs (Somerton et al., 1975; Schw-
erer et al., 1984; Seidle et al., 1992; Palmer et al., 1996; Gilman and Beckie, 2000; Lu
and Connell, 2007; Connell et al., 2010; Gu and Chalaturnyk, 2010; Pan and Connell,
2012; Chen et al., 2013; Shi et al., 2014; Lu et al., 2016; Bertrand et al., 2017) to name
a few, but these models are either analytical formulations or macroscopic models.

An alternative description is the use of a multi-level approach. The idea is to model
the micromechanical effects explicitly on their specific length scale through a direct
modelling and couple their homogenized effects to the macroscale. The physical be-
haviour of the material at the macroscale is derived from the modelling of a repre-
sentative elementary volume (REV) which contains a detailed model of the material
microstructure. The macroscopic phenomenological constitutive law is replaced by
suitable averages over the REV. The analysis on the REV level can be realised using
different methods: the finite element method (Terada and Kikuchi, 1995; Smit et al.,
1998; Miehe et al., 1999; Feyel and Chaboche, 2000; Kouznetsova et al., 2001; Mas-
sart, 2003; Özdemir et al., 2008; Larsson et al., 2010b; Su et al., 2011; Frey et al.,
2013) , the discrete element method (DEM) (Nitka et al., 2011; Nguyen et al., 2014),
the Voronoi cell method (Ghosh et al., 1995) or the Fourier series approach (Moulinec
and Suquet, 1998). When finite elements are used at both scales, the method is called
the finite element square method (FE2) (Kouznetsova et al., 2001). We employ this
method in this paper to develop a double-scale model describing the coal behaviour.

The FE2 method is based on the following consecutive steps:

1. Macro-to-micro: Localization of the macroscale deformations to the microscale

2. Resolution of the boundary value problem on the microscale with finite elements
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3. Micro-to-macro: Homogenization of the microscale stresses to compute the macro-
scopic quantity

4. Resolution of the boundary value problem on the macroscale with finite elements

These steps are repeated for each Gauss point until convergence is obtained on
both scales. Despite the method is computationally rather expensive, it is far less than
a direct modelling approach.

Kouznetsova et al. (2001) presented the FE2 method for the modelling of me-
chanical problems. In the context of multi-physics and coupling phenomena, the FE2

method was first applied to deal with heat conduction problems (Özdemir et al., 2008).
Then, it was used for the modelling of saturated porous media (Su et al., 2011; Marinelli,
2013; Van den Eijnden et al., 2016). In the context of CBM recovery, the method has
to be extended to partially saturated media. To our knowledge, this method has never
been applied to coal before.

With respect to the previous developments, the new model requires the definition
of an additional fluid degree of freedom for gas. The presence of gas implies the
implementation of the microscale hydraulic constitutive model for partially saturated
conditions. In particular, a retention curve is defined for the interface elements, some
relative permeabilities curves are introduced to compute the advective fluxes and some
equilibrium equations between the phases have to be written. Moreover, the partic-
ular case of coal, with sorption properties, requires to compute the gas storage term
taking into account the Langmuir’s isotherm and a sorption time, and accounts for the
swelling/shrinkage due to the sorption/desorption in the solid bodies. This microscale
model has been presented and verified by comparison with analytical models in a pre-
vious paper (Bertrand et al., 2019). The paper here presents the integration of this
model in a multiscale scheme using homogenization techniques whose suitability to
manage the transition from one scale to another is well established (Van den Eijnden
et al., 2016).

The model is implemented into the numerical code Lagamine developed by the
University of Liège (Charlier, 1987). After the presentation of the model, it is used
for reservoir modelling. A synthetic case is first considered to demonstrate the ability
of the model to obtain production curves similar to those observed for unconventional
reservoir. A sensitivity analysis is also performed on the main parameters of the model.
Finally, a history matching exercise is conducted.

2. Hydro-mechanical model

The double-scale model requires the definition of a Representative Elementary Vol-
ume (REV) which is submitted to periodic boundary conditions to enforce the local-
ization of the macroscopic loading. The constitutive laws used to solve the microscale
boundary value problem are briefly presented in this section. Finally, microscale quan-
tities are homogenized to solve the macroscale boundary value problem.

2.1. REV and unit cell
The REV is built with solid matrix blocks separated by interfaces (cleats). In

the case of materials with a specifically built periodic microstructure, one can simply
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choose a periodic unit cell as REV. Unit cells are extensively used for the modelling of
human-made materials such as masonry walls (Massart, 2003). It is more questionable
for natural materials but coal is most generally described with a periodic matchstick
geometry in the literature (Seidle et al., 1992). The multiscale method is however not
restricted to periodic materials.

For the sake of simplicity, it is chosen not to use a REV border along a fracture.
The kind of REV that may be used with our model is represented in Figure 1. The
REV is actually constituted of three parts: the solid matrix, the mechanical interfaces
between the grains, and the fluid network (matching the interfaces).

Figure 1: Microstructure with REV borders through the matrix.

Note that it is not strictly necessary to define a REV size from a mechanical point
of view. However, a length dimension is necessary to obtain a meaningful permeability
tensor. A length factor is therefore introduced to define the REV size. In a practical
way, the microscale computations are carried out using a REV with a size of one by
one. The macroscopic scale being expressed in meters, the length factor is used for the
conversion of all the quantities going to (localization step) or coming from (homoge-
nization steps) the microscale.

2.2. Decomposition of the microkinematics

The double-scale modelling approach distinguishes a microscale and a macroscale1.
Given a point P̂ with a displacement uM

i (P̂ ), the microkinematics um
i (P̂ ) is identical.

For a point P close to P̂ , the displacement can be defined with a Taylor expansion.
In the macroscale continuum, higher-order terms of the expansion can be neglected so
that the macromechanical displacement field uM

i (P ) is approximately equal to:

uM
i (P )≈ uM

i (P̂ )+
∂uM

i (P̂ )

∂x j
(x j− x̂ j) (1)

where x j and x̂ j are respectively the jth coordinates of P and P̂ .

1The superscript m is used to refer to the microscale while the capital letter M denotes macroscopic
quantities.
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For the microscale, higher-order terms can not be neglected because the continuity
is not ensured. The micromechanical displacement field um

i (P ) is therefore decom-
posed in the macromechanical field uM

i (P ) and a fluctuation displacement field u f
i (P )

replacing higher order terms:

um
i (P ) = uM

i (P̂ )+
∂uM

i (P̂ )

∂x j
(x j− x̂ j)+u f

i (P̂ ) (2)

This fluctuation field results of the variations in material properties within the REV.
It represents therefore the fine scale deviations with respect to the average fields. As
the statement um

i (P̂ ) = uM
i (P̂ ) has to hold for any point of the macroscale, it follows

that
∂uM

i (P̂ )

∂x j
(x j− x̂ j)+u f

i (P̂ )� uM
i (P̂ ) (3)

The validity of the approach is therefore theoretically restricted to situations in
which the scale of variation of the macroscopic fields is large compared to the mi-
crostructure and its REV. It is the concept of separation of scales (Kouznetsova et al.,
2002). Simply written, the microscopic characteristic length lc has to be much smaller
than the characteristic fluctuation length Lc of the macroscopic deformation fields.

