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On Monographs, Monadic Many-Sorted Algebras and Graph Structures

A simple notion of monograph is proposed that generalizes the standard notion of graph and can be drawn consistently with graphs. It is shown that monadic many-sorted signatures can be represented by monographs, and that the corresponding algebras are isomorphic to the monographs typed by the corresponding signature monograph. Monographs therefore provide a simple unifying framework for working with monadic algebras. The simplicity of monographs is illustrated by deducing some of their categorial properties from those of sets.

Introduction

Many different notions of graphs are used in mathematics and computer science: simple graphs, directed graphs, multigraphs, hypergraphs, etc. One favourite notion in the context of graph rewriting is that also known as quivers, i.e., structures of the form pN, E, s, tq where N, E are sets and s, t are functions from E (edges) to N (nodes), identifying the source and target tips of every edge (or arrow). We may identify two or three reasons for this: the need to represent data structures with pointers, the fact that the category of quivers is isomorphic to the category of Σ g -algebras, where Σ g is the signature with two sorts nodes and edges and two operators src and tgt of type edges Ñ nodes, and possibly also the frequent use of category theory, since (small) categories are quivers endowed with a partial binary operation on E. In conformity with this tradition, by graph we mean quiver throughout this paper.

Category theory also provides a representation of graphs as functors from the category (where the loops are identities) to the category Sets, so that the category Graphs is isomorphic to a functor category [START_REF] Ehrig | Fundamentals of Algebraic Graph Transformation[END_REF]. Such representations of graphs are useful for deducing in a simple way some properties of the category Graphs. This last isomorphism is actually derived from the previous one, by representing Σ g as a category.

But to conveniently represent elaborate data structures it is often necessary to enrich the structure of graphs with other objects: nodes or edges may be labelled with elements from a fixed set, or with the elements of some algebra, or graphs may be typed by another graph (i.e., a graph comes with a morphism from itself to this other graph, considered as its type). An interesting example can be found in [START_REF] Ehrig | Fundamentals of Algebraic Graph Transformation[END_REF] with the notion of E-graphs, since some of these new objects are also considered as edges or nodes. More precisely, an E-graph is an algebra whose signature Σ e can be represented by the following graph: The names given to the sorts and operators help to understand the structure of the Σ e -algebras: the edges g relate the nodes g among themselves, the edges n relate the nodes g to the nodes v , and the edges e relate the edges g to the nodes v . These extra edges allow to attach values (elements of nodes v ) to edges and nodes of the inner graph. But then we see that in E-graphs some edges can be adjacent to other edges. This is non standard, but we may still accept such structures as some form of graph, if only because we understand how they can be drawn.

Hence the way of generalizing the notion of graphs seems to involve a generalization of the signature of graphs considered as algebras. This path has been followed by Michael Löwe in [START_REF] Löwe | Algebraic approach to single-pushout graph transformation[END_REF], where a graph structure is defined as a monadic many-sorted signature. Indeed in the examples above, and in many examples provided in [START_REF] Löwe | Algebraic approach to single-pushout graph transformation[END_REF], all operators have arity 1 and can therefore be considered as edges from their domain to their range sort. Is this the reason why they are called graph structures? But the example above shows that, if Σ e -algebras are interpreted as graphs of some form, these are very different from the graph Σ e . Besides, it is not convenient that our understanding of such structures should be based on syntax, i.e., on the particular names given to objects in the signature.

Furthermore, it is difficult to see how the algebras of some very simple monadic signatures can be interpreted as graphs of any form. Take for instance Σ g and reverse the target function to tgt : nodes Ñ edges. Then there is a symmetry between the sorts nodes and edges, which means that in an algebra of this signature nodes and edges would be objects of the same nature. Is this still a graph? Can we draw it? Worse still, if the two sorts are collapsed into one, does it mean that a node/edge can be adjacent to itself?

We may address these problems by restricting graph structures to some class of monadic signatures whose algebras are guaranteed to behave in an orthodox way, say by exhibiting clearly separated edges and nodes. But this could be prone to arbitrariness, and it would still present another drawback: that the notion of graph structure does not easily give rise to a category. Indeed, it is difficult to define morphisms between algebras of different signatures, if only because they can have any number of carrier sets.

The approach adopted here is rather to reject any structural distinction between nodes and edges, to gather them all in a single carrier set and to rely on a unique function to distinguish them. For this reason, the resulting structures are called monographs. The definitions of monographs and their morphisms, given in Section 2, are thus quite simple although for reasons that will only be made clear in Section 4 we have to resort to ordinals.

Monographs are not algebras, they may not contain nodes, they may contain self-loops, but they can be drawn as proposed in Section 3, provided of course that they are finite (in a strong sense). In particular, such drawings will correspond to the standard way of drawing a graph, for those monographs that can be identified with graphs.

The relationship between monographs and graph structures (monadic signatures) is explored in Section 4. This gives rise to an isomorphism-dense embedding of monographs into many-sorted monadic signatures, that will expose a fundamental difference between them. This result is used in Section 5 to exhibit isomorphisms between the categories of (partitioned) algebras of all graph structures and all slice categories of monographs, i.e., the categories of typed monographs. In this sense monographs provide a complete representation of graph structures.

As a result of their simplicity the category of monographs and some of its subcategories can easily be shown to share a number of properties with Graphs, as illustrated in Section 6.

Notations and Definitions

For any sets A, B, any relation r Ď A ˆB and any subset X Ď A, we write rrXs for the set ty P B | x P X ^px, yq P ru. For any x P A, by abuse of notation we write rrxs for rrtxus. If r is functional we write rpxq for the unique element of rrxs. We write r ´1 for the relation tpy, xq | px, yq P ru Ď B ˆA.

A function f : A Ñ B is a morphism in the category Sets; it therefore consists of a domain A, a codomain B and a functional relation r Ď A ˆB. The domain A must be the set tx | px, yq P ru, but the codomain B may be any superset of the image rrAs " ty | px, yq P ru. Functions may therefore be composed only if the domain of the left operand is equal to the codomain of the right operand. However, the standard notations for functions will also be used with functional relations. In particular, they may be composed whenever the domain of the left operand includes the image of the right operand. When a functional relation is composed with a function, it is always the underlying functional relation that is meant.

More generally, any object and its obvious underlying object will be written similarly, i.e., the forgetful functor will be omitted, whenever the ambiguity can easily be lifted from the context. Category theoretic concepts and notations will be consistent with [START_REF] Adámek | Abstract and Concrete Categories -The Joy of Cats[END_REF], unless stated otherwise. In particular, id A denotes the identity morphism of the object A in any category, except in Sets where it is denoted Id A (the identity function of A) as a way of reminding the reader that A is a set. In Sets the standard product ˆ, projections π 1 and π 2 and coproduct `are used. For functional relations f , g with the same domain A, let xf, gypxq def " pf pxq, gpxqq for all x P A; if f : A Ñ B and g : A Ñ C are functions then xf, gy : A Ñ B ˆC is the unique function such that π 1 ˝xf, gy " f and π 2 ˝xf, gy " g.

Isomorphism between objects in a category, or between categories, is denoted by the symbol ». For any two categories A and B, a functor F : A Ñ B is faithful (resp. full) if F is injective (resp. surjective) from the set of Amorphisms from X to Y to the set of B-morphisms from F X to F Y , for all A-objects X and Y . If F is faithful and injective on objects, then it is an embedding. F is isomorphism-dense if for every B-object Y there exists an A-object X such that F X » Y . Categories A and B are equivalent, written A ≅ B, if there is a full, faithful and isomorphism-dense functor from one to the other.

For any object T of A, the slice category A{T has as objects the morphisms of codomain T of A, as morphisms from object f : A Ñ T to object g : B Ñ T the morphisms k : A Ñ B of A such that g ˝k " f , and the composition of morphisms in A{T is defined as the composition of the underlying morphisms in A [START_REF] Ehrig | Fundamentals of Algebraic Graph Transformation[END_REF]. It is easy to see that id T is a terminal object of A{T .

