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Abstract

A simple notion of monograph is proposed that generalizes the stan-

dard notion of graph and can be drawn consistently with them. It is shown

that monadic many-sorted signatures can be represented by monographs,

and that the corresponding algebras are isomorphic to the monographs

typed by the corresponding signature monograph. Monographs therefore

provide a simple unifying framework for working with monadic algebras.

The simplicity of monographs is illustrated by deducing some of their

categorial properties from those of sets.

1 Introduction

Many different notions of graphs are used in mathematics and computer science:
simple graphs, oriented graphs, multigraphs, hypergraphs, etc. One favourite
notion in the context of graph rewriting is that also known as quivers, i.e.,
structures of the form pN,E, s, tq where N,E are sets and s, t are functions from
E (edges) to N (nodes), identifying the source and target tips of every edge (or
arrow). We may identify two or three reasons for this: the need to represent
data structures with pointers, the fact that the category of quivers is isomorphic
to the category of Σg-algebras, where Σg is the signature with two sorts nodes
and edges and two function symbols src and tgt of type edges Ñ nodes, and
possibly also the frequent use of category theory, since (small) categories are
quivers endowed with a partial binary operation on E. In conformity with this
tradition, by graph we mean quiver throughout this paper.

Category theory also provides a representation of graphs as functors from the
category (where the loops are identities) to the category Sets,
so that the category Graphs is isomorphic to a functor category [3]. Such
representations of graphs are useful for deducing in a simple way some properties
of the category Graphs. This last isomorphism is actually derived from the
previous one, by representing Σg as a category.

But to conveniently represent elaborate data structures it is often necessary
to enrich the structure of graphs with other objects: nodes or edges may be
labelled with elements from a fixed set, or with the elements of some algebra,
or graphs may be typed by another graph (i.e., a graph comes with a morphism
from itself to this other graph, considered as its type). An interesting example
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can be found in [3] with the notion of E-graphs, since some of these new objects
are also considered as edges or nodes. More precisely, an E-graph is an algebra
whose signature Σe can be represented by the following graph:

edgesg nodesg

edgese edgesn

nodesv

srcg

tgtgsrce srcn

tgte tgtn

The names given to the sorts and function symbols help to understand the
structure of the Σe-algebras: the edgesg relate the nodesg among themselves,
the edgesn relate the nodesg to the nodesv, and the edgese relate the edgesg
to the nodesv. These extra edges allow to attach as many values (elements
of nodesv) to edges and nodes of the inner graph. But then we see that in
E-graphs some edges can be adjacent to other edges. This is non standard, but
we may still accept such structures as some form of graph, if only because we
understand how they can be drawn.

Hence the way of generalizing the notion of graphs seems to involve a gener-
alization of the signature of graphs considered as algebras. This path has been
followed by Michael Löwe in [5], where a graph structure is defined as a monadic
many-sorted signature. Indeed in the examples above, and in many examples
provided in [5], all function symbols have arity 1 and can therefore be considered
as edges from their domain to their range sort. Is this the reason why they are
called graph structures? But the example above shows that, if Σe-algebras are
interpreted as graphs of some form, these are very different from the graph Σe.
Besides, it is not convenient that our understanding of such structures should be
based on syntax, i.e., on the particular names given to objects in the signature.

Furthermore, it is difficult to see how the algebras of some very simple
monadic signatures can be interpreted as graphs of any form. Take for instance
Σg and reverse the target function to tgt : nodes Ñ edges. Then there is a
symmetry between the sorts nodes and edges, which means that in an algebra
of this signature nodes and edges would be objects of the same nature. Is this
still a graph? Can we draw it? Worse still, if the two sorts are collapsed into
one, does it mean that an edge can be adjacent to itself at both ends?

We may address these problems by restricting graph structures to some class
of monadic signatures whose algebras are guaranteed to behave in an orthodox
way, say by exhibiting clearly separated edges and nodes. But this could be
prone to arbitrariness, and it would still present another drawback: that the
notion of graph structure does not easily give rise to a category. Indeed, it is
difficult to define morphisms between algebras of different signatures, if only
because they can have any number of carrier sets.

The approach adopted here is rather to reject any structural distinction
between nodes and edges, to gather them all in a single carrier set and to rely on
a unique function to distinguish them. For this reason, the resulting structures
are called monographs. The definitions of monographs and their morphisms,
given in Section 2, are thus quite simple although for reasons that will only be
made clear in Section 4 we have to resort to ordinals.
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Monographs are not algebras, they may not contain nodes, they may con-
tain self-loops, but they can be drawn as proposed in Section 3, provided of
course that they are finite (in a strong sense). In particular, such drawings will
correspond to the standard way of drawing a graph, for those monographs that
can be identified with graphs.

The relationship between monographs and graph structures (monadic sig-
natures) is explored in Section 4. This gives rise to an isomorphism-dense em-
bedding of monographs into many-sorted monadic signatures, that will expose
a fundamental difference between them. This result is used in Section 5 to ex-
hibit isomorphisms between the categories of (partitioned) algebras of all graph
structures and all slice categories of monographs, i.e., the categories of typed
monographs. In this sense monographs provide a complete representation of
graph structures.

As a result of their simplicity the category of monographs and some of its
subcategories can easily be shown to share a number of properties with Graphs,
as illustrated in Section 6.

2 Definitions and Notations

For any sets A, B, any relation r Ď AˆB and any subset X Ď A, we write rrXs
for the set ty P B | x P X ^ px, yq P ru. For any x P A, by abuse of notation we
write rrxs for rrtxus. If r is functional we write rpxq for the unique element of
rrxs. We write r´1 for the relation tpy, xq | px, yq P ru Ď B ˆ A.

A function f : A Ñ B is a morphism in the category Sets; it therefore
consists of a domain A, a codomain B and a functional relation r Ď A ˆ B.
The domain A must be the set tx | px, yq P ru, but the codomain B may be
any superset of the image rrAs “ ty | px, yq P ru. Functions may therefore be
composed only if the domain of the left operand is equal to the codomain of
the right operand. However, the standard notations for functions will also be
used with functional relations. In particular, they may be composed whenever
the domain of the left operand includes the image of the right operand. When
a functional relation is composed with a function, it is always the underlying
functional relation that is meant.