If this assumption holds, the boundary conditions of the microscale boundary value
problem (BVP) can be properly dictated by the local macroscale deformation gradient.
If the macroscopic field varies considerably in critical regions of high gradient, the
assumption of scale separation may not hold. Large spatial gradients are observed,
for instance, with strain localization problems (Geers et al., 2010). In this case, a
higher-order homogenization technique should be applied (Schröder, 2014). It means
the Taylor expansion of the displacement field is not troncated before the second-order
term (Kouznetsova et al., 2002). This work is limited to the application of the first-order
computational homogenization. It supposes therefore a separation of scales.

In order to develop the hydro-mechanical problem for partially saturated condi-
tions, the water pressure pw and gas pressure pg are also introduced. As for the mi-
croscale displacements, the microscale pressure fields of water and gas can be decom-
posed into macroscale components and microkinematical fluctuations:

pm
w(P ) = pM

w (P̂ )+
∂pM

w (P̂ )

∂x j
(x j− x̂ j)+ p f

w(P ) (4)

and

pm
g (P ) = pM

g (P̂ )+
∂pM

g (P̂ )

∂x j
(x j− x̂ j)+ p f

g(P ) (5)

The requirement of separation of scales implies that

∂pM
w (P̂ )

∂x j
(x j− x̂ j)+ p f

w(P )� pM
w (P̂ ) (6)
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and
∂pM

g (P̂ )

∂x j
(x j− x̂ j)+ p f

g(P )� pM
g (P̂ ) (7)

Section 2.4 will present a practical way to verify these requirements.

2.3. Periodic boundary conditions

The macroscopic deformation enters the microscale BVP through the boundary
conditions (Geers et al., 2010). Dirichlet and Neumann boundary conditions provide
an upper and lower bound solution, the former tend to overestimate and the latter to
underestimate the equivalent material strength when the REV is not large enough to
be fully representative (Suquet, 1987). The periodic boundary conditions, giving a re-
sult between these two bounds, are therefore adopted for their efficiency to transfer
the macroscale deformation to the microscale REV. This choice has been justified by
different authors (Van der Sluis et al., 2000; Terada et al., 2000). Note that the applica-
tion of periodic boundary conditions does not actually requires a periodic material. For
instance, these boundary conditions may be applied for a granular material. However,
it is a natural course of action for periodic media such as coal since these boundary
conditions enforce the local periodicity of the microscale material behaviour (Van den
Eijnden, 2015).

L

F

xF

xL

Figure 2: Periodic boundary conditions

The boundary Γ enclosing the REV being periodic, it can be subdivided in two
parts: the lead part Γ L and the follow part Γ F . The kinematics of any point xF on the
follow boundary Γ F depends obviously on the kinematics of its homologous xL on the
lead boundary Γ L. The mechanical part of the periodic boundary conditions for the
REV is defined in terms of displacements through the relation

uF
i = uL

i + ε
M
i j (x j

F − x j
L) (8)

where εM
i j is the macroscopic Cauchy strain. A small strain assumption is considered at

the microscale.
In the same way, the boundary conditions for water and gas pressures are given by
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pF
w = pL

w +
∂pM

w

∂x j
(x j

F − x j
L) (9) and pF

g = pL
g +

∂pM
g

∂x j
(x j

F − x j
L) (10)

Moreover, the periodic boundary conditions lead to the requirement of the antisym-
metry of the boundary traction:

tF
i + tL

i = 0 (11)

And anti-symmetric boundary fluxes:

qF
w +qL

w = 0 (12) and qF
g +qL

g = 0 (13)

2.4. Separation of scales

The microscopic characteristic length should be much smaller than the characteris-
tic fluctuation length of the macroscopic deformation fields. Applying the macroscopic
deformation fields on the boundaries, the microscopic characteristic length is reason-
ably the length between these boundaries (x j

F − x j
L), i.e. the REV size lREV . Then,

the macroscopic length depends on the load applied on the REV, i.e. the macroscopic

gradient of fluid pressure
∂pM

∂x j
(or written ∇pM) for the hydraulic part, and the macro-

scopic pressure. The macroscopic length is thus defined as the ratio of the pressure
over the pressure gradient to verify that

lREV �
pM

∇pM (14)

to satisfy the separation of scales. It is formulated here for the fluid pressure and
pressure gradient (gas or water) since the objective of this work is to model a pressure
drop at a production well. It is therefore the most critical quantity.

Moreover, as the size of the REV/unit cell should be very small compared to the
macroscale, it is generally consistent to assume the hydraulic flow at the micro level is
insensitive to the time variations of the fluid storage at this level. In other words, the
microscale problem may be solved under steady-state conditions. It means that bound-
ary conditions dictate the instantaneous pressure changes at the micro level. However,
in some cases, it is sometimes necessary to take into account transient effects. For
instance, there may be a double porosity effect due to the diffusive flows in the ma-
trix. An instantaneous equilibrium between the pressure and the matrix should only be
considered if

T � pM

ṗM (15)

where T is the characteristic time at the microscale, it is the sorption time in this case.
It depends on the diffusion coefficient and the size of the matrix block (Bertrand et al.,
2017). The right-hand term refers to the macroscopic characteric time.

If condition (15) is not ensured, a transient computational homogenization could be
used to take into account micro-structural inertia effects at the macroscopic level. For
instance, (Larsson et al., 2010a,b) avoided the steady state assumption for heat flow
at the microscale considering higher order terms in the homogenization procedure.
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An appropriate scale transition has also been presented by (Pham et al., 2013) for the
dynamic modelling of a heterogeneous medium subjected to a pulse loading. This
transient scheme is not developed in this work as the loading is likely less extreme in
the context of reservoir modelling. However, to model more adequately cases where
the sorption time is close to the loading characteristic time, it is interesting to introduce
the sorption time coefficient in the adsorbed gas pressure evolution computed under
pseudo-steady state conditions.

2.5. Microscale balance equations

For our applications, the thickness of the coal seam is considered to be very small
compared to the depth of the seam, so the influence of the gravity should be very small
and is therefore neglected.

Neglecting the body forces, the equilibrium of the REV means the Cauchy stress
tensor σm

i j has to satisfy2:
∂σm

i j

∂x j
= 0 (16)

The weak form of the local momentum balance Equation (16) is obtained applying
the principle of virtual power considering the admissible virtual velocity field v∗mi , it
reads ∫

Ω
σ

m
i j
∂v∗mi
∂x j

dΩ=
∫
Γ

t i v∗mi dΓ (17)

where Ω is the volume of the REV. As the REV is constituted of blocks and interfaces,
the boundary Γ in Equation (17) can be divided in external boundaries Γext (the periodic
REV boundaries) and internal boundaries Γint (the interfaces). The integral over the
external boundary is zero given the periodic boundary conditions.