An ordinal is a set α such that every element of α is a subset of α, and such that the restriction of the membership relation P to α is a strict well-ordering of α (every non empty subset of α has a minimal element). Every member of an ordinal is an ordinal, and we write λ ă α for λ P α. For any two ordinals α, β we have either α ă β, α " β or α ą β. Every ordinal α has a successor α Y tαu, written α `1. For these properties and others we refer to [START_REF] Suppes | Axiomatic Set Theory[END_REF]. Natural numbers n are identified with finite ordinals, so that n " t0, 1, . . . , n ´1u. Definition 2.1 (sequences of ordinal length). For any set E and ordinal λ, an E-sequence s of length λ is an element of E λ , i.e., a function s : λ Ñ E. For any s P E λ and ι ă λ, the image of ι by s is written s ι . If λ is finite and non zero then s can be described as s " s 0 ¨¨¨s λ´1 . For any x P E we write x | s and say that x occurs in s if there exists ι ă λ such that s ι " x.

For any ordinal α, let

E ăα def " ď λăα E λ .
For any set F and function f : E Ñ F , let f ăα : E ăα Ñ F ăα be the function defined by f ăα psq def " f ˝s for all s P E ăα .

Note that E 0 " t∅u, i.e., ∅ is the only sequence of length 0, and that for any s P E ăα and any ordinal β ě α, we have s P E ăβ and f ăβ psq " f ăα psq. It is obvious that, if f : E Ñ F and g : F Ñ G then pg ˝f q ăα " g ăα ˝f ăα . If s and s 1 are respectively E-and F -sequences both of length λ, then xs, s 1 y is an pE ˆF q-sequence of length λ, and then π ăα 1 xs, s 1 y " π 1 ˝xs, s 1 y " s and similarly π ăα 2 xs, s 1 y " s 1 for all α ą λ. If f : E Ñ F and g : E Ñ G then xf, gy ăα psq " xf, gy ˝s " xf ˝s, g ˝sy " xf ăα psq, g ăα psqy for all s P E ăα .

Obviously E ăω can be identified with the carrier set of the free monoid E ˚, but in the sequel we have no use of any monoid structure.

Definition 2.2 (monographs). For any ordinal α, an α-monograph is a pair pE, aq where E is a set whose elements are called edges of A, and a Ď E ˆEăα is a functional relation, called the map of A. A pair A " pE, aq is a monograph if it is an α-monograph for some ordinal α; we then say that α is an ordinal for A. The grade of A is the smallest ordinal for A. Monographs will usually be denoted by upper-case letters (A, B, . . . ), their functional relation by the corresponding lower-case letter (a, b, . . . ) and their set of edges E a , E b , . . . The length ℓ a pxq of an edge x P E a is the length of apxq, i.e., the unique ordinal λ such that apxq P E λ . The trace of A is the set trpAq def " ℓ a rE a s. For any set O of ordinals, an O-monograph A is a monograph such that trpAq Ď O.

An edge x is adjacent to y P E a if y | apxq. A self-loop is an edge x that is adjacent only to x, i.e., such that apxq is a txu-sequence. A node is an edge of length 0, and the set of nodes of A is written N a . A is standard if apxq is a N a -sequence for all x P E a .

A morphism from monograph A " pE a , aq to monograph B " pE b , bq is a function f : E a Ñ E b such that f ăα ˝a " b ˝f , where α is any1 ordinal for A.

It is obvious that A is an α-monograph iff trpAq Ď α, hence the notion of O-monograph generalizes that of α-monograph without ambiguity (even though ordinals are sets of ordinals). It is also easy to see that there exists an ordinal for any two monographs, and indeed for any set of monographs (e.g. the sum of their grades).

Note that a monograph A is essentially defined by its map a, since the set E a is the domain of a. But a is only a set of pairs and not a function, there is no codomain to artificially separate monographs that have the same map. This means in particular that any α-monograph is a β-monograph for all β ě α. But A is not defined by its adjacency relation y | apxq on edges, since the sequences apxq may not be uniquely determined by this relation. Also note that the adjacency relation may not be symmetric: a node is never adjacent to any edge, while many edges may be adjacent to a node.

We easily see that the length of edges are preserved by morphisms: if f is a morphism from A to B then for all x P E a , ℓ b pf pxqq is the length of the E bsequence b ˝f pxq " f ăα ˝apxq, which is the length of the E a -sequence apxq, i.e., ℓ a pxq " ℓ b pf pxqq. Hence trpAq Ď trpBq, and the equality holds if f is surjective. This also means that the grade of B is at least that of A, hence that every ordinal for B is an ordinal for A. We also see that

f ´1rN b s " tx P E a | ℓ b pf pxqq " 0u " N a
and hence, if b ˝f pxq is a N b -sequence then apxq is a N a -sequence, so that A is standard whenever B is standard.

Given morphisms f from A to B and g from B to C, we see that g ˝f is a morphism from A to C by letting α be an ordinal for B, so that pg ˝f q ăα ˝a " g ăα ˝f ăα ˝a " g ăα ˝b ˝f " c ˝g ˝f.

Besides, the identity function Id

Ea of E a is obviously a morphism from A to A. 

standard O-monographs).

A monograph A is finite if E a is finite. Let FMonoGr be the full subcategory of finite ω-monographs.

Drawing Monographs

Obviously we may endeavour to draw a monograph A only if E a is finite and if its edges have finite lengths, i.e., if A is a finite ω-monograph. We can easily identify any graph G " pN, E, s, tq as the standard t0, 2u-monograph pN `E, gq where gpxq " ∅ for all x P N and gpeq " speqtpeq for all e P E. If we require that such monographs should be drawn as their corresponding graphs, then a node should be represented by a bullet and an edge of length 2 by an arrow joining its two adjacent nodes. But the adjacent edges may not be nodes and there might be more than 2 of them, hence we adopt the following convention: an edge e of length at least 2 is represented as a sequence of connected arrows with an increasing number of tips

x 0 x 1 x 2 x 3
(where apeq " x 0 x 1 x 2 x 3 ¨¨¨) and such that any arrow should enter x i at the same angle as the next arrow leaves x i . This is important when x i is a node since several adjacent edges may traverse the corresponding bullet, and they should not be confused. For the sake of clarity we will also represent symmetric adjacencies by a pair of crossings rather than a single one, e.g., if apeq " xe 1 y and ape 1 q " xey, where x and y are nodes, the drawing may be but not

As is the case of graphs, monographs may not be planar and drawing them may require crossing edges that are not adjacent; in this case no arrow tip is present at the intersection and no confusion is possible with the adjacency crossings. However, it may seem preferable in such cases to erase one arrow in the proximity of the other, as in . There remains to represent the edges of length 1. Since apeq " x is standardly written a : e Þ Ñ x, the edge e will be drawn as x In order to avoid confusions there should be only one arrow out of the thick dash, e.g., if apeq " e 1 and ape 1 q " ex where x is a node, the drawing may be but not since this last drawing may be interpreted as the monograph apeq " x and ape 1 q " ee, that is not isomorphic to the intended monograph.

Possible drawings and names for the self-loops of length 1 to 4 are given in Figure 1. The Clover can easily be generalized to greater lengths.

It is sometimes necessary to name the edges in a drawing. We may then adopt the convention used for drawing diagrams in a category: the bullets are replaced by the names of the corresponding nodes, and arrows are interrupted to write their name at a place free from intersection, as in

x y e e 1
Note that no confusion is possible between the names of nodes and those of other edges, e.g., in the Fixpoint the Snake2 the Pretzel the Clover We may also draw typed monographs, i.e., monographs A equipped with a morphism f from A to a monograph T , considered as a type. Then every edge e P E a has a type f peq that can be written at the proximity of e. For instance, let T be the monograph u v then a monograph typed by T is drawn with labels u and v as in

u u v v v u u
Of course, knowing that f is a morphism sometimes allows to deduce the type of an edge, possibly from the types of adjacent edges. In the present case, indicating a single type would have been enough to deduce all the others.

These figures have been produced with the TikZ package [START_REF] Tantau | Graph drawing in tikz[END_REF].