More generally, any object and its obvious underlying object will be written
similarly, i.e., the forgetful functor will be omitted, whenever the ambiguity can
easily be lifted from the context. Category theoretic concepts and notations
will be consistent with [1], unless stated otherwise. In particular, idA denotes
the identity morphism of the object A in any category, except in Sets where
it is denoted IdA (the identity function of A) as a way of reminding the reader
that A is a set. In Sets the standard product ˆ, projections π1 and π2 and
coproduct ` are used. For functional relations f , g with the same domain A, let
pf, gqpxq

def
“ pfpxq, gpxqq for all x P A; if f : A Ñ B and g : A Ñ C are functions

then pf, gq : A Ñ B ˆ C is the unique function such that π1 ˝ pf, gq “ f and
π2 ˝ pf, gq “ g.

Isomorphism between objects in a category, or between categories, is denoted
by the symbol ». For any two categories A and B, a functor F : A Ñ B

is faithful (resp. full) if F is injective (resp. surjective) from the set of A-
morphisms from X to Y to the set of B-morphisms from FX to FY , for all
A-objects X and Y . If F is faithful and injective on objects, then it is an
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embedding. F is isomorphism-dense if for every B-object Y there exists an
A-object X such that FX » Y . Categories A and B are equivalent, written
A ≅ B, if there is a full, faithful and isomorphism-dense functor from one to
the other.

For any object T of A, the slice category A{T has as objects the morphisms
of codomain T of A, as morphisms from object f : A Ñ T to object g : B Ñ T

the morphisms k : A Ñ B of A such that g ˝ k “ f , and the composition of
morphisms in A{T is defined as the composition of the underlying morphisms
in A [3]. It is easy to see that idT is a terminal object of A{T .

An ordinal is a set α such that every element of α is a subset of α, and such
that the restriction of the membership relation P to α is a strict well-ordering
of α (every non empty subset of α has a minimal element). Every member of
an ordinal is an ordinal, and we write λ ă α for λ P α. For any two ordinals
α, β we have either α ă β, α “ β or α ą β. Every ordinal α has a successor
α Y tαu, written α ` 1. For these properties and others we refer to [8]. Natural
numbers n are identified with finite ordinals, so that n “ t0, 1, . . . , n ´ 1u.

Definition 2.1 (sequences of ordinal length). For any set E and ordinal λ, an
E-sequence s of length λ is an element of Eλ, i.e., a function s : λ Ñ E. For
any s P Eλ and ι ă λ, the image of ι by s is written sι. If λ is finite and non
zero then s can be described as s “ s0 ¨ ¨ ¨ sλ´1. For any x P E we write x | s
and say that x occurs in s if there exists ι ă λ such that sι “ x.

For any ordinal α, let
Eăα def

“
ď

λăα

Eλ.

For any set F and function f : E Ñ F , let făα : Eăα Ñ Făα be the function
defined by făαpsq

def
“ f ˝ s for all s P Eăα.

Note that E0 “ t∅u, i.e., ∅ is the only sequence of length 0, and that for
any s P Eăα and any ordinal β ě α, we have s P Eăβ and făβpsq “ făαpsq.
It is obvious that, if f : E Ñ F and g : F Ñ G then pg ˝ fqăα “ găα ˝ făα.
If s and s1 are respectively E- and F -sequences both of length λ, then ps, s1q
is an pE ˆ F q-sequence of length λ, and then πăα

1 ps, s1q “ π1 ˝ ps, s1q “ s and
similarly πăα

2 ps, s1q “ s1 for all α ą λ. If f : E Ñ F and g : E Ñ G then
pf, gqăαpsq “ pf, gq ˝ s “ pf ˝ s, g ˝ sq “ pfăαpsq, găαpsqq for all s P Eăα, hence
pf, gqăα “ pfăα, găαq.

Obviously Eăω can be identified with the carrier set of the free monoid E˚,
but in the sequel we have no use of any monoid structure.

Definition 2.2 (monographs). For any ordinal α, an α-monograph is a pair
pE, aq where E is a set whose elements are called edges of A, and a Ď E ˆEăα

is a functional relation, called the map of A. A pair A “ pE, aq is a monograph
if it is an α-monograph for some ordinal α; we then say that α is an ordinal
for A. The grade of A is the smallest ordinal for A. Monographs will usually
be denoted by upper-case letters (A, B, . . . ), their functional relation by the
corresponding lower-case letter (a, b, . . . ) and their set of edges Ea, Eb, . . .

The length ℓapxq of an edge x P Ea is the length of apxq, i.e., the unique

ordinal λ such that apxq P Eλ. The trace of A is the set trpAq
def
“ ℓarEas. For

any set O of ordinals, an O-monograph A is a monograph such that trpAq Ď O.
An edge x is adjacent to y P Ea if y | apxq. A self-loop is an edge x that

is adjacent only to x, i.e., such that apxq is a txu-sequence. A node is an edge
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of length 0, and the set of nodes of A is written Na. A is standard if apxq is a
Na-sequence for all x P Ea.

A morphism from monograph A “ pEa, aq to monograph B “ pEb, bq is a
function f : Ea Ñ Eb such that făα ˝ a “ b ˝ f , where α is any1 ordinal for A.

It is obvious that A is an α-monograph iff trpAq Ď α, hence the notion of
O-monograph generalizes that of α-monograph without ambiguity (even though
ordinals are sets of ordinals). It is also easy to see that there exists an ordinal
for any two monographs, and indeed for any set of monographs (e.g. the sum
of their grades).

Note that a monograph A is essentially defined by its map a, since the set
Ea is the domain of a. But a is only a set of pairs and not a function, there is
no codomain to artificially separate monographs that have the same map. This
means in particular that any α-monograph is a β-monograph for all β ě α.
But A is not defined by its adjacency relation y | apxq on edges, since the
sequences apxq may not be uniquely determined by this relation. Also note that
the adjacency relation may not be symmetric: a node is never adjacent to any
edge, while many edges may be adjacent to a node.

We easily see that the length of edges are preserved by morphisms: if f is
a morphism from A to B then for all x P Ea, ℓbpfpxqq is the length of the Eb-
sequence b˝ fpxq “ făα ˝apxq, which is the length of the Ea-sequence apxq, i.e.,
ℓapxq “ ℓbpfpxqq. Hence trpAq Ď trpBq, and the equality holds if f is surjective.
This also means that the grade of B is at least that of A, hence that every
ordinal for B is an ordinal for A. We also see that

f´1rNbs “ tx P Ea | ℓbpfpxqq “ 0u “ Na

and hence, if b ˝ fpxq is a Nb-sequence then apxq is a Na-sequence, so that A is
standard whenever B is standard.