In addition to the mechanical equilibrium, the mass balance equations for water
and gas are

Ṁm
w +

∂ f m
wi

∂xi
= 0 (18) and Ṁm

g +
∂ f m

gi

∂xi
= 0 (19)

where f m
wi

and f m
gi

are the internal total fluxes of water and gas, and Ṁm
w and Ṁm

g rep-
resent the variations of the fluid contents. Under the assumption of steady state at the
microscale, these latter terms will vanish out. Considering some kinematically admis-
sible virtual fluid pressure fields p∗mw and p∗mg , the fluids mass balance equations may
be written in the following weak forms:∫

Ω

[
����Ṁm

w p∗mw − f m
wi

∂p∗mw

∂xi

]
dΩ=−

∫
Γ

qm
w p∗mw dΓ (20)

∫
Ω

[
�
���Ṁm
g p∗mg − f m

gi

∂p∗mg

∂xi

]
dΩ=−

∫
Γ

qm
g p∗mg dΓ (21)

2Small strains are assumed at the microscale. Through this assumption, the Piola-Kirchhoff stress and
the Cauchy stress tensors can be assumed approximately equal.
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2.6. Constitutive laws

The constitutive microscale model is constituted of some mechanical laws for the
matrix and the fracture, the fluid density variation law and the multiphase flow model.
The multiscale framework presented in this section is not restricted to some particular
constitutive laws. Based on the developments presented in (Bertrand et al., 2019), the
laws used for the coalbed modelling are shortly presented hereafter. It was chosen to
implement the microscale mechanical constitutive laws of the multiscale approach with
increments from the initial state given that elastic mechanical laws are used.

2.6.1. Matrix
Constitutive laws are defined for the mechanical behaviour of the matrix and for

the adsorbed gas pressure evolution.

Solid constitutive law.
It is assumed the sophistication of the material behaviour is obtained from the as-

sembly of different constituents. It is thus not unreasonable to consider an isotropic
linear elastic relation for the matrix. Considering sorption-induced strain by analogy
with thermal expansion/contraction, the elastic law writes

∆σi j = 2Gm∆εi j +λm∆ε̄ δi j +Km∆εvs δi j (22)

where εi j is the small-strain tensor given by
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
, ε̄ = εi jδi j with δi j

the Kronecker’s symbol, Gm is the Coulomb’s modulus and λm is the first Lamé pa-

rameter, Km = λm +
2Gm

3
is the bulk modulus of the matrix and ∆εvs is the volumetric

sorption-induced strain. This sorption-induced strain depends on the adsorbed gas con-
tent V Ad

g [m3/kg] and a linear coefficient βε[kg/m3] (Cui and Bustin, 2005):

∆εvs = βε∆V Ad
g = βε

Mmg

RT
1

ρg,stdρc
∆pAd

g (23)

where R is the universal gas constant (8.3143 J/mol ·K), T [K] is the absolute
temperature, Mmg is the molecular mass of the gas (0.016 kg/mol for methane and
0.044 kg/mol for carbon dioxide), ρg,std is the gas density at standard conditions, ρc is
the coal density, and pAd

g is the adsorbed gas pressure in the matrix.
In addition, the reservoir conditions require the presence of initial stresses σi j0 .

This stress is associated to the reference state for which the strain is zero. Then, the
stress tensor at a given time is

σi j = σi j0 +∆σi j (24)

where ∆σi j represents the increment of stress between the initial and current stresses.
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Adsorbed gas pressure evolution.
At equilibrium, the adsorbed gas pseudo-pressure is given by

pAd
g =

RT
Mmg

ρg,std ρc
VL · p
PL + p

(25)

where VL and PL are the Langmuir’s parameters (Langmuir, 1918), and p depends on
the macroscopic fluid pressures (which is consistent with the separation of scales):

p = max(pM
w , p

M
g ) (26)

If the hypothesis of an instantaneous equilibrium between the pressure in the cleats
and the adsorbed gas content in the matrix is too restrictive, it is interesting to introduce
a sorption time T to take into account the delay imposed by the diffusion process into
the matrix. The average adsorbed gas pressure pAd

g is then given by

pAd
g (t) = pAd

g (t−∆t)+
1
T

(
pAd,lim

g − pAd
g (t−∆t)

)
∆t (27)

with pAd,lim
g evaluated with Equation (25). The value of the adsorbed gas pressure pAd

g
at the end of the time step is more accurately determined following a sub-stepping
procedure by replacing ∆t with δt.

2.6.2. Cleats
Concerning the cleats, a mechanical law and a channel flow model are defined.

Interface mechanical law.
The mechanical law for the interfaces is defined by two parameters, the normal

stiffness Kn and tangential stiffness Ks, which define the relation between the stresses
and the fracture displacements. The tangential stiffness is considered constant, Ks =
K0

s , while a Bandis-type law is used for the normal stiffness (Bandis et al., 1983):

Kn =
K0

n(
1+ h−h0

h0

)2 (28)

where K0
n is the stiffness corresponding to the initial aperture h0. This initial aperture

is actually defined for a null stress. Thus, when considering some initial stresses, the
initial normal closure of a given fracture is given by

∆h0 =
−σ′0 h0

K0
n h0 +σ′0

(29)

where σ′0 is the effective stress normal to the fracture wall. In this way, the cleat aper-
ture may evolve with the variation in fluid pressure without the total stress changing.

This effective stress is the total stress reduced by the fluid pressures weighted by
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the degree of saturation of each phase:

σ
′
i j = σi j− [Sr pM

w +(1−Sr) pM
g ] δi j (30)

where δi j is the Kronecker symbol. Note that this definition of the effective stress in the
fracture does not require a Biot’s coefficient as usually used in macroscale constitutive
laws for homogenized medium. The saturation degree Sr(pc) is obtained from the
retention curve:

pc = pM
w − pM

g = pe · (S∗r )−
1
λ (31)

where pe is the entry capillary pressure and λ is an index representing the size distri-
bution of the capillary tubes. S∗r is a normalized saturation:

S∗r =
Sr−Sr,res

1−Sr,res−Srg,res
(32)

with Sr,res and Srg,res the residual water and gas saturations.
Since the tangential stiffness is constant, the initial tangential closure is directly:

∆s0 =
τ0

K0
s

(33)

where τ0 is the initial tangential stress. Given the initial stresses σxx0 and σyy0 , and
the orientation θ of the fracture with the horizontal, the normal and tangential stresses
are computed as

σ
′
0 = σ

′
xx0

cos2(θ)+σ
′
yy0

sin2(θ) (34)

τ0 =
1
2
(σyy0 −σxx0)sin(2θ) (35)

Finally, the relations between stresses and displacements are:

σ
′
0 +∆σ

′ =
K0

n h0

h
(∆h0 +∆h) (36)

τ0 +∆τ = K0
s (∆s0 +∆s) (37)

Channel flow model.
From the constitutive microscale model, the interface mass flux of water is given

by

ωw =−ρw hb krw
h2

b
12

1
µw

d pm
w

ds
= −ρw

krw

µw
κ(s)

d pm
w

ds
(38)

where κ(s) is the geometric transmissivity function along the channel with s the
coordinate along this channel. This equation provides the relation between the water
pressure gradient along the channel and the channel water mass flux. The steady state
flow condition at the microscale implies that the mass flux ωw is constant over the
length of the channel. Moreover, considering the scale separability, the fluid pressure
variation is very small compared to the REV size and has a negligible effect on the
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fluid density ρw. The density is thus considered to be constant throughout the REV.
Under isothermal conditions, the water density is only dependent on the macroscale
water pressure. In the same way, the relative permeability krw is only dependent on
the macroscale fluid pressures. As presented in the paper on the cleat-scale model
(Bertrand et al., 2019), the relative permeability curves which are used are

krw =
S2

r

2
(3−Sr) (39) krg = (1−Sr)

3 (40)

The density ρw of the liquid phase evolves with the macroscale pressure pM
w ac-

cording to:

ρw = ρw0

(
1+

pM
w − pM

w0

χw

)
(41)

where ρw0 is the liquid density at the pressure pM
w0

and 1/χw is the liquid compress-
ibility. At 20◦C, 1/χw = 5 ·10−10Pa−1.