Monadic Signatures as Monographs

As mentioned in Section 1, graph structures, i.e., monadic many-sorted signatures, can be represented as graphs. More precisely, there is an obvious isomorphism between the category Graphs and the category of monadic signatures defined below A morphism m from signature Σ to signature Σ 1 is a pair m " pm op , m srt q of functions, where m op : Σ op Ñ Σ 1 op and m srt :

Σ srt Ñ Σ 1 srt , such that Σ 1 ˝mop " pm srt ˆmsrt q ˝Σ.
Let id Σ def " pId Σop , Id Σsrt q and given two morphisms m : Σ Ñ Σ 1 and n : Σ 1 Ñ Σ 2 , let n ˝m def " pn op ˝mop , n srt ˝msrt q; then id Σ : Σ Ñ Σ and n ˝m : Σ Ñ Σ 2 are morphisms. Let MonSig be the category of monadic signatures and their morphisms. and FMonSig its full subcategory of finite signatures.

The obvious isomorphism from MonSig to Graphs maps every monadic signature Σ : Ω Ñ S ˆS to the graph pS, Ω, Σ ds , Σ rs q. But we have seen in Section 1 on E-graphs that this representation of the monadic signature Σ e bears no relation with the expected graphical representations of E-graphs. It would be more natural to represent Σ e as an E-graph, and possibly any monadic signature Σ as a monograph.

Since the image ΣpΩq is a subset of S ˆS, it can be viewed as a binary relation on S, hence there exists a monograph with S as set of edges whose adjacency relation is exactly ΣpΩq. However, this monograph may not be unique since, as mentioned in Section 2, a monograph is not generally determined by its adjacency relation. Similarly, the direction of edges in E-graphs is not determined by the signature Σ e , it is only a convention given by the particular names of its operators.

For this reason it is more convenient to define a function from monographs to monadic signatures: any monograph determines a unique adjacency relation that can then be interpreted as a signature. " pe, tpeq ι q for all pe, ιq P Ω t .

To every morphism of monographs f : T Ñ U we associate the morphism Sf : ST Ñ SU defined by

• pSf q op pe, ιq def " pf peq, ιq P Ω u for all pe, ιq P Ω t , and

• pSf q srt def " f (as a function from E t to E u ).
Note that the signature ST is finite iff T is a finite ω-monograph. Proof. We first see that, as claimed in Definition 4.1, Sf is a morphism in MonSig for every f : T Ñ U . Let Σ " ST , Σ 1 " SU and m " Sf , then for all pe, ιq P Ω t we have Σ 1 ˝mop pe, ιq " Σ 1 pf peq, ιq " pf peq, pu ˝f peqq ι q and pm srt ˆmsrt q ˝Σpe, ιq " pf ˆf q ˝pe, tpeq ι q " pf peq, f ptpeq ι qq. Let α be an ordinal for T and U , then f ptpeq ι q " pf ăα ˝tpeqq ι " pu ˝f peqq ι , hence Σ 1 ˝mop " pm srt ˆmsrt q ˝Σ. We now see that S is a functor from MonoGr to MonSig. Indeed, for every morphism g : U Ñ V in MonoGr, we have pSpg ˝f qq srt " g ˝f " pSgq srt ˝pSf q srt and for every pe, ιq P Ω t we have pSpg ˝f qq op pe, ιq " pg ˝f peq, ιq " pSgq op pf peq, ιq " pSgq op ˝pSf q op pe, ιq, hence Spg ˝f q " Sg ˝Sf . It is obvious that Sid T " id ST .

We next show that S is injective on objects. Let T , U be monographs such that ST " SU , then E t " E u and Ω t " Ω u , so that ℓ t peq " ℓ u peq for all e P E t . We also have ST pe, ιq " SU pe, ιq for all pe, ιq P Ω t , hence tpeq ι " upeq ι for all ι ă ℓ t peq, so that t " u and therefore T " U .

Finally, S is faithful since for all f, g : T Ñ U such that Sf " Sg we have f " pSf q srt " pSgq srt " g.

The next lemma uses the Axiom of Choice through its equivalent formulation known as the Numeration Theorem [START_REF] Suppes | Axiomatic Set Theory[END_REF]. Lemma 4.4. S is isomorphism-dense: for every monadic signature Σ there exists a monograph T such that ST » Σ.

Proof. Let Σ : Ω Ñ S ˆS and O s " Σ ´1 ds rss for every s P S. By the Numeration Theorem there exists an ordinal λ s equipollent to O s , i.e., such that there exists a bijection σ s : λ s Ñ O s . Let tpsq be the S-sequence of length λ s defined by tpsq ι " Σ rs ˝σs pιq for all ι P λ s , and let T be the monograph pS, tq. Let m op be the function that to every ps, ιq P Ω t maps σ s pιq P Ω, and let m " pm op , Id S q.

We first see that m is a morphism from ST to Σ since for all ps, ιq P pST q op " Ω t we have pId S ˆId S q ˝ST ps, ιq " ps, tpsq ι q " ps, Σ rs ˝σs pιqq, but σ s pιq P O s hence Σ ds pσ s pιqq " s, and therefore ps, Σ rs ˝σs pιqq " pΣ ds ˝σs pιq, Σ rs ˝σs pιqq " Σ ˝σs pιq " Σ ˝mop ps, ιq.

We now prove that m is an isomorphism, i.e., that m op is bijective. For any ps, ιq, ps 1 , κq P Ω t such that m op ps, ιq " m op ps 1 , κq, then σ s pιq " σ s 1 pκq hence s " Σ ds ˝σs pιq " Σ ds ˝σs 1 pκq " s 1 and therefore ι " κ since σ s is injective. For any o P Ω, let s " Σ ds poq, so that o P O s , and let ι " σ ´1 s poq, then ps, ιq P Ω t (since ι ă λ s " ℓ t psq) and m op ps, ιq " σ s pιq " o. Hence m op is bijective, which yields ST » Σ.

The reason why monographs require edges of ordinal length now becomes apparent: the length of an edge s is the cardinality of O s , i.e., the number of operators whose domain sort is s, and no restriction on this cardinality is ascribed to signatures. In finite signatures this cardinal is obviously finite, which trivially yields the following consequence. Corollary 4.5. S is an isomorphism-dense embedding from FMonoGr to FMonSig.

We now show on an example that the functor S is not full, hence is not an equivalence between the categories MonoGr and MonSig.

Example 4.6. The monadic signature Σ g has two operators src, tgt, two sorts in S g " tnodes, edgesu and is defined by:

Σ g : src, tgt Þ Ñ pedges, nodesq.
Then O nodes " ∅ and O edges " tsrc, tgtu has 2 elements. Let σ : 2 Ñ O edges be the bijection defined by

σ : 0 Þ Ñ src, 1 Þ Ñ tgt
and t be the map defined by tpnodesq " ∅, tpedgesq " nodes nodes then T g " pS g , tq is a monograph. The signature ST g has the same sorts as Σ g , two operators pedges, 0q, pedges, 1q and is defined by

ST g : pedges, 0q, pedges, 1q Þ Ñ pedges, nodesq.
Hence ST g is indeed isomorphic to Σ g . However, the only automorphism of T g is id Tg , while Σ g has a non trivial automorphism m " ppsrc tgtq, Id Sg q (in cycle notation), hence S is not surjective on morphisms.

This automorphism reflects the fact that Σ g does not define an order between its operators src and tgt. Directing edges as arrows from src to tgt is only a matter of convention that is reflected in the choice of σ above. This contrasts with monographs, where the edges are inherently directed by the ordinals in their length. In the translation from MonoGr to MonSig, the direction of edges are necessarily lost. Note however that in this example, since src and tgt have the same range sort, the other obvious choice for σ yields the same monograph T g .

We therefore see that in most cases there are many distinct, non isomorphic monographs that faithfully represent a single signature, depending on the chosen direction of their edges. Monographs carry more information than signatures, but the additional information is precisely the kind of information that has to be provided by means of syntax when a monadic signature is intended as a graph structure. By observing the examples given in [5, Section 3.1], we see that this syntactic information mostly consists in an order on operators, given either by indices or by calling them "source" and "target".

We also observe in Examples 3.1 to 3.6 a separation of sorts into domain and range sorts. It is easy to see that a monograph T is standard iff the signature ST is separated, i.e., no sort occurs both as a domain and a range sort. Thus the range sorts are the nodes of T and the domain sorts are edges of diverse lengths that relate nodes. Only Example 3.7, defining the notion of ALR-graph, is non standard and requires a more detailed examination.