Given morphisms f from A to B and g from B to C, we see that g ˝ f is a
morphism from A to C by letting α be an ordinal for B, so that

pg ˝ fqăα ˝ a “ găα ˝ făα ˝ a “ găα ˝ b ˝ f “ c ˝ g ˝ f.

Besides, the identity function IdEa
of Ea is obviously a morphism from A to A.

Definition 2.3. Let MonoGr be the category of monographs and their mor-
phisms. Let StdMonoGr be its full subcategory of standard monographs. For
any set O of ordinals, let O-MonoGr (resp. O-StdMonoGr) be the full sub-
category of O-monographs (resp. standard O-monographs).

A monograph A is finite if Ea is finite. Let FMonoGr be the full subcategory
of finite ω-monographs.

3 Drawing Monographs

Obviously we may endeavour to draw a monograph A only if Ea is finite and if
its edges have finite lengths, i.e., if A is a finite ω-monograph. We can easily
identify any graph G “ pN,E, s, tq as the standard t0, 2u-monograph pN `E, gq
where gpxq “ ∅ for all x P N and gpeq “ speqtpeq for all e P E. If we require that

1Imposing the grade of A for α here would be a useless constraint.
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such monographs should be drawn as their corresponding graphs, then a node
should be represented by a bullet and an edge of length 2 by an arrow
joining its two adjacent nodes. But the adjacent edges may not be nodes and
there might be more than 2 of them, hence we adopt the following convention:
an edge e of length at least 2 is represented as a sequence of connected arrows
with an increasing number of tips

x0 x1 x2 x3

(where apeq “ x0x1x2x3 ¨ ¨ ¨ ) and such that any arrow should enter xi at the
same angle as the next arrow leaves xi. This is important when xi is a node
since several adjacent edges may traverse the corresponding bullet, and they
should not be confused. For the sake of clarity we will also represent symmetric
adjacencies by a pair of crossings rather than a single one, e.g., if apeq “ xe1y

and ape1q “ xey, where x and y are nodes, the drawing may be

but not

As is the case of graphs, monographs may not be planar and drawing them
may require crossing edges that are not adjacent; in this case no arrow tip
is present at the intersection and no confusion is possible with the adjacency
crossings. However, it may seem preferable in such cases to erase one arrow in

the proximity of the other, as in .
There remains to represent the edges of length 1. Since apeq “ x is standardly

written a : e ÞÑ x, the edge e will be drawn as

x

In order to avoid confusions there should be only one arrow out of the thick
dash, e.g., if apeq “ e1 and ape1q “ ex where x is a node, the drawing may be

but not

since this last drawing may be interpreted as the monograph apeq “ x and
ape1q “ ee, that is not isomorphic to the intended monograph.

Possible drawings and names for the self-loops of length 1 to 4 are given in
Figure 1. The Clover can easily be generalized to greater lengths.

It is sometimes necessary to name the edges in a drawing. We may then
adopt the convention used for drawing diagrams in a category: the bullets are
replaced by the names of the corresponding nodes, and arrows are interrupted
to write their name at a place free from intersection, as in

x y
e e1

Note that no confusion is possible between the names of nodes and those of
other edges, e.g., in
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the Fixpoint the Snake2 the Pretzel the Clover

Figure 1: The self-loops

x

y

z

it is clear that x and z are nodes and y is an edge of length 3.
We may also draw typed monographs, i.e., monographs A equipped with a

morphism f from A to a monograph T , considered as a type. Then every edge
e P Ea has a type fpeq that can be written at the proximity of e. For instance,
let T be the monograph

uv

then a monograph typed by T is drawn with labels u and v as in

u

u

v

v
vu

u

Of course, knowing that f is a morphism sometimes allows to deduce the
type of an edge, possibly from the types of adjacent edges. In the present case,
indicating a single type would have been enough to deduce all the others.

These figures have been produced with the TikZ package [9].

4 Monadic Signatures as Monographs

As mentioned in Section 1, graph structures, i.e., monadic many-sorted signa-
tures, can be represented as graphs. More precisely, there is an obvious isomor-
phism between the category Graphs and the category of monadic signatures
defined below3.

Definition 4.1 (monadic signatures). A (monadic) signature is a function Σ :
F Ñ S ˆ S; the elements of its domain F , that may be written Σf , are called

2It is believed that the symbol 8 represents the mythical snake Ananta Shesha (ananta is
sanskrit for endless).

3For the sake of simplicity, we do not allow the overloading of function symbols as in [7],
which would be irrelevant anyway since we wish to abstract the syntax away, hence to consider
signatures only up to isomorphisms.
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function symbols and the elements of S, that may be written Σs, are called sorts.
Σ is finite if both F and S are finite. Let Σd

def
“ π1 ˝ Σ and Σr

def
“ π2 ˝ Σ, then

Σdpfq and Σrpfq are respectively the domain and range sorts of f P F .
A morphism m from signature Σ to signature Σ1 is a pair m “ pmf ,msq of

functions, where mf : Σf Ñ Σ1
f and ms : Σs Ñ Σ1

s, such that

Σ1 ˝ mf “ pms ˆ msq ˝ Σ.

Let idΣ
def
“ pIdΣf

, IdΣs
q and given two morphisms m : Σ Ñ Σ1 and n : Σ1 Ñ Σ2,

let n ˝ m
def
“ pnf ˝ mf , ns ˝ msq; then idΣ : Σ Ñ Σ and n ˝ m : Σ Ñ Σ2

are morphisms. Let MonSig be the category of monadic signatures and their
morphisms, and FMonSig its full subcategory of finite signatures.

The obvious isomorphism from MonSig to Graphs maps every monadic
signature Σ : F Ñ S ˆ S to the graph pS, F,Σd, Σrq. But we have seen in
Section 1 on E-graphs that this representation of the monadic signature Σe

bears no relation with the expected graphical representations of E-graphs. It
would be more natural to represent Σe as an E-graph, and possibly any monadic
signature Σ as a monograph.

Since the image ΣpF q is a subset of S ˆ S, it can be viewed as a binary
relation on S, hence there exists a monograph with S as set of edges whose
adjacency relation is exactlyΣpF q. However, this monograph may not be unique
since, as mentioned in Section 2, a monograph is not generally determined by
its adjacency relation. Similarly, the orientation of edges in E-graphs is not
determined by the signature Σe, it is only a convention given by the particular
names of its function symbols.

For this reason it is more convenient to define a function from monographs
to monadic signatures: any monograph determines a unique adjacency relation
that can then be interpreted as a signature.

