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Abstract

We use graphs where vertices and arrows are attributed with sets of
values, and rules that allow to delete data from a graph, to create new
vertices or arrows, and to include values in attributes. Rules may be
applied simultaneously, yielding a notion of parallelism that generalizes
cellular automata in particular by allowing infinite matchings of rules in
a graph. This is first used to define a notion of sequential independence
of a set M of matchings of rules, even when M is infinite. Next, a notion
of parallel independence of matchings is defined that accounts for the par-
ticular treatment of attributes, and it is proven to characterize sequential
independence. Last, the effective deletion property, a condition that en-
sures that rules can be applied in parallel without conflicts, is proven to
generalize parallel independence.

1 Introduction

The notion of parallel independence has been studied mostly in the algebraic
approach to graph rewriting, see [1] and the references therein. It basically
consists in a condition on concurrent transformations of an object that char-
acterizes the possibility to apply the transformations sequentially in any order
such that all such sequences of transformations yield the same result. When
two transformations are involved this takes the form of the diamond property
and is known as the Local Church-Rosser Problem. Parallel independence then
allows to define critical pairs, a central notion in Term and Graph Rewriting.

This problem should therefore also be considered in algorithmic approaches
to graph rewriting. Indeed, the informal description of parallel independence
given above makes perfect sense out of the algebraic approach; it is purely
operational. Thus parallel independence necessarily depends on the operational
semantics of the rules, that can be defined without resorting to Category Theory.
This is the case of the framework described in [5], where graphs are attributed
by sets of values (see Section 2). This has been designed so that enough space
can always be accommodated for any number of parallel application of rules.
Similarly, new vertices and arrows can always be added.
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But there is a fundamental difference between the two, that lies in the se-
mantics of the rules described in Section 3: vertices and arrows are always added
as new objects, but values are added by inclusion in attributes, where they may
not be new. This is similar to assignments x := y when x and y have the
same value, and is therefore very natural. This is different from E-graphs, an
alternate notion of attributed graphs with any number of values (see [3]), and
is bound to have an impact on parallel independence.

But we are first faced with the same difficulty as in the algebraic approach,
that is to apply transformations meant for the same graph in sequence, hence on
already transformed graphs (except for the one considered first). This is solved
in Section 4 by taking advantage of the parallel transformation defined in [5] and
in Section 3. In Section 5 a definition of parallel independence adapted to this
framework is given, and proven to be correct since it is equivalent to sequential
independence. Finally, Section 6 is devoted to the effective deletion property
from [5], a condition that guarantees that the operational semantics of rules is
preserved when taken in parallel. It is proved that this property generalizes
parallel independence, as it ought to.

2 Attributed Graphs

We consider a fixed many-sorted signature Σ. A graph G is a tuple (V,A, s, t,A, l)
where V,A are sets, A is a Σ-algebra, s, t are the source and target functions
from A to V and l is an attribution of G, i.e., a function from V ∪A to P(bAc)
(the carrier set bAc of A is the disjoint union of the carrier sets of the sorts in
A). We assume that V , A and bAc are mutually disjoint, their elements are
respectively called vertices, arrows and attributes. Hence vertices and arrows
are attributed by sets of elements of a Σ-algebra. G is unlabelled if G̊(x) = ∅
for all x ∈ V ∪A, it is finite if the sets V , A and l(x) are finite. The carrier of G

is the set bGc def
= V ∪A∪ bAc. When we speak of a graph G without specifying

its components, these will be referred to as in G = (Ġ, ~G, Ǵ, G̀,AG, G̊).
A graph H is a subgraph of G, written H C G, if the underlying graph

(Ḣ, ~H, H́, H̀) of H is a subgraph of G’s underlying graph (in the usual sense),

AH = AG and H̊(x) ⊆ G̊(x) for all x ∈ Ḣ ∪ ~H.
A morphism α from graph H to graph G is a function from bHc to bGc such

that the restriction of α to Ḣ ∪ ~H is a morphism from H’s to G’s underlying
graphs (that is, Ǵ ◦ α = α ◦ H́ and G̀ ◦ α = α ◦ H̀, this restriction of α is
called the underlying graph morphism of α), the restriction of α to bAHc is a
Σ-homomorphism from AH to AG, denoted α̊, and α̊ ◦ H̊(x) ⊆ G̊ ◦ α(x) for all

x ∈ Ḣ ∪ ~H. This means that α is an isomorphism if and only if α is a bijective
morphism and α−1 is a morphism, hence if and only if the underlying graph
morphism of α is an isomorphism, α̊ is a Σ-isomorphism and α̊ ◦ H̊ = G̊ ◦ α.
For all F C H, the image α(F ) is the smallest subgraph of G w.r.t. the order
C such that α|bFc is a morphism from F to α(F ).

If the underlying graph morphism of α is injective then α is called a matching.
Note that the Σ-homomorphism α̊ need not be injective.

Given two attributions l and l′ of G we define l \ l′ (resp. l ∩ l′, l ∪ l′) as the
attribution of G that maps any x to l(x)\l′(x) (resp. l(x)∩l′(x), l(x)∪l′(x)). If l
is an attribution of a subgraph H C G, we extend it implicitly to the attribution
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of G that is identical to l on Ḣ ∪ ~H and maps any other entry to ∅.
For any sets V , A and attribution l, we say that G is disjoint from V,A, l

if Ġ ∩ V = ∅, ~G ∩ A = ∅ and G̊(x) ∩ l(x) = ∅ for all x ∈ Ġ ∪ ~G. We write
G \ [V,A, l] for the largest subgraph of G (w.r.t. C) that is disjoint from G. It
is easy to see that this subgraph always exists.