Example 4.7. Let Σ a be the monadic signature defined by the set of sorts S a " tV, E, V-Ass, E-Ass, Graph, Morphismu and the following operators:

Σ a : s, t Þ Ñ pE, Vq s V , t V Þ Ñ pV-Ass, Vq s E , t E Þ Ñ pE-Ass, Eq s G , t G Þ Ñ pMorphism, Graphq abstract V Þ Ñ pV, Graphq abstract E Þ Ñ pE, Graphq abstract V-Ass Þ Ñ pV-Ass, Morphismq abstract E-Ass Þ Ñ pE-Ass, Morphismq
An ALR-graph is a Σ a -algebra. It is not very clear how such structures can be considered as graphs, especially because there is no conventional way of ordering the "abstract" operator name w.r.t. sources and targets. Textual explanations are provided in [START_REF] Löwe | Algebraic approach to single-pushout graph transformation[END_REF] to help the reader's understanding of ALR-graphs. The explanations given below on the corresponding monograph (where "abstract" operators are placed between sources and targets) are much simpler and almost superfluous. The set of edges is of course S a , and the map t a is defined by: t a pGraphq " ∅ graphs are represented by nodes t a pVq " Graph to every vertex is associated a graph t a pEq " V Graph V an edge joins two vertices through a graph t a pMorphismq " Graph Graph a morphism joins two graphs t a pV-Assq " V Morphism V a vertex association joins two vertices through a morphism t a pE-Assq " E Morphism E an edge association joins two edges through a morphism.

We thus see that specifying a monadic signature by a monograph may yield a better understanding of the structure of the corresponding algebras, at least if these are meant as graph structures. The next section shows that this is always possible.

Monadic Algebras as Typed Monographs

Now that graph structures have been embedded in monographs, we may investigate the relation that the corresponding algebras bear with these monographs. We first need a definition of Σ-algebras and Σ-homomorphisms that, for the sake of simplicity, are restricted to monadic signatures. We will also use the standard reduct functors (see [START_REF] Tarlecki | Some nuances of many-sorted universal algebra: A review[END_REF]) adapted to Definition 4.1.

Definition 5.1 (Σ-algebras).

For any monadic signature Σ : Ω Ñ S ˆS, a Σ-algebra A is a tuple ppA s q sPS , po A q oPΩ q where pA s q sPS is an S-indexed family of sets and o A : A Σ ds poq Ñ A Σrspoq is a function for all o P Ω. A is partitioned if s ‰ s 1 entails A s X A s 1 " ∅ for all s, s 1 P S.

A Σ-homomorphism h : A Ñ B from a Σ-algebra A to a Σ-algebra B is an S-indexed family of functions ph s q sPS where h s : A s Ñ B s for all s P S, such that o B ˝hΣ ds poq " h Σrspoq ˝oA for all o P Ω. Let id A : A Ñ A be the Σ-homomorphism pId As q sPS , and for any Σ-homomorphism h : A Ñ B and k : B Ñ C, let k ˝h : A Ñ C be the Σ-homomorphism pk s ˝hs q sPS . Let Σ-Alg be the category of Σ-algebras with Σ-homomorphisms as their morphisms, and Σ-PAlg be its full subcategory of partitioned algebras. Given another signature Σ 1 : Ω 1 Ñ S 1 ˆS1 and a morphism m :

Σ 1 Ñ Σ in MonSig, the m-reduct functor R m : Σ-Alg Ñ Σ 1 -Alg is defined by • R m A def
" ppA msrtpsq q sPS 1 , pm op poq A q oPΩ 1 q for every Σ-algebra A, and • R m h def " ph msrtpsq q sPS 1 for every Σ-homomorphism h. Following Example 4.6, we notice that T g " is the terminal graph. Besides, it is easy to see that the monographs A such that there exists a morphism from A to T g are exactly the standard t0, 2u-monographs, that have been identified to graphs in Section 3. But it is obvious that for any standard t0, 2umonograph A there is a unique morphism from A to T g (the nodes of A are mapped to the node of T g and its edges of length 2 are mapped to the loop of T g ). In other words, graphs can be identified to the objects of the slice category MonoGr{T g , i.e., the monographs typed by T g . But they can also be identified with the Σ g -algebras, and hence to the ST g -algebras according to the following obvious isomorphisms.

Lemma 5.2. If Σ » Σ 1 then Σ-Alg » Σ 1 -Alg and Σ-PAlg » Σ 1 -PAlg.
Proof. If there are inverse morphisms m : Σ 1 Ñ Σ and m 1 : Σ Ñ Σ 1 then there are inverse functors R m : Σ-Alg Ñ Σ 1 -Alg and R m 1 : Σ 1 -Alg Ñ Σ-Alg since R m 1 ˝Rm " R m˝m 1 " R id Σ is the identity functor of Σ-Alg, and symmetrically R m ˝Rm 1 is the identity functor of Σ 1 -Alg. For every partitioned Σ-algebra A the Σ 1 -algebra R m A is partitioned since m srt is injective, hence the restrictions of R m and R m 1 to partitioned algebras are also inverse to each other.

Note that Σ-Alg is not isomorphic to Σ-PAlg since many distinct algebras may be Σ-isomorphic to the same partitioned algebra. There is however a trivial equivalence between these categories. Lemma 5.3. For every signature Σ, Σ-PAlg ≅ Σ-Alg Proof. Given Σ : Ω Ñ S ˆS and a Σ-algebra A, we consider the Σ-algebra A 1 defined by A 1 s " A s ˆtsu for all s P S, and o A 1 is the function from A 1 Σ ds poq to A 1

Σrspoq that maps every px, Σ ds poqq to po A pxq, Σ rs poqq, for all o P Ω. It is then obvious that A 1 is partitioned and that the projection on the first coordinate is an isomorphism from A 1 to A.

To summarize, we can say that the monographs typed by T g can be identified with the ST g -algebras. We are now going to generalize this fact to all monographs but, of course, we need to provide a precise meaning to this identification. We first establish an isomorphism of categories through the following functor.

Definition 5.4 (functor A T ). Given a monograph T , we define the function A T that maps every object f : A Ñ T of MonoGr{T to the partitioned ST -algebra A T f defined by • pA T f q e def " f ´1res for all e P E t , and

• pe, ιq AT f pxq def " apxq ι for all x P f ´1res and pe, ιq P Ω t .

Besides, A T also maps every morphism k : f Ñ g of MonoGr{T , where f : A Ñ T and g : B Ñ T , to the ST -homomorphism A T k from A T f to A T g defined by pA T kq e def " k| f ´1res for all e P E t .

The ST -algebra A " A T f can be pictured as follows.

e tpeq ι pe, ιq : ST

x apxq ι A E a pe,ιq A f f
Of course, there remains to prove that A is indeed an algebra, i.e., that pe, ιq A is a function from f ´1res to f ´1rtpeq ι s. This is part of proving that A T is an isomorphism from the slice category of monographs typed by T to the category of partitioned ST -algebras.

Theorem 5.5. For every monograph T , A T :

MonoGr{T » Ý Ñ ST -PAlg.
Proof. Let Σ " ST and α an ordinal for T , so that for all pe, ιq P Ω t we have Σ ds pe, ιq " e P E t and Σ rs pe, ιq " tpeq ι P E t (see Definition 4.2). We first prove that A T maps objects of MonoGr{T to objects of Σ-PAlg. For any f : A Ñ T , let A " A T f . For every pe, ιq P Ω t and every x P f ´1res " A Σ ds pe,ιq , we have f ppe, ιq A pxqq " f papxq ι q " pf ăα ˝apxqq ι " pt ˝f pxqq ι " tpeq ι " Σ rs pe, ιq, hence pe, ιq A is a function from A Σ ds pe,ιq to f ´1rΣ rs pe, ιqs " A Σrspe,ιq , so that A is indeed a Σ-algebra. Besides, A is obviously partitioned.