Definition 4.2 (functor S). To every monograph T “ pEt, tq we associate the
set

Ft
def
“ tpe, ιq | e P Et ^ ι ă ℓtpequ

of function symbols, and the signature ST : Ft Ñ Et ˆ Et defined by

ST pe, ιq
def
“ pe, tpeqιq for all pe, ιq P Ft.

To every morphism of monographs f : T Ñ U we associate the morphism Sf :
ST Ñ SU defined by

• pSfqfpe, ιq
def
“ pfpeq, ιq P Fu for all pe, ιq P Ft, and

• pSfqs
def
“ f (as a function from Et to Eu).

Note that the signature ST is finite iff T is a finite ω-monograph.

Lemma 4.3. S is an embedding from MonoGr to MonSig.

Proof. We first prove that S is a functor. For every monograph T we have
pSidT qf “ IdFt

and pSidT qs “ IdEt
, hence SidT “ pIdFt

, IdEt
q “ idST . For

every morphisms f : T Ñ U in MonoGr, we first see that Sf is a morphism
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in MonSig as claimed in Definition 4.1. Indeed, for all pe, ιq P Ft we have
SU ˝ pSfqfpe, ιq “ SUpfpeq, ιq “ pfpeq, pu ˝ fpeqqιq and

`

pSfqs ˆ pSfqs
˘

˝ ST pe, ιq “ pf ˆ fq ˝ pe, tpeqιq “ pfpeq, fptpeqιqq.

Let α be an ordinal for T and U , then fptpeqιq “ pfăα ˝ tpeqqι “ pu ˝ fpeqqι,
hence SU ˝ pSfqf “

`

pSfqs ˆ pSfqs
˘

˝ ST , and therefore Sf : ST Ñ SU .
Then, for every morphism g : U Ñ V in MonoGr, we have pSpg ˝ fqqs “

g ˝ f “ pSgqs ˝ pSfqs and for every pe, ιq P Ft we have

pSpg ˝ fqqfpe, ιq “ pg ˝ fpeq, ιq “ pSgqfpfpeq, ιq “ pSgqf ˝ pSfqfpe, ιq,

hence Spg˝fq “ Sg˝Sf , and S is therefore a functor from MonoGr to MonSig.
We now prove that S is injective on objects. Let T , U be monographs such

that ST “ SU , then Et “ Eu and Ft “ Fu, so that ℓtpeq “ ℓupeq for all e P Et.
We also have ST pe, ιq “ SUpe, ιq for all pe, ιq P Ft, hence tpeqι “ upeqι for all
ι ă ℓtpeq, so that t “ u and therefore T “ U .

Finally, S is faithful since for all f, g : T Ñ U such that Sf “ Sg we have
f “ pSfqs “ pSgqs “ g.

The next lemma uses the Axiom of Choice through its equivalent formulation
known as the Numeration Theorem [8].

Lemma 4.4. S is isomorphism-dense: for every monadic signature Σ there
exists a monograph T such that ST » Σ.

Proof. Let Σ : F Ñ S ˆ S be a monadic signature and for every s P S let
Os “ tf P F | Σdpfq “ su. By the Numeration Theorem there exists an ordinal
λs equipollent to Os, i.e., such that there exists a bijection σs : λs Ñ Os. Let
tpsq be the S-sequence of length λs defined by tpsqι “ Σr ˝ σspιq for all ι P λs

(so that ℓtpsq “ λs), and let T be the monograph pS, tq.
Let ms “ IdS , let mf be the function that to every ps, ιq P Ft maps σspιq P F ,

and let m “ pmf ,msq. We first see that m is a morphism from ST to Σ since
for all ps, ιq P pST qf “ Ft we have

pms ˆ msq ˝ ST ps, ιq “ pIdS ˆ IdSqps, tpsqιq “ ps,Σr ˝ σspιqq,

but σspιq P Os hence Σdpσspιqq “ s, and therefore

ps,Σr ˝ σspιqq “ pΣd ˝ σspιq, Σr ˝ σspιqq “ Σ ˝ σspιq “ Σ ˝ mfps, ιq.

We now prove that m is an isomorphism, i.e., that ms and mf are bijective.
For any ps, ιq, ps1, κq P Ft such that mfps, ιq “ mfps

1, κq, then σspιq “ σs1 pκq
hence s “ Σd ˝σspιq “ Σd ˝ σs1 pκq “ s1 and therefore ι “ κ since σs is injective.
For any f P Σ, let s “ Σdpfq, so that f P Os, and let ι “ σ´1

s pfq, then ps, ιq P Ft

(since ι ă λs “ ℓtpsq) and mfps, ιq “ σspιq “ f . Hence mf is bijective, and so is
ms, which yields ST » Σ.

The reason why monographs require edges of ordinal length now becomes
apparent: the length of an edge s is the cardinality of Os, i.e., the number of
function symbols whose domain sort is s, and no restriction on this cardinality
is ascribed to signatures. In finite signatures this cardinal is obviously finite,
which trivially yields the following consequence.
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Corollary 4.5. S is an isomorphism-dense embedding from FMonoGr to
FMonSig.

We now show on an example that the functor S is not full, hence is not an
equivalence between the categories MonoGr and MonSig.

Example 4.6. The monadic signature Σg has two function symbols src, tgt,
two sorts in Sg “ tnodes, edgesu and is defined by:

Σg : src, tgt ÞÑ pedges, nodesq.

Then Onodes “ ∅ and Oedges “ tsrc, tgtu has 2 elements. Let σ : 2 Ñ Oedges

be the bijection defined by

σ : 0 ÞÑ src, 1 ÞÑ tgt

and t be the map defined by

tpnodesq “ ∅, tpedgesq “ nodesnodes

then Tg “ pSg, tq is a monograph. The signature STg has the same sorts as Σg,
two function symbols pedges, 0q, pedges, 1q and is defined by

STg : pedges, 0q, pedges, 1q ÞÑ pedges, nodesq.

Hence STg is indeed isomorphic to Σg. However, the only automorphism of Tg

is idTg
, while Σg has a non trivial automorphism m “ ppsrc tgtq, IdSg

q (in
cycle notation), hence S is not surjective on morphisms.

This automorphism reflects the fact that Σg does not define an order between
its function symbols src and tgt. The orientation of edges as arrows from src

to tgt is only a matter of convention that is reflected in the choice of σ above.
This contrasts with monographs, where the edges are inherently oriented by the
ordinals in their length. In the translation from MonoGr to MonSig, the
orientations of edges are necessarily lost. Note however that in this example,
since src and tgt have the same range sort, the other obvious choice for σ

yields the same monograph Tg.