Then, we can write the mass fluxes over the channel between s1 and s2 as

ω
l
w = [pm

w(s2)− pm
w(s1)]

ρw(pM
w ) krw(pM

w , p
M
g, f )

µw

(∫ s2

s1

1
κ(s)

ds
)−1

= [pm
w(s2)− pm

w(s1)]
ρw(pM

w ) krw(pM
w , p

M
g, f )

µw
Φl

(42)

where Φl is the geometric transmissivity of the channel.
For gas, the interface mass flux is:

ωg =−ρg hb krg
h2

b
12

1
µg

d pm
g

ds
−Hg ρg hb krw

h2
b

12
1

µw

d pm
w

ds

= −
ρg krg

µg
κ

d pm
g

ds
−Hg

ρg krw

µw
κ

d pm
w

ds

(43)

where the first term describes the advection of gas and the second term is the dis-
solved gas in the advective water flow. Henry’s coefficient Hg allows determining the
dissolved gas volume in the water.

The classical ideal gas equation of state is used to write the gas density in the
fractures as

ρg =
Mmg

RT
pM

g (44)

where pM
g is the macroscale gas pressure.

Note that given the negligible effect of the variations of the fluid pressures in the
REV on the fluid densities (due to scale separability), diffusive flows are not considered
in the fractures. Over the channel, the gas mass flux is then evaluated by:

ω
l
g =

[
pm

g (s2)− pm
g (s1)

] ρg krg

µg
Φl +[pm

w(s2)− pm
w(s1)] Hg ρg

krw

µw
Φl (45)
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In this work, no flow is directly considered in the matrix3. The fluxes qw and qg
appearing in the balance equations and boundary conditions are therefore given by the
fluxes in the interfaces, ωl

w and ωl
g.

2.7. Microscale numerical solution

The microscale problem is solved iteratively in two parts, starting with the mechan-
ical problem and then finding the different flows for the given fracture apertures. The
sequence is repeated until convergence.

2.7.1. Mechanical part
The system of field Equation (17) governing the microscale BVP is solved numer-

ically using a full Newton-Raphson scheme. Knowing the configuration at time t in
equilibrium with the boundary conditions, the objective is to find the configuration in
equilibrium at the end of the time step. An updated configuration is first guessed, for
which it is likely the equilibrium is not met. Residuals therefore appear in the balance
equations and the aim is to find a new configuration for which the residuals vanish. In
this purpose, the volume is discretized with finite elements.

For the matrix, a 4-node element with 4 integration points is adopted for the spatial
discretization. For the discretization of the cleats, one-dimensional elements with 2
integration points are used.

Assembling the element stiffness matrices and the element nodal force vectors of
the continuum and the interfaces, the global stiffness matrix [Kmm] yields the incremen-
tal relation between the nodal displacement {u} and the nodal force { f}:

[Kmm]{δu}= {δ f} (46)

This relation is valid for constant fluid pressures. The hydraulic part of the problem
is now solved separately.

2.7.2. Hydraulic part
The explicit description of the fluid network is solved separately from the mechan-

ical problem in order to find the profiles of the gas and water pressures that respect the
boundary conditions and, at the same time, have some average values of the pressure
fields equal to the macroscopic water and gas pressures.

The mass conservation along the channel leads to write that, for each node of the
hydraulic network, the sum of the input flows must be equal the sum of output flows:

ji-1

i+1
i ω

i−1 +ω
i +ω

i+1 = 0 (47)

with ωi ∝ Φi(p j− p j−1)

3Diffusive flows in the matrix are indirectly considered using a sorption time coefficient to compute the
mean adsorbed gas pressure evolution with Equation (27).
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The hydraulic system to solve is written considering all the connections between
the nodes. For instance, Figure 3 gives a basic example of a channel network.

p1

p2

p3

p5

p4A C

D

B

A

D

C

B

Figure 3: Example of a channel network.

For this configuration, taking into account the homologous connectivity of lead
and follow node couples over the periodic boundaries and the conditions given by the
macroscopic pressure gradient (Equation 9), and applying the macroscopic pressure at
one of the nodes of the hydraulic network, the well-posed system to solve is

ρw krw

µw


ΦA 0 −ΦA−ΦC ΦC 0
0 1 0 0 0
−ΦA −ΦB ΦA +ΦB +ΦC +ΦD −ΦC −ΦD

−1 0 0 1 0
0 −1 0 0 1




p1

w

p2
w

p3
w

p4
w

p5
w

=


0

pM
w

0
(∆pw)

M
x

(∆pw)
M
y


(48)

For gas, as gas dissolved in the water may be considered in the cleats, the advective
flows of water implies some gas mass fluxes. Actually, since densities, relative perme-
abilities and saturation are only determined based on the macroscopic fluid pressures,
the microscopic water pressures are already known before solving the system for gas.
Term relative to dissolved gas may be therefore written as an independent term of the

14



equation:

ρg krg

µg


ΦA 0 −ΦA−ΦC ΦC 0
0 1 0 0 0
−ΦA −ΦB ΦA +ΦB +ΦC +ΦD −ΦC −ΦD

−1 0 0 1 0
0 −1 0 0 1




p1

g

p2
g

p3
g

p4
g

p5
g



=−
ρd

g krw

µw

 ΦA 0 −ΦA−ΦC ΦC 0
0 ΦB −ΦB−ΦD 0 ΦD

−ΦA −ΦB ΦA +ΦB +ΦC +ΦD −ΦC −ΦD




p1
w

p2
w

p3
w

p4
w

p5
w

+


0

pM
g

0
(∆pg)

M
x

(∆pg)
M
y


(49)

2.8. Homogenized macroscale response

Once the equilibrium is obtained, the micro-to-macro transition is derived from
the Hill-Mandel macro-homogeneity condition which requires the average microscale
work to be equal to the macroscale work (Hill, 1965). The macroscale stresses, fluxes
and fluid masses are obtained by homogenization. The macroscale stiffness matrix is
presented in this section as well.

2.8.1. Stresses
The macroscopic stresses are obtained from the REV by volume averaging:

σ
M
i j =

1
Ω

∫
Ω

σ
m
i j dΩ (50)

2.8.2. Fluid fluxes
The macroscale fluxes are the integrals of the microscale boundary fluxes:

f M
wi

=
1
Ω

∫
Γ

qm
w xi dΓ (51)

f M
gi

=
1
Ω

∫
Γ

qm
g xi dΓ (52)

Under steady-state conditions at the micro-level, the macroscale fluxes are therefore
the sum of the fluxes on the nodes belonging to the follow boundary. The direction of
the microscopic flow depending on the orientation of the cleats is explicitly taken into
account when solving the hydraulic system. At the end, the homogenized horizontal
flow is determined from the flows on the vertical border of the REV and the vertical
homogenized flow is known from the flows on the horizontal border.
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2.8.3. Fluid masses
The macroscopic fluid contents MM

w and MM
g are directly defined as the total amounts

of fluid in the REV. As water is assumed only in the fractures, the water content MM
w is

given by (ρw is constant over the volume):

MM
w =

1
Ω

∫
Ωint

w

ρw dΩ= ρw Sr φ f (53)

with ρw constant over the REV and where Sr is defined as
Ωint

w

Ωint and φ f as
Ωint

Ω
.