We next prove that A T maps morphisms of MonoGr{T to morphisms of Σ-PAlg with correct domains and codomains. For any morphism k : f Ñ g of MonoGr{T , where f : A Ñ T and g : B Ñ T , let A " A T f , B " A T g and h " A T k. By definition k is a morphism from A to B such that g ˝k " f , hence for all e P E t and x P A e " f ´1res we have gph e pxqq " g ˝k| f ´1res pxq " f pxq " e, hence h e is a function from A e to g ´1res " B e . Then, for all pe, ιq P Ω t and for all x P A e " A Σ ds pe,ιq we have pe, ιq B ˝he pxq " pe, ιq B ˝kpxq " pb ˝kpxqq ι " pk ăα ˝apxqq ι " kpapxq ι q " k ˝pe, ιq A pxq " h Σrspe,ιq ˝pe, ιq A pxq,

hence h is a Σ-homomorphism from A to B.
We then prove that identities and morphism composition are preserved by A T . For every object f : A Ñ T of MonoGr{T , its identity id f : f Ñ f is id A : A Ñ A, hence for all e P E t we have pA T id f q e " id A | f ´1res " Id Ae , where A " A T f , hence A T id f " id A . For any morphisms k : f Ñ g and l : g Ñ h of MonoGr{T , where f : A Ñ T , g : B Ñ T and h : C Ñ T , we have for all e P E t that pA T lq e ˝pA T kq e " l| g ´1res ˝k| f ´1res " pl ˝kq| f ´1res " pA T pl ˝kqq e , hence A T pl ˝kq " A T l ˝AT k. Thus A T is indeed a functor from MonoGr{T to ST -PAlg, and we next see that it is an isomorphism.

A T is injective on objects. Let f : A Ñ T , g : B Ñ T , A " A T f and B " A T g such that A " B, then f ´1res " A e " B e " g ´1res for all e P E t , hence E a " Ť ePEt f ´1res " Ť ePEt g ´1res " E b and f " g as functions from E a to E t . We also have, for all pe, ιq P Ω t and all x P f ´1res, that apxq ι " pe, ιq A pxq " pe, ιq B pxq " bpxq ι . This is true for all ι P ℓ t peq " ℓ a pxq " ℓ b pxq, hence apxq " bpxq for all x P E a , hence A " B and therefore f " g as objects of MonoGr{T .

A T is surjective on objects. Let A be any partitioned Σ-algebra and E " Ť ePEt A e . Let f : E Ñ E t be the function that to any x P E maps the unique e P E t such that x P A e . For all x P E, let apxq be the E-sequence of length ℓ t peq, where e " f pxq, defined by, for all ι ă ℓ t peq, apxq ι " pe, ιq A pxq P A Σrspe,ιq Ď E. Since ℓ t peq ă α then A " pE, aq is an α-monograph. For all x P E and all ι ă ℓ a pxq " ℓ t peq where e " f pxq, we have pf ăα ˝apxqq ι " f papxq ι q " f ppe, ιq A pxqq " Σ rs pe, ιq " tpeq ι " pt ˝f pxqq ι , hence f ăα ˝a " t ˝f , which proves that f : A Ñ T is an object of MonoGr{T . Then for all e P E t , we have pA T f q e " f ´1res " A e by definition of f . Furthermore, for all pe, ιq P Ω t and all x P f ´1res, we have pe, ιq AT f pxq " apxq ι " pe, ιq A pxq by definition of a, hence A T f " A.

It is obvious that A T is injective on morphisms, hence there only remains to prove that it is surjective on morphisms. Let f : A Ñ T , g : B Ñ T , A " A T f , B " A T g and h be any Σ-homomorphism from A to B, so that h e : A e Ñ B e for all e P E t . Let k : E a Ñ E b be the function that to every x P E a maps h f pxq pxq P B f pxq " g ´1rf pxqs Ď E b , so that g ˝kpxq " f pxq. Then, for all ι ă ℓ a pxq we have pk ăα ˝apxqq ι " kpapxq ι q " h f papxqιq papxq ι q. Let e " f pxq, we have seen above that f papxq ι q " Σ rs pe, ιq, and apxq ι " pe, ιq A pxq by definition of A. And since h is a Σ-homomorphism we have pk ăα ˝apxqq ι " h Σrspe,ιq ˝pe, ιq A pxq " pe, ιq B ˝hΣ ds pe,ιq pxq " bph e pxqq ι " pb˝kpxqq ι hence k : A Ñ B is a morphism such that g ˝k " f and therefore k : f Ñ g is a morphism of MonoGr{T . We finally see that pA T kq e " k| f ´1res " h e for all e P E t , hence A T k " h. Corollary 5.6. For every monadic signature Σ, there exists a monograph T such that MonoGr{T » Σ-PAlg.

Proof. By Lemma 4.4 there exists T such that Σ » ST , hence MonoGr{T » ST -PAlg » Σ-PAlg by Lemma 5.2.

We thus see that the categories of partitioned monadic algebras are isomorphic to the slice categories of monographs. By Corollary 4.5, the partitioned algebras of finite monadic signatures are isomorphic to the slice categories of monographs typed by finite ω-monographs. Note that in the case of graphs, the partitioned Σ g -algebras correspond to those graphs whose sets of vertices and edges are disjoint. This is a common restriction for graphs but not for Σ-algebras. We can easily extend the previous result to the categories Σ-Alg.

Corollary 5.7. For every monograph T , MonoGr{T ≅ ST -Alg. For every monadic signature Σ, there exists a monograph T such that MonoGr{T ≅ Σ-Alg.

Proof. By Lemma 5.3.

Signatures are sometimes called types (see, e.g., [START_REF] Bergman | An Invitation to General Algebra and Universal Constructions[END_REF]Chapter 9]), which leads to the following reading of Corollary 5.7: the categories of algebras of monadic types are equivalent to the categories of typed monographs.

Example 5.8. The signature Σ e of E-graphs from [START_REF] Ehrig | Fundamentals of Algebraic Graph Transformation[END_REF] has six operators src g , tgt g , src n , tgt n , src e , tgt e and five sorts in S e " tedges g , edges n , edges e , nodes g , nodes v u, and is defined by

Σ e : src g , tgt g Þ Ñ pedges g , nodes g q src n Þ Ñ pedges n , nodes g q tgt n Þ Ñ pedges n , nodes v q src e
Þ Ñ pedges e , edges g q tgt e Þ Ñ pedges e , nodes v q hence O edges g " tsrc g , tgt g u, O edges n " tsrc n , tgt n u, O edges g " tsrc e , tgt e u and O nodes g " O nodes v " ∅. There are four possible monographs T " pS e , tq, given by tpnodes g q " tpnodes v q " ∅, tpedges g q " nodes g nodes g and tpedges n q " nodes g nodes v or nodes v nodes g tpedges e q " edges g nodes v or nodes v edges g .

These four monographs are depicted below.

T 1 T 2 T 3 T 4
Note that, by Theorem 5.5, the categories MonoGr{T i for 1 ď i ď 4 are isomorphic, even though the T i 's are not. The type indicated by the syntax (and consistent with the figures in [START_REF] Ehrig | Fundamentals of Algebraic Graph Transformation[END_REF]) is T 1 . An example of a monograph A typed by

T 1 is g g g v v v
where g stands for nodes g and v for nodes v . The types of the other edges can easily be deduced, yielding a unique typing morphism f : A Ñ T 1 . We leave it to the reader to check that A is consistent with the drawing of the E-graph A T1 f .

Example 5.9. The signature Σ h of hypergraphs (see [START_REF] Löwe | Algebraic approach to single-pushout graph transformation[END_REF]Example 3.4]) is defined by the set of sorts S h " tVu Y tH n,m | n, m P ωu and the n `m operators

Σ h : src n,m i , tgt n,m j Þ Ñ pH n,m , Vq for all 1 ď i ď n, 1 ď j ď m.
For any hypergraph H (i.e., any Σ h -algebra) and n, m P ω, let us call pn, mqhyperedges the elements of the set H H n,m ; these are the hyperedges with n sources and m targets. The corresponding typing monograph T h " pS h , t h q is defined by t h pVq " ∅ vertices are nodes t h pH n,m q " V n`m pn, mq-hyperedges are edges joining n `m vertices for all n, m P ω. Hypergraphs are therefore isomorphic to monographs typed by T h , i.e., every edge is typed by some H n,m (or V if it is a node). An edge of length 2 can therefore be typed either by H 2,0 , H 1,1 or H 0,2 and thus represent either a p2, 0q-, a p1, 1q-or a p0, 2q-hyperedge.

Categorial Properties of Monographs

We next see that the category MonoGr share many properties with Graphs. Some properties are preserved in slice categories and through equivalence of categories, hence can be trivially transfered to categories of monadic algebras. More importantly, the proofs are easier to carry out on monographs then, say, on E-graphs since these have five carrier sets and six operations, see [START_REF] Ehrig | Fundamentals of Algebraic Graph Transformation[END_REF].