We therefore see that in most cases there are many distinct, non isomorphic
monographs that faithfully represent a single signature, depending on the chosen
orientations of their edges. Monographs carry more information than signatures,
but the additional information is precisely the kind of information that has to be
provided by means of syntax when a monadic signature is intended as a graph
structure. By observing the examples given in [5, Section 3.1], we see that this
syntactic information mostly consists in an order on function symbols, given
either by indices taken in N or by calling them “source” and “target”.

We also observe in Examples 3.1 to 3.6 a separation of sorts into domain and
range sorts. It is easy to see that a monograph T is standard iff the signature
ST is separated, i.e., no sort occurs both as a domain and a range sort. Thus
the range sorts are the nodes of T and the domain sorts are edges of diverse
lengths that relate nodes. Only Example 3.7, defining the notion of ALR-graph,
is non standard and requires a more detailed examination.
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Example 4.7. Let Σa be the monadic signature defined by the set of sorts Sa “
tV, E, V-Ass, E-Ass, Graph, Morphismu and the following function symbols:

Σa : s, t ÞÑ pE, Vq
sV, tV ÞÑ pV-Ass, Vq
sE, tE ÞÑ pE-Ass, Eq
sG, tG ÞÑ pMorphism, Graphq

abstractV ÞÑ pV, Graphq
abstractE ÞÑ pE, Graphq

abstractV-Ass ÞÑ pV-Ass, Morphismq
abstractE-Ass ÞÑ pE-Ass, Morphismq

An ALR-graph is a Σa-algebra. It is not very clear how such structures can be
considered as graphs, especially because there is no conventional way of ordering
the “abstract” function symbols w.r.t. sources and targets. Textual explanations
are provided in [5] to help the reader’s understanding of ALR-graphs. The ex-
planations given below on the corresponding monograph (where abstract function
symbols are placed between sources and targets) are much simpler and almost
superfluous. The set of edges is of course Sa, and the map ta is defined by:

tapGraphq “ ∅ graphs are represented by nodes
tapVq “ Graph to every vertex is associated a graph
tapEq “ V GraphV an edge joins two vertices through a graph
tapMorphismq “ GraphGraph a morphism joins two graphs
tapV-Assq “ V MorphismV a vertex association joins two vertices

through a morphism
tapE-Assq “ E MorphismE an edge association joins two edges

through a morphism.

We thus see that specifying a monadic signature by a monograph may yield
a better understanding of the structure of the corresponding algebras, at least if
these are meant as graph structures. The next section shows that this is always
possible.

5 Monadic Algebras as Typed Monographs

Now that graph structures have been embedded in monographs, we may investi-
gate the relation that the corresponding algebras bear with these monographs.
We first need a definition of Σ-algebras and Σ-homomorphisms that, for the
sake of simplicity, are restricted to monadic signatures. We will also use the
standard reduct functors (see [10]) adapted to Definition 4.1.

Definition 5.1 (Σ-algebras and functor Rm). For any monadic signature Σ :
F Ñ S ˆ S, a Σ-algebra A is a tuple ppAsqsPS , pfAqfPF q where pAsqsPS is an
S-indexed family of sets and fA : AΣdpfq Ñ AΣrpfq is a function for all f P F .
A is partitioned if s ‰ s1 ñ As X As1 “ ∅ for all s, s1 P S.

A Σ-homomorphism h : A Ñ B from a Σ-algebra A to a Σ-algebra B is an
S-indexed family of functions phsqsPS where hs : As Ñ Bs for all s P S, such
that

fB ˝ hΣdpfq “ hΣrpfq ˝ fA

11



for all f P F . Let idA : A Ñ A be the Σ-homomorphism pIdAs
qsPS, and for

any Σ-homomorphism h : A Ñ B and k : B Ñ C, let k ˝ h : A Ñ C be the
Σ-homomorphism pks ˝ hsqsPS . Let Σ-Alg be the category of Σ-algebras with
Σ-homomorphisms as their morphisms, and Σ-PAlg be its full subcategory of
partitioned algebras.

Given another signature Σ1 : F 1 Ñ S1 ˆ S1 and a morphism m : Σ1 Ñ Σ in
MonSig, the m-reduct functor Rm : Σ-Alg Ñ Σ1-Alg is defined by

• RmA
def
“ ppAmsps1qqs1PS1 , pmfpf

1qAqf 1PF 1 q for every Σ-algebra A, and

• Rmh
def
“ phmsps1qqs1PS1 for every Σ-homomorphism h.

Following Example 4.6, we notice that Tg “ is the terminal graph.
Besides, it is easy to see that the monographs A such that there exists a mor-
phism from A to Tg are exactly the standard t0, 2u-monographs, that have been
identified to graphs in Section 3. But it is obvious that for any standard t0, 2u-
monograph A there is a unique morphism from A to Tg (the nodes of A are
mapped to the node of Tg and its edges of length 2 are mapped to the loop of
Tg). In other words, graphs can be identified to the objects of the slice category
MonoGr{Tg, i.e., the monographs typed by Tg. But they can also be identified
with the Σg-algebras, and hence to the STg-algebras according to the following
obvious isomorphisms.

Lemma 5.2. If Σ » Σ1 then Σ-Alg » Σ1-Alg and Σ-PAlg » Σ1-PAlg.

Proof. If there are inverse morphisms m : Σ1 Ñ Σ and m1 : Σ Ñ Σ1 then there
are inverse functors Rm : Σ-Alg Ñ Σ1-Alg and Rm1 : Σ1-Alg Ñ Σ-Alg since
Rm1 ˝ Rm “ Rm˝m1 “ RidΣ

is the identity functor of Σ-Alg, and symmetrically
Rm ˝ Rm1 is the identity functor of Σ1-Alg. For every partitioned Σ-algebra A

the Σ1-algebra RmA is partitioned since ms is injective, hence the restrictions
of Rm and Rm1 to partitioned algebras are also inverse to each other.

Note that Σ-Alg is not isomorphic to Σ-PAlg since many distinct algebras
may be Σ-isomorphic to the same partitioned algebra. There is however a trivial
equivalence between these categories.

Lemma 5.3. For every signature Σ, Σ-PAlg ≅ Σ-Alg

Proof. Given Σ : F Ñ S ˆ S and a Σ-algebra A, we consider the Σ-algebra A1

defined by A1
s “ As ˆ tsu for all s P S, and fA

1

is the function from A1
Σdpfq to

A1
Σrpfq that maps every px,Σdpfqq to pfApxq, Σrpfqq, for all f P F . It is then

obvious that A1 is partitioned and that the projection on the first coordinate is
an isomorphism from A1 to A.