In order to define parallel rewrite relations on graphs, it is convenient to join
possibly many different graphs that have a common part, i.e., that are joinable.
We start with a simpler notion of joinable functions.

Definition 2.1 (joinable functions). Two functions f : D → C and g : D′ → C ′

are joinable if f(x) = g(x) for all x ∈ D ∩D′. Then, the meet of f and g is the
function ffg : D∩D′ → C∩C ′ that is the restriction of f (or g) to D∩D′. The
join f g g is the unique function from D∪D′ to C ∪C ′ such that f = (f g g)|D
and g = (f g g)|D′ .

For any set I and any I-indexed family (fi : Di → Ci)i∈I of pairwise joinable
functions, let gi∈Ifi be the only function from

⋃
i∈I Di to

⋃
i∈I Ci such that

fi =
(
gi∈I fi

)
|Di

for all i ∈ I.

In particular, functions with disjoint domains are joinable, and every func-
tion is joinable with itself: f g f = f f f = f . More generally, any two
restrictions f |A and f |B of the same function f are joinable, f |Aff |B = f |A∩B
and f |A g f |B = f |A∪B .

It is obvious that these operations are commutative. On triples of pairwise
joinable functions, they are also associative and distributive over each other.

Definition 2.2 (joinable graphs). Two graphs H and G are joinable if AH =

AG, Ḣ ∩ ~G = ~H ∩ Ġ = ∅, and the functions H́ and Ǵ (and similarly H̀ and G̀)
are joinable. We can then define the graphs

H uG def
= ( Ḣ ∩ Ġ, ~H ∩ ~G, H́ f Ǵ, H̀ f G̀, AH , H̊ ∩ G̊ ),

H tG def
= ( Ḣ ∪ Ġ, ~H ∪ ~G, H́ g Ǵ, H̀ g G̀, AH , H̊ ∪ G̊ ).

Similarly, if (Gi)i∈I is an I-indexed family of graphs (where I 6= ∅) that are
pairwise joinable, hence have the same algebra A of attributes, then let⊔

i∈I
Gi

def
= (

⋃
i∈I

Ġi,
⋃
i∈I

~Gi, gi∈IǴi, gi∈IG̀i, A,
⋃
i∈I

G̊i ).

It is easy to see that these structures are graphs: the sets of vertices and
arrows are disjoint and the adjacency functions have the correct domains and
codomains. Note that if H and G are joinable then H u G = G u H C H C
H tG = G tH. Similarly, if the Gi’s are pairwise joinable then Gj C

⊔
i∈I Gi

for all j ∈ I. We also see that any two subgraphs of G are joinable, and that
H C G iff H uG = H iff H tG = G. As above, on triples of pairwise joinable
graphs, these operations are associative and distributive over each other.

3 Applying Rules in Parallel

In the following, we assume a set V disjoint from Σ, whose elements are called
variables. For any finite X ⊆ V , we call (Σ, X)-graph a finite graph G such that
AG = T (Σ,X) (the algebra of Σ-terms over X). We define the set of variables
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occurring in a (Σ, X)-graph G as Var(G)
def
=
⋃
x∈Ġ∪~G

(⋃
t∈G̊(x) Var(t)

)
, where

Var(t) is the set of variables occurring in t.

Definition 3.1 (rules, matchings). A rule r is a triple (L,K,R) of (Σ, X)-
graphs such that L and R are joinable, L u R C K C L and Var(L) = X (see
comment below).

A matching µ of r in a graph G is a matching from L to G such that µ̊(L̊(x)\
K̊(x))∩ µ̊(K̊(x)) = ∅ (or equivalently µ̊(L̊(x) \ K̊(x)) = µ̊(L̊(x)) \ µ̊(K̊(x))) for

all x ∈ K̇ ∪ ~K. We denote M (r,G) the set of all matchings of r in G (they all
have domain bLc).

We consider finite sets R of rules such that for all r, r′ ∈ R, if (L,K,R) =
r 6= r′ = (L′,K ′, R′) then bLc 6= bL′c, so that M (r,G) ∩M (r′, G) = ∅ for any
graph G; we then write M (R, G) for

⊎
r∈RM (r,G). For any µ ∈ M (R, G)

there is a unique rule rµ ∈ R such that µ ∈M (rµ, G), and its components are
denoted rµ = (Lµ,Kµ,Rµ).

Comment: if X were allowed to contain a variable v not occurring in L, then
v would freely match any element of AG and the set M (r,G) would contain
as many matchings with essentially the same effect. Also note that Var(R) ⊆
Var(L), R and K are joinable and RuK = LuR. The fact that K is not required
to be a subgraph of R allows the possible deletion by other rules of data matched
by K but not by R. This feature enables a straightforward representation of
cellular automata (see [4]).

A rewrite step may involve the creation of new vertices in a graph, corre-
sponding to the vertices of a rule that have no match in the input graph, i.e.,
those in Ṙ \ L̇ (or similarly may create new arrows). These vertices should re-
ally be new, not only different from the vertices of the original graph but also
different from the vertices created by other transformations (corresponding to
other matchings in the graph). This is computationally easy to do but not that
easy to formalize in an abstract way. We simply reuse the vertices x from Ṙ \ L̇
by indexing them with any relevant matching µ, each time yielding a new ver-
tex (x, µ) which is obviously different from any new vertex (x, ν) for any other
matching ν 6= µ, and also from any vertex of G.