The gas content MM
g is the amount of gas in the interface (gas phase and dissolved

gas in the water) and the adsorbed gas in the matrix for coal.

MM
g = Mg

g, f +Md
g, f +MAd

g,m

=
1
Ω

(∫
Ωint

g

ρg dΩ+
∫
Ωint

w

ρ
d
g dΩ+

∫
Ω

ρ
Ad
g dΩ

)
= ρg (1−Sr) φ f +ρ

d
g Sr φ f +ρ

Ad
g · (1−φ f )

(54)

with ρg constant over the REV. Note ρAd
g is directly related to the adsorbed gas pressure

pAd
g . Thus, considering the evolution of pAd

g taking into account the sorption time
(Equation 27), a pseudo-steady state is actually considered for the hydraulic problem.
The fluid mass storage terms ṀM,t

w and ṀM,t
g are obtained with some finite difference

approximations over the time interval ∆t:

ṀM,t
w ≈ MM,t

w −MM,t−∆t
w

∆t
(55)

ṀM,t
g ≈ MM,t

g −MM,t−∆t
g

∆t
(56)

2.8.4. Macroscale stiffness matrix
The macroscale computations are governed by:


[KM

mm](4x4) [KM
mw](4x3) [KM

mg](4x3)

[KM
wm](3x4) [KM

ww](3x3) [KM
wg](3x3)

[KM
gm](3x4) [KM

gw](3x3) [KM
gg](3x3)





{δεM}(4)δ∇pM
w

δpM
w


(3)δ∇pM

g

δpM
g


(3)


=



{δσM}(4) δ f M
w

δṀM
w


(3) δ f M

g

δṀM
g


(3)


(57)

which can be summarized as

[AM](10x10){δUM}(10) = {δΣM}(10) (58)

16



where [AM] is the macroscale stiffness matrix, {δUM} contains the infinitesimal varia-
tions of the macroscale variables and {δΣM} is their responses. This stiffness matrix
[AM] is obtained by numerical perturbations.

3. Coalbed methane production modelling

In this section, the multiscale model is applied to the modelling of coalbed methane
production from a wellbore. A synthetic production scenario is first considered to
perform a sensitivity analysis. Finally, a real production scenario is considered with
the Horseshoe Canyon case.

3.1. Reference case

The macroscale mesh and the geometry of the microstructure considered for the
reference simulation is given in Figure 4.

Coalbed

13m

2mCoalbed

1cm

1
c
m

Figure 4: Macroscale mesh and REV geometry.

REV is made up few blocks arranged in staggered rows with continuous horizontal
cleats. The size of the unit cell is 1cm over 1cm allowing to model very few cleats to
correspond to typical cleats spacings. All the parameters defining the reference case are
reported in Table 1. The seam is 2m high and the vertical displacement is blocked on
the bottom boundary while a 5MPa overburden pressure is applied on the top boundary.
Axisymmetric conditions are considered around the well. The smallest element close
to the well is 5cm wide. The size of the elements increases with a geometric factor
of 1.5, it means 12 elements represent 13m. The drained volume is approximately
1000m3 (external hydraulic borders are impermeable). An actual reservoir is certainly
larger but this synthetic reservoir allows us to test very quickly dozens of parameter
sets since there are few macroscopic elements (less computation time) and the time to
drain the reservoir is not too long to achieve the bell shape of the production curve
(less time to simulate). A larger reservoir is modelled later with the Horseshoe Canyon
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case. The drainage radius certainly influences the time-scale of the production but not
the observation we can make of the influence that the different parameters have on the
production curve. Unfortunately, it is not straightforward to represent the simulation
with dimensionless axis since many physical phenomena are involved.

Water and gas pressures are initialized to 3MPa, the reservoir is water saturated.
Given the overburden pressure of 5MPa, the effective stress in the cleats is 2MPa.
Note the cleat aperture 20µm in Table 1 is given for a null stress, as encoded by the
user in the Lagamine data file. At the initial effective stress state, the cleat aperture is
actually 10µm and the normal stiffness 225 ·109 Pa/m.

Parameters Values

Seam thickness (m) 2
Drainage radius (m) 13
Temperature (K) 293.15
Water pressure (Pa) 3E6
Gas pressure (Pa) 3E6
Overburden pressure (Pa) 5E6
Well transmissibility T (m3) 1E-10
Coal density ρc (kg/m3) 1500
Matrix Young’s modulus Em (Pa) 1.21E9
Matrix Poisson’s ratio νm 0.16
Matrix width w (m) 0.005−0.01
Cleat aperture* h (m) 20E-6
Cleat normal stiffness* Kn (Pa/m) 100E9
Cleat shear stiffness Ks (Pa/m) 100E9
Minimum cleat aperture (m) 1E-6
Sorption time T (hours) 10
Langmuir volume VL (m3/kg) 0.02
Langmuir pressure PL (Pa) 1.5E6
Matrix shrinkage coefficient βε (kg/m3) 0.4
Entry capillary pressure pe (Pa) 1E5
Distribution index λ 0.25
Residual water saturation Sr,res 0.1
Residual gas saturation 0.0

Table 1: Parameters defining the reference case. * Aperture and stiffness given for a null stress.

The modelling consists in simulating a drop in the pressure at the well from 3MPa
to 1MPa in one day. This pressure drawdown causes the water and gas to flow towards
the well. Figure 5 presents the water pressure profile obtained due to the pumping.
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Figure 5: Reference case parameters: water pressure drawdown profile for different times.

The most critical water pressure gradient is observed close to the well at the exact
time we stop decreasing the well pressure to maintain it at a constant value of 1MPa, i.e.
at 24h in this case. At this time, the 0.05m wide element next to the well shows a water
pressure difference of 0.44MPa between its left edge (pwell = 1MPa) and its center
(pcent = 1.44MPa). It corresponds to a pressure gradient of 17.6MPa/m. This results
obviously depends on the permeability of the reservoir, it is about 10−14m2 (10mD) for
this simulation. Here, the water pressure profile gives a critical macroscopic character-
istic length of 6.9cm over the first half of the first element.

Lccrit = p̄ · ∆x
∆p

=
pcent + pwell

2
∆x

pcent − pwell
= 0.069m (59)

Over the second half of this element, the characteristic length is already 22.6cm,
largely greater than the REV size of 1cm. For comparison, the water pressure gradient
in the second half of the 12th element (most external element in the mesh considered)
is only 1.9kPa/m at the same time. In this area, the separation between the scales is
more than 6 orders of magnitude.

For the same pressure drop of 2MPa, different times of loading are now tested
leading to different pressure rates at the well. Figure 6 shows the evolution of the
critical length with the water pressure drop rate.
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Figure 6: Reference case parameters: evolution of the critical characteristic length with the loading rate.