To summarize, we can say that the monographs typed by Tg can be iden-
tified with the STg-algebras. We are now going to generalize this fact to all
monographs but, of course, we need to provide a precise meaning to this identi-
fication. We first establish an isomorphism of categories through the following
functor.

Definition 5.4 (functor AT ). Given a monograph T , we define the function AT

that maps every object f : A Ñ T of MonoGr{T to the partitioned ST -algebra
AT f defined by

12



• pAT fqe
def
“ f´1res for all e P Et, and

• pe, ιqAT f pxq
def
“ apxqι for all x P f´1res and pe, ιq P Ft.

Besides, AT also maps every morphism k : f Ñ g of MonoGr{T , where f :
A Ñ T and g : B Ñ T , to the ST -homomorphism ATk from AT f to AT g defined
by

pATkqe
def
“ k|f´1res for all e P Et.

The ST -algebra A “ AT f can be pictured as follows.

e tpeqιpe, ιq :ST

x apxqιA Ea
pe,ιqA

f f

Of course, there remains to prove that A is indeed an algebra, i.e., that pe, ιqA

is a function from f´1res to f´1rtpeqιs. This is part of proving that AT is an
isomorphism from the slice category of monographs typed by T to the category
of partitioned ST -algebras.

Theorem 5.5. For every monograph T , MonoGr{T » ST -PAlg.

Proof. Let Σ “ ST , so that for all pe, ιq P Ft we have Σdpe, ιq “ e P Et and
Σrpe, ιq “ tpeqι P Et (see Definition 4.2).

We first prove that AT maps objects of MonoGr{T to objects of Σ-PAlg.
For any f : A Ñ T , let α be an ordinal for A and A “ AT f . For every pe, ιq P Ft

and every x P f´1res “ AΣdpe,ιq, we have

fppe, ιqApxqq “ fpapxqιq “ pfăα ˝ apxqqι “ pt ˝ fpxqqι “ tpeqι “ Σrpe, ιq,

hence pe, ιqA is a function from AΣdpe,ιq to f´1rΣrpe, ιqs “ AΣrpe,ιq, so that A

is indeed a Σ-algebra. Besides, A is obviously partitioned.
We next prove that AT maps morphisms of MonoGr{T to morphisms of

Σ-PAlg with suitable domains and codomains. For any morphism k : f Ñ g of
MonoGr{T , where f : A Ñ T and g : B Ñ T , let A “ AT f , B “ AT g and α

an ordinal for A and B. By definition k is a morphism from A to B such that
g ˝ k “ f , hence for all e P Et and x P Ae “ f´1res we have

gppAT kqepxqq “ g ˝ k|f´1respxq “ fpxq “ e,

hence pAT kqe is a function from Ae to g´1res “ Be. Then, for all pe, ιq P Ft and
for all x P Ae “ AΣdpe,ιq we have

pe, ιqB ˝ pAT kqepxq “ pe, ιqB ˝ kpxq

“ pb ˝ kpxqqι

“ pkăα ˝ apxqqι

“ kpapxqιq

“ k ˝ pe, ιqApxq

“ pAT kqΣrpe,ιq ˝ pe, ιqApxq,
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hence ATk is a Σ-homomorphism from A to B.
We then prove that identities and morphism composition are preserved by

AT . For every object f : A Ñ T of MonoGr{T , its identity idf : f Ñ f is
idA : A Ñ A, hence for all e P Et we have pAT idf qe “ idA|f´1res “ IdAe

, where
A “ AT f , hence AT idf “ idA.

For any morphisms k : f Ñ g and l : g Ñ h of MonoGr{T , where f : A Ñ
T , g : B Ñ T and h : C Ñ T , we have for all e P Et that

pAT lqe ˝ pAT kqe “ l|g´1res ˝ k|f´1res “ pl ˝ kq|f´1res “ pAT pl ˝ kqqe,

hence AT pl ˝ kq “ AT l ˝AT k. Thus AT is indeed a functor from MonoGr{T to
ST -PAlg, and we next see that it is an isomorphism.

AT is injective on objects. Let f : A Ñ T , g : B Ñ T , A “ AT f and
B “ AT g such that A “ B, then f´1res “ Ae “ Be “ g´1res for all e P Et,
hence Ea “

Ť

ePEt
f´1res “

Ť

ePEt
g´1res “ Eb and f “ g as functions from

Ea to Et. We also have, for all pe, ιq P Ft and all x P f´1res, that apxqι “
pe, ιqApxq “ pe, ιqBpxq “ bpxqι. This is true for all ι P ℓtpeq “ ℓapxq “ ℓbpxq,
hence apxq “ bpxq for all x P Ea, hence A “ B and therefore f “ g as objects
of MonoGr{T .

AT is surjective on objects. Let A be any partitioned Σ-algebra, α be an
ordinal for T and E “

Ť

ePEt
Ae. Let f : E Ñ Et be the function that to any

x P E maps the unique e P Et such that x P Ae. For all x P E, let apxq be
the E-sequence of length ℓtpeq, where e “ fpxq, defined by, for all ι ă ℓtpeq,
apxqι “ pe, ιqApxq P AΣrpe,ιq Ď E. Since ℓtpeq ă α then A “ pE, aq is an
α-monograph. For all x P E and all ι ă ℓapxq “ ℓtpeq where e “ fpxq, we have

pfăα ˝ apxqqι “ fpapxqιq “ fppe, ιqApxqq “ Σrpe, ιq “ tpeqι “ pt ˝ fpxqqι,

hence făα ˝ a “ t ˝ f , which proves that f : A Ñ T is an object of MonoGr{T .
Then for all e P Et, we have pAT fqe “ f´1res “ Ae by definition of f . Fur-
thermore, for all pe, ιq P Ft and all x P f´1res, we have pe, ιqAT f pxq “ apxqι “
pe, ιqApxq by definition of a, hence AT f “ A.