We first see that all the categories of Definition 2.3 have as initial object the empty monograph p∅, ∅q. Other properties are listed below. 

Pullbacks and monomorphisms

the square

A B C D g 1 f 1 f g is a pullback in MonoGr.
Proof. We use the standard construction of pullbacks in Sets: let E " tpy, zq P

E b ˆEc | f pxq " gpzqu, g 1 " π 1 | E and f 1 " π 2 | E , then E E b E c E d g 1 f 1 f g is a pullback in Sets [3].
For every x P E, let y " g 1 pxq and z " f 1 pxq (so that x " py, zq), then ℓ b pyq " ℓ d pf pyqq " ℓ d pgpzqq " ℓ c pzq, i.e., b ˝g1 pxq and c ˝f 1 pxq have the same length λ. Then, for all ι ă λ, f pb ˝g1 pxq ι q " f ăα ˝b ˝g1 pxq ι " d ˝f ˝g1 pxq ι " d ˝g ˝f 1 pxq ι " g ăα ˝c ˝f 1 pxq ι " gpc ˝f 1 pxq ι q hence pb ˝g1 pxq ι , c ˝f 1 pxq ι q P E. Let apxq " xb ˝g1 pxq, c ˝f 1 pxqy and A " pE, aq, then apxq P E ăα hence A is an α-monograph. It is obvious that g 1ăα ˝apxq " b ˝g1 pxq and f 1ăα ˝apxq " c ˝f 1 pxq, hence g 1 : A Ñ B and f 1 : A Ñ C are morphisms.

1. trpAq Ď trpBq by virtue of morphism g 1 , and trpAq Ď trpCq by f 1 .

2.

A is standard if D is standard by virtue of morphism f ˝g1 .

3. If E b and E c are finite then so is E Ď E b ˆEc .

4. Let A 1 be a monograph and g 2 : A 1 Ñ B, f 2 : A 1 Ñ C be morphisms such that f ˝g2 " g ˝f 2 , then there exists a unique function h from E a 1 to E such that g 2 " g 1 ˝h and f 2 " f 1 ˝h. Then, for all x P E a 1 , a ˝hpxq " xb ˝g1 ˝hpxq, c ˝f 1 ˝hpxqy " xb ˝g2 pxq, c ˝f 2 pxqy " xg 2ăα ˝a1 pxq, f 2ăα ˝a1 pxqy " xg 1ăα ˝hăα ˝a1 pxq, f 1ăα ˝hăα ˝a1 pxqy " xπ 1 ˝ph ăα ˝a1 pxqq, π 2 ˝ph ăα ˝a1 pxqqy " h ăα ˝a1 pxq hence h : A 1 Ñ A is a morphism in MonoGr, which proves that pA, g 1 , f 1 q is a pullback of pf, g, Dq. Proof. Assume f : B Ñ D a monomorphism and let C " B, g " f and pA, f 1 , g 1 q be the pullback of pf, g, Dq defined in the proof of Lemma 6.1, then f ˝g1 " f ˝f 1 hence π 1 | Ea " g 1 " f 1 " π 2 | Ea . For all x, y P E b , if f pxq " f pyq then px, yq P E a and x " g 1 px, yq " f 1 px, yq " y, hence f is injective. The converse is obvious. is a pushout in MonoGr.

Pushouts and epimorphisms

Proof. We use the standard construction of pushouts in Sets: let " be the smallest equivalence relation on the direct sum E b `Ec such that f pxq " gpxq for all x P E a , and f 1 (resp. g 1 ) be the canonical surjection from E c (resp. E b ) to the quotient E " pE b `Ec q{", then

E E b E c E f g g 1 f 1
is a pushout in Sets [START_REF] Ehrig | Fundamentals of Algebraic Graph Transformation[END_REF]. For all py, zq P E b ˆEc such that g 1 pyq " f 1 pzq, i.e., the class of y modulo " is the same as the class of z, hence y " z and there exists a n P N and a sequence x 1 , . . . , x 2n`1 of elements of E a such that y " f px 1 q, z " gpx 2n`1 q and " gpx 2i´1 q " gpx 2i q f px 2i q " f px 2i`1 q for all 1 ď i ď n. Since b ˝f " f ăα ˝a and c ˝g " g ăα ˝a, this entails that " g ăα ˝apx 2i´1 q " g ăα ˝apx 2i q f ăα ˝apx 2i q " f ăα ˝apx 2i`1 q.

The commuting property g 1 ˝f " f 1 ˝g in Sets yields g 1ăα ˝f ăα " f 1ăα ˝găα , thus f 1ăα ˝găα ˝apx 2i´1 q " g 1ăα ˝f ăα ˝apx 2i q " f 1ăα ˝găα ˝apx 2i`1 q and hence f 1ăα ˝găα ˝apx 1 q " f 1ăα ˝găα ˝apx 2n`1 q by a trivial induction. We conclude that g 1ăα ˝bpyq " g 1ăα ˝f ăα ˝apx 1 q " f 1ăα ˝găα ˝apx 1 q " f 1ăα ˝găα ˝apx 2n`1 q " f 1ăα ˝cpzq.

We can now build a functional relation d Ď E ˆEăα in the following way: every equivalence class e P E contains either an element y P E b , and then e " g 1 pyq and we let dpeq " g 1ăα ˝bpyq, or an element z P E c , and then e " f 1 pzq and we let dpeq " f 1ăα ˝cpzq; this relation is functional since dpeq does not depend on the choice of y or z. Let D " pE, dq, then D is an α-monograph and g 1 : B Ñ D, f 1 : C Ñ D are morphisms since d ˝g1 " g 1ăα ˝b, d ˝f 1 " f 1ăα ˝c by definition of d.

1. Since f 1 and g 1 are morphisms then trpBq Ď trpDq and trpCq Ď trpDq.

Conversely, for every e P E there is either a y P E b such that e " g 1 pyq, hence ℓ d peq " ℓ b pyq P trpBq, or there is a z P E c such that e " f 1 pzq, hence ℓ d peq " ℓ c pzq P trpCq. Hence trpDq " trpBq Y trpCq.

2. For all e P D, if e " g 1 pyq for some y P E b , then bpyq P N ăα b since B is standard, hence dpeq " g 1ăα ˝bpyq P N ăα d since N d " g 1 pN b q. Otherwise e " f 1 pzq for some z P E c and we get the same result, hence D is standard.

3. If E b and E c are finite then E is finite.

4. Let D 1 be a monograph and g 2 : B Ñ D 1 and f 2 : C Ñ D 1 be morphisms such that f ˝g2 " g ˝f 2 . Since pg 1 , f 1 , Eq is the pushout of pE a , f, gq then there exists a unique function h from E to E d 1 such that g 2 " h ˝g1 and f 2 " h ˝f 1 . For e P E, if e " g 1 pyq for some y P E b then h ăα ˝dpeq " h ăα ˝g1ăα ˝bpyq " g 2ăα ˝bpyq " d 1 ˝g2 pyq " d 1 ˝hpeq, and similarly if e " f 1 pzq for some z P E c , hence h ăα ˝d " d 1 ˝h, i.e., h : D Ñ D 1 is a morphism in MonoGr, which proves that pg 1 , f 1 , Dq is a pushout of pA, f, gq.

Together with the existence of an initial object this implies that monographs have coproducts and that all finite diagrams have colimits. Proof. Assume f : A Ñ B is an epimorphism and let C " B, g " f and pf 1 , g 1 , Dq be the pushout of pA, f, gq defined in the proof of Lemma 6.4, then for all py, zq P E b ˆEc such that g 1 pyq " f 1 pzq, there exists a x 1 P E a such that y " f px 1 q; this is true in particular if z " y. But f 1 ˝f " g 1 ˝f hence f 1 " g 1 and therefore g 1 pyq " f 1 pyq, thence the existence of x 1 for any y; this proves that f is surjective. The converse is obvious.

Adhesivity

It is easy to see that the isomorphisms in MonoGr are exactly the bijective morphisms: if f : A Ñ B and g : B Ñ A are such that g ˝f " id A and f ˝g " id B , then f is bijective since the underlying functions of id A and id B are Id Ea and Id E b . Note that with Corollaries 6.3 and 6.6, this means that MonoGr (and all its full subcategories) is balanced, i.e., its isomorphisms are exactly the morphisms that are both mono and epimorphisms.