Definition 3.2 (graph G↑µ and matching µ↑). For any rule r = (L,K,R), graph

G and µ ∈M (r,G) we define a graph G↑µ together with a matching µ↑ of R in

G↑µ. We first define the sets

Ġ↑µ
def
= µ(Ṙ ∩ K̇) ] ((Ṙ \ K̇)× {µ}) and ~G↑µ

def
= µ(~R ∩ ~K) ] ((~R \ ~K)× {µ}).

Next we define µ↑ by: µ̊↑ def
= µ̊ and for all x ∈ Ṙ ∪ ~R, if x ∈ K̇ ∪ ~K then

µ↑(x)
def
= µ(x) else µ↑(x)

def
= (x, µ). Since the restriction of µ↑ to Ṙ ∪ ~R is

bijective, then µ↑ is a matching from R to the graph

G↑µ
def
= ( Ġ↑µ,

~G↑µ, µ↑ ◦ Ŕ ◦ µ↑
−1, µ↑ ◦ R̀ ◦ µ↑−1, AG, µ̊↑ ◦ R̊ ◦ µ↑−1 ).

By construction µ↑(R) = G↑µ, µ and µ↑ are joinable and µfµ↑ is a matching

from R uK to µ(R uK). It is easy to see that the graph G and the graphs G↑µ
are pairwise joinable.

For any set M ⊆M (R, G) of matchings in a graph G we define below how
to transform G by applying simultaneously the rules associated with matches
in M .
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Definition 3.3 (graph G‖M ). For any graph G, set M ⊆M (R, G) and match-
ing µ ∈M (R, G), let

G‖M
def
= G \ [VM ,AM , `M ] t

⊔
µ∈M

G↑µ where

VM
def
=
⋃
µ∈M

µ(L̇µ\K̇µ), AM
def
=
⋃
µ∈M

µ(~Lµ\~Kµ) and `M
def
=
⋃
µ∈M

µ̊◦(̊Lµ\K̊µ)◦µ−1.

If M is a singleton {µ} we write G‖µ for G‖M , Vµ for VM , etc.

Note that `M is only defined on the subgraph
⊔
µ∈M µ(Lµ) of G; so `M is

implicitly extended to Ġ∪ ~G by mapping other vertices and arrows to ∅. G‖M
is guaranteed to be a graph since the t operation is only applied on joinable
graphs. Every morphism µ↑ is a matching from the right hand side Rµ to G‖M .

The definition of G‖M bears some similarity with the double pushout dia-
gram (see [3]), where G \ [V,A, l] replaces the pushout complement of G (but
we are not restricted by the gluing condition) and

⊔
µ∈M G↑µ replaces the right

pushout. The case where M is a singleton defines the classical semantics of one
sequential rewrite step.

Definition 3.4 (sequential rewriting). For any finite set of rules R, we define
the relation→R of sequential rewriting by stating that, for all graphs G and H,

G→R H iff there exists some µ ∈M (R, G) such that H ' G‖µ.

4 Sequential Independence

In the Double-Pushout approach to graph rewriting (see [3]), sequential inde-
pendence is a property of two consecutive direct transformations, formulated as
the existence of two commuting morphisms j1 and j2 as shown below.

L2 K2 R2

H1 D2 H2

µ2

R1K1L1

D1G

µ1 j1j2

It is then proven by the Local Church-Rosser Theorem that the two production
rules can be applied in reverse order to G and yield the same result H2 (we may
call this the swapping property). Of course, the matchings µ1 and µ2 are then
replaced by other matchings that are related to µ1 and µ2. A drawback of this
definition is that it does not account for longer sequences of direct transforma-
tions. Indeed, if three consecutive steps are given by (µ1, µ2, µ3), it is possible to
swap µ1 with µ2 if they are sequential independent, and similarly for µ2 and µ3,
but this does not imply that µ1 and µ3 can be swapped under these hypotheses
(because the matchings, and hence the direct transformations, are modified by
the swapping operations). We would need to express sequential independence
between µ1 and µ3, but the definition does not apply since they are not consec-
utive steps. More elaborate notions of equivalence between sequences of direct
transformations are thus required (see [2]).
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Because of the specificities of our framework (no pushouts, horizontal mor-
phisms are only canonical injections, and we do not have such a morphism from
K to R) we need a different definition of sequential independence. It is natural
to think of the swapping property as the definition, but we are faced with an-
other problem. We are dealing with possibly infinite sets of matchings of rules
in a graph, and we cannot form a notion of infinite sequences of rewrite steps
(because each step may both remove and add data). Yet we do not wish to
restrict the notion to finite sets, not simply for the sake of generality but also
because it is closely related to parallel independence, a notion that can naturally
be defined on infinite sets (see below).

We may however use Definition 3.3 to handle infinite sets of matchings, and
thus express sequential independence as the possibility to apply any rule after
the others (and these can be applied in parallel), yielding the same result as
a parallel transformation with the whole set of matchings. Yet this definition
would not imply that subsets of a sequential independent set are sequential
independent, hence it needs to be stated for all subsets.

Definition 4.1. For any graph G and set M ⊆ M (R, G), we say that M is
sequential independent if for all M ′ ⊆M and all µ ∈M \M ′,

• µ(Lµ) C G‖M ′ , hence there is a is canonical injection j from µ(Lµ) to
G‖M ′ ,

• there exists an isomorphism α such that α(G‖M ′∪{µ}) =
(
G‖M ′

)
‖j◦µ and

α is the identity on G.

The isomorphism α in Definition 4.1 is necessary to account for the difference
between the isomorphic graphs µ↑(Rµ) and (j ◦ µ)↑(Rµ).

It is then easy to see (by induction on the cardinality of M) that

Proposition 4.1. For any graph G and finite set M ⊆ M (R, G), if M is
sequential independent then

G→?
R G‖M .