It is obvious that AT is injective on morphisms, hence there only remains to
prove that it is surjective on morphisms. Let f : A Ñ T , g : B Ñ T , A “ AT f ,
B “ AT g and h be any Σ-homomorphism from A to B. Then for all e P Et

there is a function he : Ae Ñ Be such that pe, ιqB ˝ hΣdpe,ιq “ hΣrpe,ιq ˝ pe, ιqA

for all pe, ιq P Ft. Let k : Ea Ñ Eb be the function that to every x P Ea maps
hfpxqpxq P Bfpxq “ g´1rfpxqs Ď Eb, so that g ˝ kpxq “ fpxq. Then, for all x P Ea

and all ι ă ℓapxq, let e “ fpxq, we have

pkăα ˝ apxqqι “ kpapxqιq

“ hfpapxqιqpapxqιq

“ hpfăα˝apxqqιppe, ιqApxqq

“ htpeqι ˝ pe, ιqApxq

“ hΣrpe,ιq ˝ pe, ιqApxq

“ pe, ιqB ˝ hΣdpe,ιqpxq

“ bphepxqqι

“ pb ˝ kpxqqι,
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hence k : A Ñ B is a morphism such that g ˝ k “ f and therefore k : f Ñ g is
a morphism of MonoGr{T . We finally see that pAT kqe “ k|f´1res “ he for all
e P Et, hence ATk “ h.

Corollary 5.6. For every monadic signature Σ, there exists a monograph T

such that MonoGr{T » Σ-PAlg.

Proof. By Lemma 4.4 there exists T such that Σ » ST , hence MonoGr{T »
ST -PAlg » Σ-PAlg by Lemma 5.2.

We thus see that the categories of partitioned monadic algebras are isomor-
phic to the slice categories of monographs. By Corollary 4.5, the partitioned
algebras of finite monadic signatures are isomorphic to the slice categories of
monographs typed by finite ω-monographs. Note that in the case of graphs,
the partitioned Σg-algebras correspond to those graphs whose sets of vertices
and edges are disjoint. This is a common restriction for graphs but not for
Σ-algebras. We can easily extend the previous result to the categories Σ-Alg.

Corollary 5.7. For every monograph T , MonoGr{T ≅ ST -Alg. For every
monadic signature Σ, there exists a monograph T such that MonoGr{T ≅

Σ-Alg.

Proof. By Lemma 5.3.

Signatures are sometimes called types (see, e.g., [2, Chapter 9]), which leads
to the following reading of Corollary 5.7: the categories of algebras of monadic
types are equivalent to the categories of typed monographs.

Example 5.8. The signature Σe of E-graphs from [3] has six function symbols
srcg, tgtg, srcn, tgtn, srce, tgte and five sorts in

Se “ tedgesg, edgesn, edgese, nodesg, nodesvu,

and is defined by

Σe : srcg, tgtg ÞÑ pedgesg, nodesgq
srcn ÞÑ pedgesn, nodesgq
tgtn ÞÑ pedgesn, nodesvq
srce ÞÑ pedgese, edgesgq
tgte ÞÑ pedgese, nodesvq

hence Oedgesg
“ tsrcg, tgtgu, Oedgesn

“ tsrcn, tgtnu, Oedgesg
“ tsrce, tgteu

and Onodesg “ Onodesv “ ∅. There are four possible monographs T “ pSe, tq,
given by tpnodesgq “ tpnodesvq “ ∅, tpedgesgq “ nodesg nodesg and

tpedgesnq “ nodesg nodesv or nodesv nodesg
tpedgeseq “ edgesg nodesv or nodesv edgesg.

These four monographs are depicted below.

T1 T2 T3 T4
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Note that, by Theorem 5.5, the categories MonoGr{Ti for 1 ď i ď 4 are iso-
morphic, even though the Ti’s are not. The type indicated by the syntax (and
consistent with the figures in [3]) is T1. An example of a monograph A typed by
T1 is

g g g

v

v

v

where g stands for nodesg and v for nodesv. The types of the other edges can
easily be deduced, yielding a unique typing morphism f : A Ñ T1. We leave it to
the reader to check that A is consistent with the drawing of the E-graph AT1

f .

We also see from Example 4.6 that MonoGr{Tg » Σg-PAlg ≅ Graphs,
i.e., graphs are equivalent to monographs typed by Tg.

6 Categorial Properties of Monographs

We next see that the category MonoGr share many properties with Graphs.
Some properties are preserved in slice categories and through equivalence of
categories, hence can be trivially transfered to categories of monadic algebras.
More importantly, the proofs are easier to carry out on monographs then, say,
on E-graphs since these have five carrier sets and six operations, see [3].

We first see that all the categories of Definition 2.3 have as initial object the
empty monograph p∅,∅q. Other properties are listed below.

6.1 Pullbacks and monomorphisms

Lemma 6.1. Let B, C, D be α-monographs and f : B Ñ D, g : C Ñ D be
morphisms, then there exists an α-monograph A and morphisms g1 : A Ñ B,
f 1 : A Ñ C such that

1. trpAq Ď trpBq X trpCq,

2. if D is standard then so is A,

3. if B and C are finite then so is A.

4. the square

A B

C D

g1

f 1 f

g

is a pullback in MonoGr.

Proof. We use the standard construction of pullbacks in Sets: let

E “
ď

ePEd

f´1res ˆ g´1res Ď Eb ˆ Ec,

g1 “ π1|E and f 1 “ π2|E , then
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E Eb

Ec Ed

g1

f 1 f

g

is a pullback in Sets [3].
For every x P E, let y “ g1pxq and z “ f 1pxq (so that x “ py, zq), then there

exists an e P Ed such that fpyq “ e “ gpzq, hence ℓbpyq “ ℓdpeq “ ℓcpzq, i.e.,
b ˝ g1pxq and c ˝ f 1pxq have the same length λ. Then, for all ι ă λ,

fpb ˝ g1pxqιq “ făα ˝ b ˝ g1pxqι

“ d ˝ f ˝ g1pxqι

“ d ˝ g ˝ f 1pxqι

“ găα ˝ c ˝ f 1pxqι

“ gpc ˝ f 1pxqιq

hence pb ˝ g1pxqι, c ˝ f 1pxqιq P E. Let apxq “ pb ˝ g1pxq, c ˝ f 1pxqq and A “ pE, aq,
then apxq P Eăα hence A is an α-monograph. It is obvious that g1ăα ˝ apxq “
b ˝ g1pxq and f 1ăα ˝ apxq “ c ˝ f 1pxq, hence g1 : A Ñ B and f 1 : A Ñ C are
morphisms.

1. trpAq Ď trpBq by virtue of morphism g1, and trpAq Ď trpCq by f 1.