It is well known (see [START_REF] Adámek | Abstract and Concrete Categories -The Joy of Cats[END_REF]) that pushouts (and similarly pullbacks) are essentially unique in the sense that the pushouts of a given source pA, f, gq only differ by an isomorphism. Another general property of pushouts (see the notion of epi-sink in [1, 11.7]) can be expressed in the category Sets as follows: if pf 1 , g 1 , Eq is a pushout of pA, f, gq then any e P E has either a preimage y by f 1 or a preimage z by g 1 (f 1 and g 1 are said to be jointly surjective, see [3, 2.17]). Proof. Let pf 1 , g 1 , D 1 q be the pushout of pA, f, gq constructed in the proof of Lemma 6.4, so that pf 1 , g 1 , E d 1 q is a pushout of pE a , f, gq in Sets. If p1q is a pushout then there is an isomorphism i : D Ñ D 1 such that f 1 " i ˝k and g 1 " i ˝h, but i is bijective from E d to E d 1 , hence is an isomorphism in Sets, hence p2q is a pushout. Conversely, if p2q is a pushout then there is a bijection j : E d Ñ E d 1 such that f 1 " j ˝k and g 1 " j ˝h. Since h : B Ñ D and g 1 : B Ñ D 1 are morphisms in MonoGr then j ăα ˝d ˝h " j ăα ˝hăα ˝b " g 1ăα ˝b " d 1 ˝g1 " d 1 ˝j ˝h and similarly j ăα ˝d ˝k " d 1 ˝j ˝k. Since p2q is a pushout then h and k are jointly surjective, hence j ăα ˝d " d 1 ˝j. Hence j : D Ñ D 1 is an isomorphism in MonoGr and p1q is therefore a pushout. The proof for pullbacks is similar. Definition 6.8. A pushout square pA, B, C, Dq is a van Kampen square if for any commutative cube

C D A B C 1 D 1 A 1 B 1
where the back faces pA 1 , A, B 1 , Bq and pA 1 , A, C 1 , Cq are pullbacks, it is the case that the top face pA 1 , B 1 , C 1 , D 1 q is a pushout iff the front faces pB 1 , B, D 1 , Dq and pC 1 , C, D 1 , Dq are both pullbacks.

A category has pushouts along monomorphisms if all sources pA, f, gq such that f or g is a monomorphism have a pushout.

A category is adhesive [START_REF] Lack | Adhesive and quasiadhesive categories[END_REF] if it has pullbacks, pushouts along monomorphisms and all such pushouts are van Kampen squares. Proof. In any of these categories a commutative cube built on a pushout along a monomorphism as bottom face and with pullbacks as back faces, has an underlying cube in Sets that has the same properties by Lemma 6.7 and Corollary 6.3. Since Sets is an adhesive category (see [START_REF] Lack | Adhesive and quasiadhesive categories[END_REF]) the underlying bottom face is a van Kampen square, hence such is the bottom face of the initial cube by Lemma 6.7. We conclude with Theorems 6.2 and 6.5. is a pushout square.

Pushout complements

This notion is central in the Double-Pushout approach to algebraic graph transformation [START_REF] Rozenberg | Handbook of Graph Grammars and Computing by Graph Transformations[END_REF][START_REF] Ehrig | Fundamentals of Algebraic Graph Transformation[END_REF], where it is necessary to find a pushout complement to a graph (or an object in a category) in order to perform a rule-based transformation of this object. If a pushout complement exists in MonoGr then it is essentially unique since MonoGr is adhesive (see [START_REF] Lack | Adhesive and quasiadhesive categories[END_REF]Lemma 4.5]). But pushout complements may not exist, hence it is important to be able to test wether this is the case or not. In the category Graphs this test is known as the gluing condition (see [3, 3.9]). Before a similar test can be established for MonoGr, a remark on pushouts is necessary.

Since every pushout of a source pA, f, gq is isomorphic to the pushout built in Lemma 6.4, it is clear that any property of this particular construction that is stable by bijective morphisms is true of all pushouts pg 1 , f 1 , Dq of pA, f, gq.

We finally see that this function is a morphism. For all e P E d , if e P E c then d 1 ˝hpeq " d 1 ˝f 2 peq " f 2ăα ˝cpeq " h ăα ˝dpeq, otherwise there exists y P E b zf pE a q such that e " g 1 pyq and then d 1 ˝hpeq " d 1 ˝g2 pyq " g 2ăα ˝bpyq " h ăα ˝g1ăα ˝bpyq " h ăα ˝d˝g 1 pyq " h ăα ˝dpeq, hence d 1 ˝h " h ăα ˝d, so that h : D Ñ D 1 .

Note that C is finite whenever D is finite. This proves that this gluing condition is also valid in FMonoGr, and it is obviously also the case in StdMonoGr, O-MonoGr and O-StdMonoGr for every set O of ordinals.

Terminal objects and products

The construction of products of monographs and the related question of the existence of terminal objects (since products can be formed as pullbacks on terminal objects) are major differences between Graphs and MonoGr. By Corollary 5.7 it would be surprising if MonoGr had a terminal object, since such a monograph would be a type for all monographs, hence the corresponding signature would be in a sense universal. A more direct argument is given below. Definition 6.12 (monographs M α ). For every ordinal α ą 0 let a α be the functional relation that to every λ ă α associates the unique t0u-sequence of length λ. Let M α def " pα, a α q.

It is clear that M α is a standard α-monograph, since a α is a functional relation from α to α ăα , and a α p0q " ∅, i.e., 0 is a node of M α . Lemma 6.13. For all ordinals α ą 0, β and every β-monograph B, if there is a morphism f : M α Ñ B then α ď β.

Proof. α is the grade of M α , since for any λ ă α there is an edge of length λ, that is ℓ aα pλq " λ, hence a α pλq R α ăλ , and therefore M α is not a λ-monograph. By the existence of f the grade α of M α is less than the grade of B, hence α ď β. Theorem 6.14. MonoGr, StdMonoGr and FMonoGr have no terminal object.

Proof. Suppose that B is a terminal monograph, then there is an ordinal β such that B is a β-monograph, and there is a morphism from M β`1 to B. By Lemma 6.13 this implies that β `1 ď β, a contradiction. This still holds if B is standard since M β`1 is standard. And it also holds if B is a finite ω-monograph, since then β can be chosen finite, and then M β`1 is also a finite ω-monograph.

Products of monographs are difficult to define for the simple reason that we are not generally able to combine edges of different lengths in a reversible way. It is however possible to generalize the method for building products of graphs to some pairs of monographs.
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 23 Let MonoGr be the category of monographs and their morphisms. Let StdMonoGr be its full subcategory of standard monographs. For any set O of ordinals, let O-MonoGr (resp. O-StdMonoGr) be the full subcategory of O-monographs (resp.
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 61 Let B, C, D be α-monographs and f : B Ñ D, g : C Ñ D be morphisms, then there exists an α-monograph A and morphisms g1 : A Ñ B, f 1 : A Ñ C such that 1. trpAq Ď trpBq X trpCq,2. if D is standard then so is A, 3. if B and C are finite then so is A.
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 6263 The categories MonoGr, StdMonoGr, FMonoGr, O-MonoGr and O-StdMonoGr have pullbacks for every set O of ordinals. Proof. Trivial by Lemma 6.1 since, if trpBq Ď O and trpCq Ď O then trpAq Ď trpBq X trpCq Ď O. The monomorphisms in MonoGr are the injective morphisms.
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 64 For any ordinal α, α-monographs A, B, C and morphisms f : A Ñ B and g : A Ñ C, there exist an α-monograph D and morphisms f 1 : C Ñ D and g 1 : B Ñ D such that 1. trpDq " trpBq Y trpCq, 2. if B and C are standard then so is D, 3. if B and C are finite then so is D,
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 6566 The categories MonoGr, StdMonoGr, FMonoGr, O-MonoGr and O-StdMonoGr are finitely co-complete for every set O of ordinals. Proof. Trivial by Lemma 6.4, as above, and by [1, Theorem 12.4]. The epimorphisms in MonoGr are the surjective morphisms.

  monographs is a pushout (resp. pullback) in MonoGr iff the underlying square (resp. pullback) in Sets.