The lower the rate, the larger the characteristic length, the greater the separation
between the scales. The minimum characteristic length will be obtained for a pulse
loading, this value can be a priori determined for the given macroscale mesh. Indeed,
the pressure at the well is instantaneously set to the final pressure of 1MPa while the
pressure at the center of the first element is still the initial pressure of 3MPa. In this
particular case, the mean pressure is equal to the difference of pressure between the
well and the center of the first element. Then, the minimum critical characteristic
length is directly the length of the half of the first element, i.e. 2.5cm, which is still
greater than the size of the REV. Considering an even more critical case where the well
pressure is dropped instantaneously to a very small value compared to its initial value
(pwell � pcent ), then the macroscale characteristic length tends to half of the length of
first half-element, 5cm

4 > 1cm. The macroscale mesh has therefore to be chosen with
care so that its smallest element is large enough to still ensure the separation of scales
and small enough to avoid numerical oscillations (depending also on the permeability
and the hydraulic storage). From the discussion above, taking a priori the smallest
element of the macroscale mesh with a size at least larger than four times the size of
the REV ensures the macroscale is larger than the microscale for any pressure drop at
any time in any area. Depending how far is the loading compared to a pulse (depending
on the permeability), the macroscopic characteristic length will be very larger than the
microscopic characteristic length. This can be verified a posteriori.

In the early stages, the permeability to gas is lower than the one to water as the
reservoir is initially saturated. For the same loading at the well, the pressure gradi-
ent in the first element is therefore higher for gas than water. A critical gradient of
39.8MPa/m is obtained in the first half of the first element for the well pressure drop
of 2MPa in one day, it corresponds to a macroscopic characteristic length of 4.0cm.
The minimal characteristic length is the same as water.

From a time point of view, the rate of pressure drop is 2MPa/day at the well. After
one day, at the time the well pressure reaches its minimum of 1MPa, the macroscopic
characteristic time is thus 0.5 day (Equation 15). This characteristic time is therefore
lower than the sorption time T set to 1 day which is used in Equation (27) to account
for diffusion in the coal matrix. As a double porosity effect is not negligible at the most
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critical time close to the well for a concevable sorption time, it was therefore desirable
to take into account the sorption time to compute the adsorbed gas pressure evolution
in the matrix.

Water and gas production rates are plotted in Figure 7 for one year and half. Water
production peaks after one day, at less than 2m3/day. Then, desaturation of the reser-
voir increases the gas permeability and gas production peaks few days after the water,
at more than 400m3/day (standard conditions). The bell shape of the production curve
is related to the size of the reservoir and the outer boundary conditions. With a small
reservoir and an impermeable boundary, a plateau is not observed.
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Figure 7: Reference case parameters: production curves.

Figure 8 shows the integration of the gas production with time to give the cumula-
tive gas production curve. The total production tends to 8330m3 (dotted line), which is
the total volume of gas which can be recovered given the Langmuir’s parameters.
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Figure 8: Reference case parameters: cumulative gas production
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These production curves hides the evolution of the permeability. As no macro-
scopic permeability is actually used (since there are no macroscopic constitutive laws),
a trick is needed to obtain this information. In a conventional model, permeability links
the fluxes and the hydraulic gradient. In our multiscale model, we still have a stiffness
matrix to link fluxes and pressure gradient. However, this stiffness matrix component
contains also the relative permeability evolution4 following desaturation. The intrinsic
permeability is then given by:

k =
µw

krwρw
·KM

wwx (60)

where KM
wwx is the macroscopic stiffness matrix component connecting the water flux

towards the well and the corresponding pressure gradient. It is determined at each
integration point from the miscrocale finite element computation.
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Figure 9: Reference case parameters: intrinsic permeability profiles at different times.

Figure 9 shows the profiles along the seam at different times of the intrinsic per-
meability evolution. The permeability is almost divided by two after two days with
the parameters of this reference case. For this set of parameters, the model shows
that, despite the shrinkage of the matrix which tends to increase the cleat aperture, the
permeability is decreasing due to the increase of the effective stress following the de-
pletion of the reservoir. The effective stress in the cleats has a larger effect than the
shrinkage of the matrix in this case.

3.2. Sensitivity analysis

A sensitivity analysis is performed to get a better understanding of the model by
evaluating the influence of the main parameters on the production curve. This analysis
also highlights the hydro-mechanical couplings which are taken into account by the
model. The sensitivity study is performed on the aperture h, the size of the REV, the

4The macroscopic relative permeability exists because the same retention curve is used for all the frac-
tures (e.g. entry capillary pressure is independent of the aperture). However, the multiscale approach is not
restricted to this case and calculating unused macroscopic variables is becoming increasingly meaningless.
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stiffness of the cleats Kn, the shrinkage coefficient βε, the Langmuir’s parameters VL
and PL, the sorption time T and the retention curve (pe and λ).

3.2.1. Cleats aperture
The parameter influencing most directly the response of the model is, with the

number of cleats, the aperture of the cleats. The permeability is directly dependent on
this aperture (Equations 38 and 43). Figure 10 shows the influence of the initial aperture
of the cleats on the production curves. Higher the aperture, higher the production peak
value. The ratios between the peak values are not straightforward since the transient
behaviour plays a role in the shrinkage of the matrix. Moreover, the initial stiffnesses
are initially not the same at σ′ = 2MPa (Table 2). Indeed, the sensitivity study is
carried out by modifying one parameter while all others remain equal. But modifying
the initial aperture while keeping the same initial normal stiffness for the null stress
actually leads to different initial stiffnesses for the given initial stress.
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Figure 10: Influence of the cleat aperture on the gas production.

σ′ = 0MPa σ′ = 2MPa

h = 20µm h = 10µm
Kn = 100GPa Kn = 400GPa
h = 20µm h = 13.33µm
Kn = 200GPa Kn = 450GPa
h = 20µm h = 18.18µm
Kn = 1000GPa Kn = 1210GPa
h = 30µm h = 18µm
Kn = 100GPa Kn = 278GPa
h = 40µm h = 26.67µm
Kn = 100GPa Kn = 225GPa

Table 2: Initial apertures and normal stiffnesses.

3.2.2. Cleats stiffness
Figures 11 highlights the influence of the normal stiffness. Three different stiff-

nesses are compared, varying within an order of magnitude range. Higher the stiffness
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and higher the production peak since the aperture is less impacted by the increase of
the effective stress following the reservoir depletion. Initial cleats apertures and normal
stiffnesses at 2MPa are also presented in Table 2 using Equations (28) and (29).
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Figure 11: Influence of the cleat stiffness on the gas production.

3.2.3. REV size (cleats density)
The parameter now investigated is the REV size. For a given number of cleats,

the permeability decreases with the increase of the REV size since the cleat density
decreases. To analyse this cleat density effect, it is preferred to modify the REV size
instead the number of cleats (Figure 12). It has the advantage of not increasing the
computation cost. As the REV size is decreased, there is a decrease of the distance
between cleats due to periodic conditions.
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Figure 12: Cleat density geometries.

Figure 13 obviously shows that the reservoir is more quickly drained by the 1mm-
REV (3) than the 5mm-REV (2) and the 1cm-REV (1) since the most fractured medium
presents a greater permeability. The production obtained with the reference REV ge-
ometry (0) from Figure 4 is presented on the same figure, it matches the curve obtained
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with the 5mm-REV (2). Indeed, these two microstructures present the same density of
horizontal fractures. The last geometry (4) corresponds to the extension of the 5mm-
REV (2) over 1cm, it does not influence the response of the model either. The three
curves (0), (2) and (4) are therefore superimposed. If a few simulations give the same
result, they do not require the same CPU time. For instance, it took 2h30 on a laptop5

to simulate 600 days using a 5000s time step with the REV (2) while it took 9h to
give the same results with the REV (4) using three times more nodes to discretize the
microstructure. Correctly identifying the unit cell definitely saves time.
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Figure 13: Influence of the cleat density on the cumulative production.