The converse is obviously not true; one reason is that sequences of rewrite
steps cannot generally be swapped.

5 Parallel Independence

In the Double-Pushout approach, parallel independence is a property of two
direct transformations of the same object G, formulated as the existence of two
commuting morphisms j1 and j2 as shown below.

L2 K2 R2

G D2 H2

µ2

L1K1R1

D1H1

µ1
j1j2

This definition can easily be lifted to sets of matchings (or direct transfor-
mations) by considering all possible pairs of matchings, with a slight caveat. In
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this definition the two direct transformations may be identical, thus stating a
property of a single transformation that is clearly not shared by all. But Defi-
nition 3.3 does not allow to apply any member µ of M more than once (because
applying µ any number of times in parallel would jeopardize determinism). For
this reason any singleton M shall be considered as parallel independent.

The Local Church-Rosser Theorem mentioned above actually shows that µ1

and µ2 are parallel independent iff they correspond to a sequential independent
pair (µ1, µ

′
2), where µ2 and µ′2 are related. It is the symmetry between µ1

and µ2 that entails the swapping property. This is remarquable since parallel
independence does not refer to the results of the direct transformations involved.

Our goal is therefore to formulate parallel independence in the present frame-
work, in order to obtain an equivalence similar to the Local Church-Rosser
Theorem. Considering that the pushout complement D1 is replaced by the
graph G \ [Vµ1

,Aµ1
, `µ1

], the commuting property of j2 amounts to µ2(L2) C
G \ [Vµ1 ,Aµ1 , `µ1 ], that can be more elegantly expressed as µ2(L2) u µ1(L1) C
µ1(K1). This simply means that any graph item that is matched twice cannot
be removed.

However, our treatment of attributes makes it possible to recover in the
right hand side an attribute that has been deleted in the left hand side (this is
of course not possible for vertices or arrows). This possibility should therefore
be accounted for in the notion of parallel independence, i.e., an attribute that
is matched twice may be deleted provided it is recovered. We also need to
consider what it means for an attribute to be matched: it may be the case
that an (occurrence of an) attribute is matched by ν↑ but not by ν (i.e., it
corresponds to an occurrence of a term in the right hand side of a rule but to
none in the left hand side). This leads to the following definition.

Definition 5.1. For any graph G and set M ⊆ M (R, G), we say that M is
parallel independent if

µ(Lµ) u (ν(Lν) t ν↑(Rν)) C µ(Kµ) t µ↑(Rµ) for all µ, ν ∈M such that µ 6= ν.

This definition may seem strange, but it is easy to see that on unlabelled
graphs it amounts to ν(Lν) u µ(Lµ) C µ(Kµ) for all µ 6= ν, i.e., to the standard
algebraic notion of parallel independence (translated to the present framework).
But the best justification for the definition is the following result.

Theorem 5.1. For any graph G and set M ⊆ M (R, G), M is parallel inde-
pendent iff M is sequential independent.

Thus Definition 5.1 arises as a characterization of sequential independence
that does not refer to the results of the transformations, and indeed that does
not rely on Definition 3.3, though of course it does rely on Definitions 2.2, 3.1
and 3.2.

6 The Effective Deletion Property

We have not yet defined a relation of parallel rewriting as we did for sequential
rewriting (Definition 3.4). The reason is that two matchings may conflict as
one retains (in R u K) what another removes. The transformation offered by
Definition 3.3 performs deletions before unions, which means that these conflicts

7



are resolved by giving priority to retainers over removers. But if the deletion
actions of a rule are not executed in a parallel transformation, how can we claim
that this rule has been executed (or applied) in parallel with others? Thus, in
order to define parallel rewriting with a clear semantics we need to rule out such
conflicts.

One possibility is to translate to the present framework the notion of paral-
lel coherence that has been devised in order to define algebraic parallel graph
transformation (see [4]). This is is a property of two direct transformations of
the same object G, formulated as the existence of two commuting morphisms
j1 and j2 as shown below.

L2 K2 I2 R2

G D2 H2

µ2

L1K1I1R1

D1H1

µ1j1 j2

This notion clearly generalizes algebraic parallel independence. In the present
framework the object I2 is replaced by the graph K2uR2, hence the commuting
property of j2 amounts to µ2(K2 u R2) C G \ [Vµ1 ,Aµ1 , `µ1 ], that can be ex-
pressed as µ2(K2 uR2) u µ1(L1) C µ1(K1). This simply means that any graph
item that is matched by some K uR cannot be removed by any rule.

Definition 6.1. For any graph G and set M ⊆ M (R, G), we say that M is
parallel coherent if

µ(Lµ) u ν(Kν u Rν) C µ(Kµ) for all µ, ν ∈M.

The problem here as above is that deleted attributes can be recovered by
the right hand side of rules, and that this possibility is not accounted for in the
algebraic definitions, since these do not distinguish between graph items and
attributes. This leads to the following definition (see [5]).

Definition 6.2 (effective deletion property, full parallel rewriting). For any
graph G, a set M ⊆M (R, G) is said to satisfy the effective deletion property if

G‖M is disjoint from VM ,AM , `M \ ` ↑M , where

` ↑M
def
=
⋃
µ∈M

µ̊ ◦ (R̊µ \ K̊µ) ◦ µ−1.

For any finite set of rules R, we define the relation ⇒R of full parallel
rewriting by stating that, for all graphs G and H,

G⇒R H iff M (R, G) has the effective deletion property and H ' G‖M (R,G).

