F. F. Wu and A. Monticelli, Network observability: theory, IEEE Transactions on Power Apparatus and Systems, issue.5, pp.1042-1048, 1985.

B. Gou and A. Abur, An improved measurement placement algorithm for network observability, IEEE Transactions on Power Systems, vol.16, issue.4, pp.819-824, 2001.

S. H. Xin, Algorithm research for selecting measurement nodes in measuring network traffic based on adjacency matrix, Journal of Southeast University, p.1, 2008.

F. L. Iudice, F. Sorrentino, and F. Garofalo, On node controllability and observability in complex dynamical networks, IEEE Control Systems Letters, 2019.

Y. Liu, J. Slotine, and A. Barabási, Controllability of complex networks, nature, vol.473, issue.7346, p.167, 2011.

G. Notarstefano and G. Parlangeli, Controllability and observability of grid graphs via reduction and symmetries, IEEE Transactions on Automatic Control, vol.58, issue.7, pp.1719-1731, 2013.

A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, Controllability of multi-agent systems from a graph-theoretic perspective, SIAM Journal on Control and Optimization, vol.48, issue.1, pp.162-186, 2009.

M. Ji and M. Egerstedt, Observability and estimation in distributed sensor networks, 2007 46th IEEE Conference on Decision and Control, pp.4221-4226, 2007.

M. U. Niazi, C. Canudas-de-wit, and A. Kibangou, Average observability of large-scale network systems, ECC 2019 -European Control Conference, pp.1-6, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02073668

M. U. Niazi, D. Deplano, C. Canudas-de-wit, and A. Y. Kibangou, Scale-free estimation of the average state in large-scale systems, IEEE Control Systems Letters, vol.4, issue.1, pp.211-216, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02158678

I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, The maximum clique problem," in Handbook of combinatorial optimization, pp.1-74, 1999.

Y. Chi, R. R. Muntz, S. Nijssen, and J. N. Kok, Frequent subtree miningan overview, Fundamenta Informaticae, vol.66, issue.1-2, pp.161-198, 2005.

M. M. Sys?, The subgraph isomorphism problem for outerplanar graphs, Theoretical Computer Science, vol.17, issue.1, pp.91-97, 1982.

S. Imane, T. Baptiste, and R. Frédéric, Discrete linear functional observer for the thermal estimation in power modules, 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC), pp.812-817, 2018.

L. Lovász, On the Shannon capacity of a graph, IEEE Transactions on Information theory, vol.25, issue.1, pp.1-7, 1979.

D. M. Cardoso, M. Kami?ski, and V. Lozin, Maximum k-regular induced subgraphs, Journal of Combinatorial Optimization, vol.14, issue.4, pp.455-463, 2007.

Y. Asahiro, H. Eto, T. Ito, and E. Miyano, Complexity of finding maximum regular induced subgraphs with prescribed degree, Theoretical Computer Science, vol.550, pp.21-35, 2014.

V. V. Lozin and R. Mosca, Maximum regular induced subgraphs in 2p3-free graphs, Theoretical Computer Science, vol.460, pp.26-33, 2012.

D. Kobler and U. Rotics, Finding maximum induced matchings in subclasses of claw-free andp 5-free graphs, and in graphs with matching and induced matchingof equal maximum size, Algorithmica, vol.37, issue.4, pp.327-346, 2003.

Y. Asahiro, H. Eto, and E. Miyano, Inapproximability of maximum rregular induced connected subgraph problems, IEICE Transactions on Information and Systems, vol.96, issue.3, pp.443-449, 2013.

F. V. Fomin, F. Grandoni, and D. Kratsch, Measure and conquer: a simple o(20.288n) independent set algorithm, 2006.

J. M. Robson, Algorithms for maximum independent sets, Journal of Algorithms, vol.7, issue.3, pp.425-440, 1986.

S. Gupta, V. Raman, and S. Saurabh, Fast exponential algorithms for maximum r-regular induced subgraph problems, International Conference on Foundations of Software Technology and Theoretical Computer Science, pp.139-151, 2006.

A. Agra, G. Dahl, T. A. Haufmann, and S. J. Pinheiro, The k-regular induced subgraph problem, Discrete Applied Mathematics, vol.222, pp.14-30, 2017.

C. Luz, Improving an upper bound on the size of k-regular induced subgraphs, J. Comb. Optim, vol.22, pp.882-894, 2011.

, An upper bound on the independence number of a graph computable in polynomial-time, Operations Research Letters, vol.18, issue.3, pp.139-145, 1995.

N. Martin, P. Frasca, T. Ishizaki, J. Imura, and C. Canudas-de-wit, The price of connectedness in graph partitioning problems, 2019 18th European Control Conference (ECC), pp.2313-2318, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02171099

P. Van-mieghem, The n-intertwined SIS epidemic network model, Computing, vol.93, issue.2-4, pp.147-169, 2011.

W. Mei, S. Mohagheghi, S. Zampieri, and F. Bullo, On the dynamics of deterministic epidemic propagation over networks, Annual Reviews in Control, vol.44, pp.116-128, 2017.

C. Nowzari, V. M. Preciado, and G. J. Pappas, Analysis and control of epidemics: A survey of spreading processes on complex networks, IEEE Control Systems Magazine, vol.36, issue.1, pp.26-46, 2016.

M. Boguná, R. Pastor-satorras, A. Díaz-guilera, and A. Arenas, Models of social networks based on social distance attachment, Physical review E, vol.70, issue.5, p.56122, 2004.

R. Toivonen, J. Onnela, J. Saramäki, J. Hyvönen, and K. Kaski, A model for social networks, Physica A: Statistical Mechanics and its Applications, vol.371, issue.2, pp.851-860, 2006.

D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature, vol.393, issue.6684, p.440, 1998.