Theorem 6 . 9 .

 69 The categories MonoGr, StdMonoGr, FMonoGr, O-MonoGr and O-StdMonoGr are adhesive for every set O of ordinals.
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 6 10. A pushout complement of morphisms f : A Ñ B and g 1 : B Ñ D is an object C and a pair of morphisms f 1 : A Ñ C and g : C Ñ D such that

  ˆS; the elements of its domain Ω, that may be written Σ op , are called operator names and the elements of S, that may be written Σ srt , are called sorts. Σ is finite if both Ω and S are finite. Let Σ ds ˝Σ, then Σ ds poq and Σ rs poq are respectively the domain and range sorts of o P Ω.

3 

. Definition 4.1 (monadic signatures). A (monadic) signature is a function Σ : Ω Ñ S def " π 1 ˝Σ and Σ rs def " π 2

  Definition 4.2 (functor S).To every monograph T " pE t , tq we associate the set Ω t

def " tpe, ιq | e P E t ^ι ă ℓ t pequ of operator names, and the signature ST : Ω t Ñ E t ˆEt defined by ST pe, ιq def

Imposing the grade of A for α here would be a useless constraint.

It is believed that the symbol 8 represents the mythical snake Ananta Shesha (ananta is sanskrit for endless).

For the sake of simplicity, we do not allow the overloading of operator names as in[START_REF] Sannella | Foundations of Algebraic Specification and Formal Software Development[END_REF], which would be irrelevant anyway since we wish to abstract the syntax away, hence to consider signatures only up to isomorphisms.

The gluing condition provided in Theorem 6.11 below is divided in two parts. The first one, close to the condition on identification points in Graphs, ensures the existence of a pushout complement E c in Sets. The second one, close to the condition on dangling points, ensures the existence of a suitable map c for E c . Theorem 6.11 (gluing condition). The morphisms f : A Ñ B and g 1 : B Ñ D have a pushout complement in MonoGr iff (1) for all y, y 1 P E b , if g 1 pyq " g 1 py 1 q then y " y 1 or y P f pE a q, and

(2) for all y P E b and e P E d , if g 1 pyq | dpeq then e P g 1 pE b q or y P f pE a q.

Proof. Let α be an ordinal for D.

Only if part. Let g : A Ñ C and f 1 : C Ñ D be a pushout complement of f and g 1 . If D is the pushout constructed in the proof of Lemma 6.4, then property (1) is obvious since g 1 pyq " g 1 py 1 q entails y " y 1 , and by the definition of "; it is then easy to see that it remains true if D only isomorphic to this construction. Similarly we have that g 1 pyq " f 1 pzq entails y " z hence y P f pE a q, for all z P E c .

For all e P E d zg 1 pE b q, since pf 1 , g 1 , Dq is jointly surjective then there exists a z P E c such that f 1 pzq " e, hence dpeq " d ˝f 1 pzq " f 1ăα ˝cpzq. Then, for all y P E b , if g 1 pyq | dpeq then there exists a z 1 P E c such that z 1 | cpzq and g 1 pyq " f 1 pz 1 q, and therefore y P f pE a q, which proves property [START_REF] Bergman | An Invitation to General Algebra and Universal Constructions[END_REF].

If part. We first build a monograph C: let E c " E d zg 1 pE b zf pE a qq, and c " d| Ec . Suppose there exists an edge e P D such that dpeq is not an E csequence, then there exists y P E b zf pE a q such that g 1 pyq | dpeq, hence by [START_REF] Bergman | An Invitation to General Algebra and Universal Constructions[END_REF] we have e P g 1 pE b q and there exists y 1 P E b such that e " g 1 py 1 q, so that dpeq " d˝g 1 py 1 q " g 1ăα ˝bpy 1 q, hence there is a y 2 | bpy 1 q such that g 1 pyq " g 1 py 2 q and by (1) we get y " y 2 , hence y | bpy 1 q. If there were an x P E a such that y 1 " f pxq then bpy 1 q " f ăα ˝apxq and y would belong to f pE a q. Hence y 1 R f pE a q which proves that e P g 1 pE b zf pE a qq, i.e., that e R E c . Thus C " pE c , cq is a monograph.

Let f 1 be the canonical injection from E c to E d , it is obvious that f 1 is a morphism from C to D.

For all x P E a , if g 1 ˝f pxq R E c then there exists a y P E b zf pE a q such that g 1 pyq " g 1 pf pxqq, but by [START_REF] Adámek | Abstract and Concrete Categories -The Joy of Cats[END_REF] we have either y " f pxq or y P f pE a q, and both are impossible. Hence g 1 ˝f pE a q Ď E c and we let g be the function g 1 ˝f with codomain E c ; it is obvious that g is a morphism as are g 1 and f , and that f 1 ˝g " g 1 ˝f .

There remains to prove that pg 1 , f 1 , Dq is a pushout of pA, f, gq. Let g 2 : B Ñ D 1 and f 2 : C Ñ D 1 be morphisms such that f 2 ˝g " g 2 ˝f . If there is a morphism h : D Ñ D 1 such that f 2 " h ˝f and g 2 " h ˝g1 , then

• hpeq " f 2 peq for all e P E c , and

• hpg 1 pyqq " g 2 pyq for all y P E b .

But if g 1 pyq R E c , i.e., if y P E b zf pE a q then by (1) the value of y determined by g 1 pyq, so that h is unique. We now see that such a function exists since, for all e P E c X g 1 pE b q " g 1 ˝f pE a q, and all x P E a such that e " g 1 pyq where y " f pxq, we have f 2 peq " f 2 ˝f 1 ˝gpxq " f 2 ˝gpxq " g 2 ˝f pxq " g 2 pyq.

Definition 6.15. For any two α-monographs A and B, let

A and B are said to be ˆ-compatible if ℓ a ˝papxqq " ℓ b ˝pbpyqq for all px, yq P E aˆb . In this case let a ˆb be the functional relation that to all px, yq P E aˆb maps the pE a ˆEb q-sequence xapxq, bpyqy. The product of A and B is

Note that for all px, yq P E aˆb the sequences apxq and bpyq have the same length hence xapxq, bpyqy is also a sequence of this length (see Section 2), in this case an E a ˆEb -sequence. Of course, the product A ˆB is an α-monograph if and only if a ˆb Ď E aˆb ˆEăα aˆb , hence iff the xapxq, bpyqy are E aˆb -sequences.

Lemma 6.16. For any ˆ-compatible α-monographs A and B, pA ˆB, π 1 , π 2 q is a product in MonoGr.

Proof. A ˆB is a monograph since, for all px, yq P E aˆb and all ι ă ℓ aˆb px, yq " ℓ a pxq " ℓ b pyq, we have pa ˆbq px, yq ι " papxq ι , bpyq ι q and ℓ a papxq ι q " ℓ a ˝papxqq ι " ℓ b ˝pbpyqq ι " ℓ b pbpyq ι q, hence papxq ι , bpyq ι q P E aˆb and pa ˆbq px, yq is therefore an E aˆb -sequence. We also see that π 1 : A ˆB Ñ A is a morphism since π ăα 1 ˝pa ˆbq px, yq " apxq " a ˝π1 px, yq, and similarly π 2 : A ˆB Ñ B is a morphism.

For any monograph C and morphisms f : C Ñ A and g : C Ñ B, we have ℓ a pf pzqq " ℓ c pzq " ℓ b pgpzqq for all z P E c , hence h " xf, gy is a function from E c to E aˆb . We also have pa ˆbq ˝hpzq " xa ˝f pzq, b ˝gpzqy " xf ăα ˝cpzq, g ăα ˝cpzqy " h ăα ˝cpzq, hence h : C Ñ AˆB is a morphism. It is obvious that h is the unique morphism such that π 1 ˝h " f and π 2 ˝h " g. Theorem 6.17. The categories StdMonoGr, O-StdMonoGr and tαu-MonoGr have products for every set of ordinals O and every ordinal α.

Proof. By Lemma 6.16 since every pair A, B of standard monographs or tαumonographs is ˆ-compatible. Also, if A ˆB exists then obviously trpA ˆBq " trpAq X trpBq, hence the product of O-monographs is an O-monograph.