It can be shown that ⇒R is deterministic up to isomorphism, that is, if
G ⇒R H, G′ ⇒R H ′ and G ' G′ then H ' H ′. In particular, it is possible
to represent any cellular automata by a suitable rule r and a class of graphs
that correspond to configurations of the automata (every vertex corresponds to
a cell), such that ⇒r (restricted to such graphs) is the transition function.
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This representation of cellular automata satisfies the effective deletion prop-
erty, but it also satisfies parallel coherence. Hence Definition 6.2 may appear
as a weird choice. One motivation behind the present work is to support this
definition.

Our first argument in favor of Definition 6.2 is that parallel coherence is not
sufficient because it does not generalize parallel independence, as shown by the
following example.

Example 6.1. Let us consider rules r1 = (L1,K1, R1) and r2 = (L2,K2, R2)
where the graphs L1, K1 and R1 have only one vertex x, the graphs L2, K2

and R2 have only one vertex y, and the attributes are as pictured below (u, v
are variables and f is a unary function symbol). Let AG be the algebra with
carrier set {1} where f is interpreted as the constant function 1, and let G be
the graph that has a unique vertex a with attribute {1}.

1

u f(u)

v f(v)

{u} = L̊1(x) = K̊1(x) R̊1(x) = {u, f(u)}

G̊(a) = {1}

{v} = L̊2(y)

K̊2(y) = ∅

R̊2(y) = {f(v)}

µ̊1 µ̊1

µ̊2 µ̊2

There are exactly two matchings of {r1, r2} in G: µ1 and µ2 defined by
µ1(x) = a, µ̊1(u) = 1, µ2(y) = a and µ̊2(v) = 1. Let M = {µ1, µ2}, we see that
M is not parallel coherent since µ1(R1 uK1)uµ2(L2) = G is not a subgraph of
µ2(K2). However, we see that M is sequential independent since the matchings
can be applied sequentially in any order, yielding the same graph G.

Our second argument is that the effective deletion property is sufficient be-
cause it does generalize both parallel coherence and parallel independence.

Theorem 6.2. For any graph G and set M ⊆M (R, G) if M is parallel inde-
pendent or parallel coherent then M has the effective deletion property.

Hence effective deletion encompasses both a general algebraic notion trans-
lated to the present (non algebraic) framework, and a notion specific to this
framework but that relies on an objective fact, that is Theorem 5.1. This does
not mean that no other property is possible (especially a less general one) and
that Definition 6.2 cannot be questioned. It is still a matter of choice, but there
is evidence that this is a reasonable one.

We also see that

Corollary. If M (R, G) is finite and parallel independent then G→?
R G‖M and

G⇒R G‖M .

Hence in this case full parallel rewriting deterministically chooses one among
the graphs reachable from G by sequential rewriting.
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Heckel & Michael Löwe (1997): Algebraic Approaches to Graph Transforma-
tion - Part I: Basic Concepts and Double Pushout Approach. In Grzegorz
Rozenberg, editor: Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations, World Scientific, pp. 163–246.

[3] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange & Gabriele Taentzer (2006):
Fundamentals of Algebraic Graph Transformation. Monographs in Theoret-
ical Computer Science. An EATCS Series, Springer.

[4] Thierry Boy de la Tour & Rachid Echahed (2019): True Parallel Graph
Transformations: an Algebraic Approach Based on Weak Spans. CoRR
(abs/1904.08850).

[5] Thierry Boy de la Tour & Rachid Echahed (2020): Combining Parallel Graph
Rewriting and Quotient Graphs. In: 13th International Workshop on Rewrit-
ing Logic and its Applications, LNCS, Springer, to appear.

10



Appendix: Proofs

Lemma 6.3. For every rule r = (L,K,R), graph G and µ ∈ M (r,G), the
graphs G and G↑µ are joinable, µ(R uK) C G u G↑µ and G u G↑µ has the same
underlying graph as µ(R uK).

Proof. It is obvious that Ġ∩ ~G↑µ = ~G∩ Ġ↑µ = ∅ and ~G∩ ~G↑µ = µ(~R∩ ~K), hence

for all g ∈ ~G ∩ ~G↑µ there is a f ∈ ~R ∩ ~K such that g = µ(f) = µ↑(f), hence

Ǵ↑µ(g) = Ǵ↑µ ◦ µ↑(f) = µ↑ ◦ Ŕ(f) = µ ◦ Ḱ(f) = Ǵ ◦ µ(f) = Ǵ(g)

so that Ǵ↑µ and Ǵ are joinable and similarly for G̀↑µ and G̀, hence G↑µ and G are
joinable.

We have µ(R uK) C µ(K) C G and

µ(R uK) = µ↑(R uK) C µ↑(R) = G↑µ,

hence µ(R uK) C GuG↑µ. Besides, for all y ∈ Ġ∩ Ġ↑µ = µ(Ṙ ∩ K̇) there exists

a x ∈ Ṙ ∩ K̇ such that µ(x) = y, hence Ġ ∩ Ġ↑µ ⊆ µ(Ṙ ∩ K̇) and similarly
~G ∩ ~G↑µ ⊆ µ(~R ∩ ~K), hence the graphs G u G↑µ and µ(R u K) have the same
underlying graph.

Lemma 6.4. For all I-indexed families (Gi)i∈I of pairwise joinable graphs, for
all sets V , A and all attributions l,(⊔

i∈I
Gi

)
\ [V,A, l] =

⊔
i∈I

Gi \ [V,A, l].

Proof. Since Gj C
⊔
i∈I Gi for all j ∈ I then Gj \ [V,A, l] C

(⊔
i∈I Gi

)
\ [V,A, l],

hence
⊔
j∈I Gj \ [V,A, l] C

(⊔
i∈I Gi

)
\ [V,A, l].