3.2.4. Hydro-mechanical couplings
The different simulations performed here aims to evaluate both the influence of the

matrix shrinkage and the increase of the cleat effective stress on the gas production. On
the first hand, the simulations performed with different shrinkage coefficients highlight
the positive impact of the shrinkage coefficient on the permeability. On the other hand,
comparing the simulation performed with a zero shrinkage coefficient with the one
with a constant permeability highlights the negative impact of the increase of the cleat
effective stress.

The exercise is first performed with the reservoir boundary conditions (Figure 14).
It appears there is only a little effect of the matrix shrinkage on the permeability. In-
deed, the decrease of volume is reflected more in the subsidence than in fracture aper-
ture opening. Figure 15 shows the subsidence of the seam is linearly proportional to the
linear swelling coefficient β. The subsidence observed for β = 0 is due to the increase
of effective stress following the depletion.

5Intel R© 6-core processor i7-8750H CPU @ 2.20GHz, RAM 16.0Go.
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Figure 14: Influence of the hydro-mechanical couplings on the cumulative production.
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Figure 15: Influence of the shrinkage coefficient on the subsidence.

Considering constant volume conditions (Figure 16), the impact of the shrinkage is
clearly more significant. For the chosen set of parameters with β = 0.4kg/m3, the neg-
ative impact of the effective stress is almost compensated by the positive impact of the
shrinkage. It is likely these two boundary conditions, reservoir boundaries and constant
volume, give a range of the production curve for a real reservoir. Note that considering
the draining of the entire reservoir until the well pressure, it does not influence the total
production.
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Figure 16: Influence of the hydro-mechanical couplings on the cumulative production.

Figure 17 demonstrates the positive influence of the shrinkage on the permeability
evolution.
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Figure 17: Influence of the shrinkage coefficient on the permeability at x = 6.6cm.

The question which arises now is which boundary condition should be actually
used. Using a 2D REV geometry (in the same plane as the macroscale mesh), there
is no other choice than meshing a cleat network separating the matrix blocks (oth-
erwise the permeability is null). Such a structure is little impacted by the shrinkage
if subsidence is allowed. However, the actual coal structure is likely to show attach-
ment areas between the blocks while the fluid can bypass these obstacles via the third
dimension. It means there are holding points that, locally, almost require volume con-
servation. Fractures could be therefore much more impacted by internal strains with
reservoir boundary conditions than what is modelled with the 2D microsctructure. The
two boundary cases applied on the 2D REV from Figures 4 and 12 should be therefore
considered as two extreme cases for more complex fractures geometries. Depending
on the application, gas recovery or gas injection, the most critical boundary conditions
case are not the same. In practice, a detailed monitoring of the pressures and relative
displacements of the seam would allow a proper quantification of the compaction pro-
cess (Pineda et al., 2014) and see where it is situated in between the two boundary
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conditions.

3.2.5. Langmuir’s parameters
Langmuir’s parameters influence the total volume of gas produced from the reser-

voir since it is assumed the initial adsorbed gas volume is on the isotherm. For the
same initial gas volume, different Langmuir’s parameters also impact the desorption
kinetics.

Figure 18 shows for instance that less gas is produced when PL = 0.75MPa instead
of 1.5MPa. Indeed, despite the initial gas volume is higher with 0.75MPa, the final
volume is also higher and less gas is producible (Table 3).

Parameters Vad,0[m3] Vad, f [m3] ∆Vad [m3]

(p = 3MPa) (p = 1MPa)

VL = 0.02m3/kg 20830 12500 8330
PL = 1.50MPa
VL = 0.01m3/kg 10420 6250 4170
PL = 1.50MPa
VL = 0.02m3/kg 25000 17850 7150
PL = 0.75MPa

Table 3: Adsorbed gas volumes.
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Figure 18: Influence of the Langmuir’s parameters on the gas production.

3.2.6. Sorption time
Figure 19 highlights the influence of the sorption time on the production curve. The

sorption time coefficient was introduced into the model to take into account the time
required to diffuse through the matrix to reach the cleats. The greater the sorption time,
the longer it takes to produce the gas.
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Figure 19: Influence of the sorption time on the gas production.

3.2.7. Retention curve
Finally, the last parameters tested are the parameters from the retention curve. Fig-

ure 20 shows that a greater gas entry value pe delays the production and a greater
distribution index λ speeds up the production. These behaviours are related to the wa-
ter saturation degree. Figure 21 shows the saturation degree evolution close to the well
for the different retention curves. A lower water saturation degree increases the gas
permeability and therefore enhances the gas production.
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Figure 20: Influence of the parameters of the retention curve on the production.
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Figure 21: Saturation degree with time at x = 6.6cm from the well for different retention curves.

3.3. Horseshoe Canyon case
The pressure and gas rate data presented by (Gerami et al., 2007) and taken up in

the review of Pan and Connell on testing data (Pan and Connell, 2012) are used for a
history matching exercise. Reservoir properties are listed in Table 4. The 300 meters
of the reservoir are meshed with 20 macroscopic elements with a first element of 5cm
like in the reference case. Axisymmetric conditions are considered as for the synthetic
reservoir. The REV geometry considered is that of 2D matrix blocks 1cm wide. Model
parameters used for this history matching exercise are given in Table 5.

Parameters Values

Initial gas pressure (Pa) 1.5E6
Initial water pressure (Pa) 0E6
Temperature (K) 289
Coal density (kg/m3) 1468
Seam thickness (m) 8.99
Langmuir volume VL (m3/kg) 0.0092
Langmuir pressure PL (Pa) 4.652E6

Table 4: Reservoir parameters (Gerami et al., 2007).

Parameters Values

Reservoir radius (m) 282
Overburden pressure (Pa) 5E6
Matrix Young’s modulus Em (Pa) 5E9
Matrix Poisson’s ratio νm 0.3
Matrix width w (m) 0.01
Cleat aperture* h (m) 107E-6
Cleat normal stiffness* Kn (Pa/m) 6.6E9
Cleat shear stiffness Ks (Pa/m) 6.6E9
Sorption time T (hours) 1000
Matrix shrinkage coefficient βε (kg/m3) 0.5

Table 5: Reservoir parameters used to calibrate the FE2 model for the Horseshoe Canyon case. * Given for
a null stress.

The pressure at the well is given as input to the model and the production rate is
observed as the response of the model to this loading. Figure 22 compares the data with
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the results of the simulation performed with parameters provided in Tables 4 and 5. To
perform this simulation on a dry reservoir, only one degree of freedom is used at the
macroscale, the gas degree of freedom. It means the simulation is performed at constant
volume and the hydro-mechanical couplings are maximized at the microscale. Indeed,
constant volume conditions are applied on the microscale by fixing the macroscale
mechanical degrees of freedom. Fractures are therefore more impacted by the matrix
shrinkage in these conditions. It takes only 2 minutes to simulate 800 days with a
maximum time step of 10 days.

The fitting looks good overall. The simulation seems to overestimate a bit the
production between 200 and 400 days. Actually, it appears that many well pressure
points are clearly higher than the main trend during this period. It tends to reduce the
production and it may partly explain the difference with the simulation.
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Figure 22: Matching exercise with the Horseshoe Canyon data.