Conversely, let H C
⊔
i∈I Gi such that H is disjoint from V , A, l. For all

f ∈ ~H and all a ∈ H̊(x) there exists an i ∈ I such that f ∈ ~Gi and a ∈ G̊i(f).
Let x = H́(f) and y = H̀(f), so that f is an arrow from x to y. Obviously f 6∈ A,
x, y 6∈ V and a 6∈ l(f). Since x, y ∈ Ġi, then the graph with vertices x, y with
attributes ∅ and arrow f with attribute {a} is a subgraph of Gi disjoint from
V , A, l, hence is a subgraph of Gi \ [V,A, l] and therefore of

⊔
j∈I Gj \ [V,A, l].

Similarly, for all x ∈ Ḣ and all a ∈ H̊(x) the graph with vertex x attributed by
{a} is a subgraph of

⊔
j∈I Gj \ [V,A, l]. Since H is the union of all such graphs

then H C
⊔
j∈I Gj \ [V,A, l], and this holds for H =

(⊔
i∈I Gi

)
\ [V,A, l].

Proof of Theorem 6.2. Let H = G‖M . We first assume that M is parallel co-

herent. Since VM ⊆ Ġ then by Lemma 6.3 we have

Ḣ ∩VM =
⋃
ν∈M

ν(Ṙν ∩ K̇ν) ∩VM

=
⋃

µ,ν∈M
ν(Ṙν ∩ K̇ν) ∩ µ(L̇µ) \ µ(K̇µ)

⊆
⋃

µ6=ν∈M

ν(L̇ν) ∩ µ(L̇µ) \ µ(K̇µ),
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since ν(Ṙν ∩ K̇ν) ⊆ ν(K̇ν) ⊆ ν(L̇ν).
Since M is parallel independent then µ(Lµ) u (ν(Lν) t G↑ν) C µ(Kµ) t G↑µ

for all µ 6= ν, hence µ(Lµ)u ν(Lν) C µ(Kµ)t (G↑µ uG) and again by Lemma 6.3

µ(L̇µ)∩ν(L̇ν) ⊆ µ(K̇µ)∪µ(Ṙµ∩K̇µ) = µ(K̇µ). Hence Ḣ∩VM = ∅ and similarly
~H ∩AM = ∅.

In order to prove that H is disjoint from VM , AM , `M \ ` ↑M , there only

remains to prove that H̊(x) ∩ `M (x) \ ` ↑M (x) = ∅ for all x ∈ Ḣ ∪ ~H. This is

true if x 6∈ Ġ ∪ ~G since then `M (x) = ∅, hence we assume that x ∈ Ġ ∪ ~G, so
that H̊(x) ∩ `M (x) =

⋃
µ∈M G̊↑µ ∩ `M (x) =

⋃
µ∈M µ̊ ◦ R̊µ ◦ µ−1(x) ∩ `M (x) and

we need to prove that µ̊ ◦ R̊µ ◦ µ−1(x) ∩ `M (x) \ ` ↑M (x) = ∅ for all µ ∈ M , or
equivalently⋃

ν∈M
µ̊ ◦ R̊µ ◦ µ−1(x) ∩ ν̊ ◦ L̊ν ◦ ν−1(x) \ ν̊ ◦ K̊ν ◦ ν−1(x) ⊆ ` ↑M (x).

We first see that for any sets A and B we have µ̊(A) \ µ̊(A∩B) ⊆ µ̊(A \B),
hence

µ̊ ◦ R̊µ ◦ µ−1(x) \ µ̊ ◦ (R̊µ ∩ K̊µ) ◦ µ−1(x) ⊆ µ̊ ◦ (R̊µ \ K̊µ) ◦ µ−1(x) ⊆ ` ↑M (x).

Next, for all ν ∈M such that ν 6= µ, since M is parallel independent then

µ̊ ◦ (R̊µ ∩ K̊µ) ◦ µ−1(x) ∩ ν̊ ◦ L̊ν ◦ ν−1(x)

⊆ µ̊ ◦ L̊µ ◦ µ−1(x) ∩ ν̊ ◦ L̊ν ◦ ν−1(x)

⊆ ν̊ ◦ K̊ν ◦ ν−1(x) ∪ ν̊ ◦ R̊ν ◦ ν−1(x)

⊆ ν̊ ◦ K̊ν ◦ ν−1(x) ∪ ν̊ ◦ (R̊ν \ K̊ν) ◦ ν−1(x)

⊆ ν̊ ◦ K̊ν ◦ ν−1(x) ∪ ` ↑M (x).

Then, we use the fact that A = (A ∩B) ∪ (A \B) to deduce that

µ̊ ◦ R̊µ ◦ µ−1(x) ∩ ν̊ ◦ L̊ν ◦ ν−1(x)

=
(
µ̊ ◦ (R̊µ ∩ K̊µ) ◦ µ−1(x) ∩ ν̊ ◦ L̊ν ◦ ν−1(x)

)
∪
(
ν̊ ◦ L̊ν ◦ ν−1(x) ∩ µ̊ ◦ R̊µ ◦ µ−1(x) \ µ̊ ◦ (R̊µ ∩ K̊µ) ◦ µ−1(x)

)
⊆
(
ν̊ ◦ K̊ν ◦ ν−1(x) ∪ ` ↑M (x)

)
∪
(
µ̊ ◦ R̊µ ◦ µ−1(x) \ µ̊ ◦ (R̊µ ∩ K̊µ) ◦ µ−1(x)

)
⊆ ν̊ ◦ K̊ν ◦ ν−1(x) ∪ ` ↑M (x).

We notice that this is also true when ν = µ since Lµ u Rµ C Kµ, hence

µ̊ ◦ R̊µ ◦ µ−1(x) ∩ ν̊ ◦ L̊ν ◦ ν−1(x) \ ν̊ ◦ K̊ν ◦ ν−1(x) ⊆ ` ↑M (x)

for all ν ∈M .
We now assume that M is parallel coherent. As above

Ḣ ∩VM =
⋃

µ,ν∈M
ν(Ṙν ∩ K̇ν) ∩ (µ(L̇µ) \ µ(K̇µ))

= ∅
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since by parallel coherence ν(Ṙν ∩ K̇ν) ∩ µ(L̇µ) ⊆ µ(K̇µ) for all µ, ν ∈ M .

Similarly ~H ∩AM = ∅.
For all x ∈ Ḣ ∪ ~H, if x 6∈ Ġ ∪ ~G then `M (x) = ∅ and obviously H̊(x) ∩

(`M (x) \ ` ↑M (x)) = ∅. Otherwise x ∈ Ġ ∪ ~G hence ν↑−1(x) = ν−1(x) so that

H̊(x) = (G̊(x) \ `M (x)) ∪
⋃
ν∈M

ν̊ ◦ R̊ν ◦ ν−1(x),

but by parallel coherence ν̊◦(R̊ν∩K̊ν)◦ν−1(x)∩µ̊◦L̊µ◦µ−1(x) ⊆ µ̊◦K̊µ◦µ−1(x)
for all µ, ν ∈M , hence

ν̊◦(R̊ν∩K̊ν)◦ν−1(x)∩`M (x) =
⋃
µ∈M

ν̊◦(R̊ν∩K̊ν)◦ν−1(x)∩µ̊◦(̊Lµ\K̊µ)◦µ−1(x) = ∅

and therefore

H̊(x) ∩ `M (x) =
⋃
ν∈M

ν̊ ◦ R̊ν ◦ ν−1(x) ∩ `M (x)

=
⋃
ν∈M

((
ν̊ ◦ R̊ν ◦ ν−1(x)

)
\
(
ν̊ ◦ (R̊ν ∩ K̊ν) ◦ ν−1(x)

))
∩ `M (x).

⊆
⋃
ν∈M

ν̊ ◦ (R̊ν \ K̊ν) ◦ ν−1(x) ∩ `M (x)

⊆ ` ↑M (x)

hence again H̊(x)∩ (`M (x)\ ` ↑M (x)) = ∅. M therefore has the effective deletion
property.

Proof of Theorem 5.1. Only if part. For all M ′ ⊆ M and µ ∈ M \ M ′, let
R =

⊔
ν∈M ′ G↑ν so that G‖M ′ = G\ [VM ′ ,AM ′ , `M ′ ]tR. For all ν ∈M ′ we have

µ(Lµ) u ν(Lν) C ν(Kν) tG↑ν and µ(Lµ) u ν(Lν) C G, hence by Lemma 6.3

µ(L̇µ) ∩ ν(L̇ν) ⊆ ν(K̇ν) ∪ ν(Ṙν ∩ K̇ν) = ν(K̇ν)

or equivalently µ(L̇µ) ∩ ν(L̇ν) \ ν(K̇ν) = ∅. Thus

µ(L̇µ) ∩VM ′ =
⋃
ν∈M ′

µ(L̇µ) ∩ ν(L̇ν) \ ν(K̇ν) = ∅

and therefore µ(L̇µ) ⊆ Ġ‖M ′ . Similarly we get µ(~Lµ) ⊆ ~G‖M ′ . Then, for all

x ∈ µ(L̇µ) ∪ µ(~Lµ), we have

µ̊ ◦ L̊µ ◦ µ−1(x) ∩ ν̊ ◦ L̊ν ◦ ν−1(x) ⊆ ν̊ ◦ K̊ν ◦ ν−1(x) ∪ G̊↑ν(x)

hence

µ̊ ◦ L̊µ ◦ µ−1(x) ∩ ν̊ ◦ L̊ν ◦ ν−1(x) \ ν̊ ◦ K̊ν ◦ ν−1(x) ⊆ G̊↑ν(x) ⊆ R̊(x).

Thus

µ̊◦L̊µ◦µ−1(x)∩`M ′(x) =
⋃
ν∈M ′

µ̊◦L̊µ◦µ−1(x)∩ν̊◦L̊ν◦ν−1(x)\ν̊◦K̊ν◦ν−1(x) ⊆ R̊(x)
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and then

µ̊ ◦ L̊µ ◦ µ−1(x) ⊆ µ̊ ◦ L̊µ ◦ µ−1(x) \ `M ′(x) ∪ R̊(x) ⊆ G̊‖M ′ .

Therefore, µ(Lµ) C G‖M ′ .
Let j be the canonical injection from µ(Lµ) to G‖M ′ and µ′ = j ◦ µ, so

that µ′ ∈M (rµ, G‖M ′), µ′(Lµ) = µ(Lµ) and µ′(Kµ) = µ(Kµ), hence Vµ′ = Vµ,
Aµ′ = Aµ and `µ′ = `µ. Let H = G t R t µ↑(Rµ) and H ′ = G t R t µ′↑(Rµ).

Note that G‖M ′∪{µ} C H, and also that Rµ′ = Rµ hence µ′↑(Rµ) = (G‖M ′)
↑
µ′

and (using Lemma 6.4)

(G‖M ′)‖µ′ =
(
G \ [VM ′ ,AM ′ , `M ′ ] t

⊔
ν∈M ′

G↑ν
)
\ [Vµ′ ,Aµ′ , `µ′ ] t µ′↑(Rµ)

= G \ [VM ,AM , `M ] t
⊔
ν∈M ′

G↑ν \ [Vµ,Aµ, `µ] t µ′↑(Rµ)

C H ′.