Note the set of parameters that can be used to fit the data is not unique. The sensitiv-
ity analysis has shown the influence of the main parameters and they can be combined
differently to obtain similar results. Actually, real predictive modelling would require
validated parameters requiring a global experimental campaign on the material.

4. Conclusions

The localization and homogenization procedure of the FE2 method was used to
extend our cleat-scale model (Bertrand et al., 2019) from the laboratory scale to the
reservoir scale. The model was implemented in the Lagamine code following the work
of (Frey, 2010), (Marinelli, 2013) and (Van den Eijnden, 2015). Few contributions
have been made in the purpose of coalbed methane production modelling (or reversely
CO2 storage modelling). Mainly, a new degree of freedom for gas was introduced to
deal with multiphase flow and a mechanism to account for swelling/shrinkage due to
sorption/desorption was implemented. This model was applied to the modelling of one
production well. The sensitivity study highlights the role of the main parameters on
the response of the model to a pressure drop at the well. Parameters affecting the cleat
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aperture play of course a significant role in the production curves. But the influence
of the boundary conditions on the hydro-mechanical couplings was also highlighted.
Finally, the Horseshoe Canyon data were used for a history matching exercise. The de-
termination of the whole set of independent parameters may be challenging in practice.
It is also the reason why a simple elastic model was considered, as generally preferred
in the petroleum industry.

In this paper, a deterministic approach is followed considering the cleat aperture is
known. As we showed in the sensitivity analysis, different geometries give different
permeabilities and thus different results. Coal generally presents cleats with apertures
ranging from 3 to 40µm (Laubach et al., 1998). In a next step, it could be interesting to
follow a stochastic approach to account for the variability of all the parameters.

The 2D representative elementary volume means that the set of out-of-plane frac-
tures is not taken into account in the permeability. There is actually nothing to prevent
combining 2D at the macroscopic scale with 3D at the microscopic scale, but it would
increase the computational cost. However, using a 3D-REV and 2D-axisymmetric con-
ditions for the reservoir would overestimate the permeability since it would consider
that the third set of fracture is radial with the wellbore. This combination is therefore
not recommended for modelling a vertical well. Note that drilling technologies allow
now to create horizontal wells. This case may be modelled with a macroscale mesh
in plane strain state which is perpendicular to the well. The microstructure could be
either in plane strain or more appropriately in 3D to account all the sets of cleats.

Compared to macroscale models, any fracture network could be used in the REV
geometry of the multiscale model. Indeed, macroscale models are limited to a match-
stick geometry while, despite simple unit cells were used in our modelling, this is not a
limitation of the multiscale model. Moreover, as physical phenomena are written at the
fracture scale, the formulation is sometimes simplified. For instance, there is no Biot’s
coefficient appearing in the effective stress equation since it is written at the cleat scale.

Compared to microscale models, transient effects are not directly considered at the
microscale in the multiscale model. The REV boundary value problem is solved un-
der steady state conditions but a sorption time T is taken into account for the storage
term of the macroscale. The modelling of transient diffusive flows in the matrix would
require the implementation of coupled elements with more than 4 nodes to avoid nu-
merical oscillations. In addition, the pressure distribution at the microscopic scale at
the end of each time step must be stored in memory to start the next time step.

So, new sophisticated tools are now available to model multiphase flow in naturally
fractured medium after the implementation of this extended FE2 model. The model
was applied to methane recovery but it could also be applied to carbon storage. It
can certainly prove useful for a wide range of applications, also outside coal-related
applications. Indeed, the questions that have arisen on multiphase flows in a single
fracture may also find applications in other media.
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Nomenclature

Greek Symbols

1/χw Water compressibility [M−1LT 2]

βε Volumetric sorption-induced
strain coefficient

[ML−3]

δi j Kronecker symbol [−]

Γ External surface of the REV [L2]

κ Geometric transmissivity func-
tion along the channel

[L3]

λ Cleat size distribution index [−]

λm First Lamé parameter of the ma-
trix

[ML−1T−2]

µg Gas viscosity [ML−1T−1]

µw Water viscosity [ML−1T−1]

Ω Volume of the REV [L3]

ωg Gas mass flux in the channel [MT−1]

ωw Water mass flux [MT−1]

Φl Geometric transmissivity of the
channel

[L2]

φ f Porosity from fractures [−]

ρc Coal density [ML−3]

ρg Gas density [ML−3]

ρAd
g Adsorbed gas density [ML−3]

ρd
g Dissolved gas density [ML−3]

ρw Water density [ML−3]

ρg,std Gas density at standard condi-
tions

[ML−3]

σi j Cauchy stress tensor [ML−1T−2]

τ Shear stress [ML−1T−2]

θ Angle [−]
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εi j Strain tensor [−]

εvs Volumetric sorption-induced
strain

[−]

Roman Symbols

[Kmm] Mechanical stiffness matrix [ML−1T−2]

P Point with coordinates xi

T Sorption time [T ]

fgi Internal total flux of gas [ML−2T−1]

fwi Internal total flux of water [ML−2T−1]

Gm Shear modulus of the matrix
blocks

[ML−1T−2]

h Fracture aperture [L]

hb Hydraulic fracture aperture [L]

Hg Henry’s coefficient [−]

Km Bulk modulus of the matrix
blocks

[ML−1T−2]

Kn Normal stiffness of the fracture [ML−2T−2]

K0
n Normal stiffness of the fracture

for zero-displacement
[ML−2T−2]

Ks Shear stiffness of the fracture [ML−2T−2]

krg Relative permeability to gas [−]

krw Relative permeability to water [−]

lREV Size of the REV [L]

Mg Gas mass content [M]

Mw Water mass content [M]

Md
g, f Gas mass dissolved in the water

in the fracture
[M]

Mg
g, f Gas mass from the gas phase in

the fracture
[M]

MAd
g,m Gas mass adsorbed in the matrix [M]

Mmg Gas molecular mass [MN−1]
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pc Capillary pressure [ML−1T−2]

pe Entry capillary pressure [ML−1T−2]

pg Gas pressure [ML−1T−2]

p∗g Virtual gas pressure [ML−1T−2]

p f
g Fluctuation of gas pressure [ML−1T−2]

PL Langmuir’s pressure [ML−1T−2]

pw Water pressure [ML−1T−2]

p∗w Virtual water pressure [ML−1T−2]

p f
w Fluctuation of water pressure [ML−1T−2]

pAd
g Adsorbed gas pressure [ML−1T−2]

qg Gas flux [ML−2T−1]

qw Water flux [ML−2T−1]

R Universal gas constant [ML2N−1θ−1T−2]

s Coordinate along the channel [L]

Sr Saturation degree [−]

S∗r Normalized saturation [−]

Sr,res Residual saturation [−]

T Temperature [θ]

t Time [T ]

ti Traction vector [ML−1T−2]

ui Displacement vector [L]

u f
i Fluctuation displacement field [L]

v∗i Admissible virtual velocity field [LT−1]

VL Langmuir’s volume [L3M−1]

xi Coordinates vector [L]

Superscripts

[.]F Quantity on the follow boundary

[.]L Quantity on the lead boundary
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[.]M Macroscale quantity

[.]m Microscale quantity

˙[.] Time derivative
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