By Theorem 6.2 M has the effective deletion property, i.e., G‖M is disjoint

from VM , AM , `M \ ` ↑M hence in particular G↑ν is disjoint from Vµ, Aµ, `µ \ ` ↑M
for all ν ∈M ′, so that

G↑ν \ [Vµ,Aµ, `µ] = G↑ν \ [Vµ \Vµ,Aµ \Aµ, `µ \ (`µ \ ` ↑M )] = G↑ν \ [∅,∅, `µ ∩ ` ↑M ].

For all x ∈ Ġ↑ν ∪ ~G↑ν , if x 6∈ Ġ ∪ ~G then `µ(x) = ∅, otherwise G̊↑µ(x) =

µ̊ ◦ R̊µ ◦ µ−1(x) = µ̊′ ◦ R̊µ′ ◦ µ′−1(x). Since µ(Lµ) uG↑ν C µ(Kµ) tG↑µ we have

G̊↑ν(x) ∩ µ̊ ◦ L̊µ ◦ µ−1(x) ⊆ µ̊ ◦ K̊µ ◦ µ−1(x) ∪ G̊↑µ(x)

or equivalently G̊↑ν(x) ∩ `µ(x) ⊆ G̊↑µ(x), and we therefore have

G̊↑ν(x) ∩ `µ(x) ∩ ` ↑M (x) ⊆ µ̊′ ◦ R̊µ′ ◦ µ′−1(x).

We thus see that G↑ν \ [Vµ,Aµ, `µ] has all the vertices and arrows of G↑ν , and
the attributes that are removed are all in the graph µ′↑(Rµ), hence

G↑ν \ [Vµ,Aµ, `µ] t µ′↑(Rµ) = G↑ν t µ′↑(Rµ)

and therefore (G‖M ′)‖µ′ = G \ [VM ,AM , `M ] t R t µ′↑(Rµ). It is then easy to

build an isomorphism α : H → H ′ such that α(G‖M ′∪{µ}) =
(
G‖M ′

)
‖µ′ and

α|bGc = 1G.

If part. For all µ, ν ∈ M such that µ 6= ν, we have ν(Lν) C G‖µ = G \
[Vµ,Aµ, `µ] tG↑µ. Since µ(Kµ) C µ(Lµ) C G, then

ν(Lν) u µ(Lµ) C G‖µ u µ(Lµ) = µ(Lµ) \ [Vµ,Aµ, `µ] t (G↑µ u µ(Lµ))

= µ(Kµ) t (G↑µ u µ(Lµ))

C µ(Kµ) tG↑µ.

Besides, there is an isomorphism α such that α(G‖M ) =
(
G‖ν

)
‖µ′ and

α|bGc = 1G, where M = {µ, ν} and µ′ = j ◦ µ ∈M (rµ, G‖M ′), hence Vµ′ = Vµ,
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Aµ′ = Aµ and `µ′ = `µ. Let H = G‖M u µ(Lµ) and H ′ =
(
G‖ν

)
‖µ′ u µ(Lµ),

since µ(Lµ) C G then H = H ′. We see that

H = µ(Kµ) \ [Vν ,Aν , `ν ] t (G↑ν u µ(Lµ)) t (G↑µ u µ(Lµ))

and similarly (using Lemma 6.4) that

H ′ = µ(Kµ) \ [Vν ,Aν , `ν ] t (G↑ν \ [Vµ,Aµ, `µ] u µ(Lµ)) t (µ′↑(Rµ) u µ(Lµ))

= µ(Kµ) \ [Vν ,Aν , `ν ] t (G↑ν u µ(Kµ)) t (µ′↑(Rµ) u µ(Lµ)).

We therefore have Ḣ = Ḣ ′. By Lemma 6.3 we have Ġ↑ν ∩ µ(L̇µ) = ν(Ṙν ∩
K̇ν)∩ µ(L̇µ) and µ′↑(Ṙµ)∩ µ(L̇µ) = Ġ↑µ ∩ µ(L̇µ) = µ(Ṙµ ∩ K̇µ) ⊆ µ(K̇µ). Hence

Ḣ ′\µ(K̇µ) = ∅ and Ḣ \µ(K̇µ) = Ġ↑ν∩µ(L̇µ)\µ(K̇µ). Thus Ġ↑ν∩µ(L̇µ) ⊆ µ(K̇µ).

Similarly, we get ~G↑ν ∩ µ(~Lµ) ⊆ µ(~Kµ).

For all x ∈ Ḣ∪ ~H we have G̊↑µ(x) = µ̊◦R̊µ ◦µ−1(x) = µ̊′ ◦R̊µ ◦µ′−1(x), hence

obviously H̊ ′\(µ̊◦K̊µ◦µ−1(x)∪G̊↑µ(x)) = ∅ and H̊ ′\(µ̊◦K̊µ◦µ−1(x)∪G̊↑µ(x)) =

G̊↑ν(x)∩µ̊◦L̊µ◦µ−1(x)\(µ̊◦K̊µ◦µ−1(x)∪G̊↑µ(x)). Thus G̊↑ν(x)∩µ̊◦L̊µ◦µ−1(x) ⊆
µ̊ ◦ K̊µ ◦ µ−1(x) ∪ G̊↑µ(x).

We conclude that G↑ν u µ(Lµ) C µ(Kµ) tG↑µ.
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