2. A is standard if D is standard by virtue of morphism f ˝ g1.

3. If Eb and Ec are finite then so is E Ď Eb ˆ Ec.

4. Let A1 be a monograph and g2 : A1 Ñ B, f2 : A1 Ñ C be morphisms such
that f ˝ g2 “ g ˝ f2, then there exists a unique function h from Ea1 to E

such that g2 “ g1 ˝ h and f2 “ f 1 ˝ h. Then, for all x P Ea1 ,

a ˝ hpxq “ pb ˝ g1 ˝ hpxq, c ˝ f 1 ˝ hpxqq

“ pb ˝ g2pxq, c ˝ f2pxqq

“ pg2ăα ˝ a1pxq, f2ăα ˝ a1pxqq

“ pg1ăα ˝ hăα ˝ a1pxq, f 1ăα ˝ hăα ˝ a1pxqq

“ hăα ˝ a1pxq

hence h : A1 Ñ A is a morphism in MonoGr, which proves that pA, g1, f 1q
is a pullback of pf, g,Dq.

Theorem 6.2. The categories MonoGr, StdMonoGr, FMonoGr,
O-MonoGr and O-StdMonoGr have pullbacks for every set O of ordinals.

Proof. Trivial by Lemma 6.1 since, if trpBq Ď O and trpCq Ď O then trpAq Ď
trpBq X trpCq Ď O.

Corollary 6.3. The monomorphisms in MonoGr are the injective morphisms.
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Proof. Assume f : B Ñ D is a monomorphism and let C “ B, g “ f and
pA, f 1, g1q be the pullback of pf, g,Dq defined in the proof of Lemma 6.1, then
f ˝ g1 “ f ˝ f 1 hence π1|Ea

“ g1 “ f 1 “ π2|Ea
. For all x, y P Eb, if fpxq “ fpyq

then px, yq P Ea and x “ g1px, yq “ f 1px, yq “ y, hence f is injective. The
converse is obvious.

6.2 Pushouts and epimorphisms

Lemma 6.4. For any ordinal α, α-monographs A, B, C and morphisms f :
A Ñ B and g : A Ñ C, there exist an α-monograph D and morphisms f 1 : C Ñ
D and g1 : B Ñ D such that

1. trpDq “ trpBq Y trpCq,

2. if B and C are standard then so is D,

3. if B and C are finite then so is D,

4. the square

A B

C D

f

g g1

f 1

is a pushout in MonoGr.

Proof. We use the standard construction of pushouts in Sets: let „ be the
smallest equivalence relation on the direct sum Eb ` Ec such that fpxq „ gpxq
for all x P Ea, and f 1 (resp. g1) be the canonical surjection from Ec (resp. Eb)
to the quotient E “ pEb ` Ecq{„, then

Ea Eb

Ec E

f

g g1

f 1

is a pushout in Sets [3].
For all py, zq P Eb ˆ Ec such that g1pyq “ f 1pzq, i.e., the class of y modulo

„ is the same as the class of z, hence y „ z and there exists a n P N and a
sequence x1, . . . , x2n`1 of elements of Ea such that y “ fpx1q, z “ gpx2n`1q and

"

gpx2i´1q “ gpx2iq
fpx2iq “ fpx2i`1q

for all 1 ď i ď n. Since b ˝ f “ făα ˝ a and c ˝ g “ găα ˝ a, this entails that

"

găα ˝ apx2i´1q “ găα ˝ apx2iq
făα ˝ apx2iq “ făα ˝ apx2i`1q.

The commuting property g1 ˝ f “ f 1 ˝ g in Sets yields g1ăα ˝ făα “ f 1ăα ˝ găα,
thus f 1ăα ˝ găα ˝ apx2i´1q “ g1ăα ˝ făα ˝ apx2iq “ f 1ăα ˝ găα ˝ apx2i`1q and

18



hence f 1ăα ˝ găα ˝ apx1q “ f 1ăα ˝ găα ˝ apx2n`1q by a trivial induction. We
conclude that

g1ăα ˝ bpyq “ g1ăα ˝ făα ˝ apx1q

“ f 1ăα ˝ găα ˝ apx1q

“ f 1ăα ˝ găα ˝ apx2n`1q

“ f 1ăα ˝ cpzq.

We can now build a functional relation d Ď E ˆ Eăα in the following way:
every equivalence class e P E contains either an element y P Eb, and then
e “ g1pyq and we let dpeq “ g1ăα ˝ bpyq, or an element z P Ec, and then e “ f 1pzq
and we let dpeq “ f 1ăα ˝ cpzq; this relation is functional since dpeq does not
depend on the choice of y or z. Let D “ pE, dq, then D is an α-monograph and
g1 : B Ñ D, f 1 : C Ñ D are morphisms since d ˝ g1 “ g1ăα ˝ b, d ˝ f 1 “ f 1ăα ˝ c

by definition of d.

1. Since f 1 and g1 are morphisms then trpBq Ď trpDq and trpCq Ď trpDq.
Conversely, for every e P E there is either a y P Eb such that e “ g1pyq,
hence ℓdpeq “ ℓbpyq P trpBq, or there is a z P Ec such that e “ f 1pzq, hence
ℓdpeq “ ℓcpzq P trpCq. Hence trpDq “ trpBq Y trpCq.

2. For all e P D, if e “ g1pyq for some y P Eb, then bpyq P Năα
b since B is

standard, hence dpeq “ g1ăα ˝ bpyq P Năα
d since Nd “ g1pNbq. Otherwise

e “ f 1pzq for some z P Ec and we get the same result, hence D is standard.

3. If Eb and Ec are finite then E is finite.

4. Let D1 be a monograph and g2 : B Ñ D1 and f2 : C Ñ D1 be morphisms
such that f ˝ g2 “ g ˝ f2. Since pg1, f 1, Eq is the pushout of pEa, f, gq then
there exists a unique function h from E to Ed1 such that g2 “ h ˝ g1 and
f2 “ h ˝ f 1. For e P E, if e “ g1pyq for some y P Eb then

hăα ˝ dpeq “ hăα ˝ g1ăα ˝ bpyq “ g2ăα ˝ bpyq “ d1 ˝ g2pyq “ d1 ˝ hpeq,

and similarly if e “ f 1pzq for some z P Ec, hence hăα ˝ d “ d1 ˝ h, i.e.,
h : D Ñ D1 is a morphism in MonoGr, which proves that pg1, f 1, Dq is a
pushout of pA, f, gq.

Together with the existence of an initial object this implies that monographs
have coproducts and that all finite diagrams have colimits.

Theorem 6.5. The categories MonoGr, StdMonoGr, FMonoGr,
O-MonoGr and O-StdMonoGr are finitely co-complete for every set O of
ordinals.

Proof. Trivial by Lemma 6.4, as above, and by [1, Theorem 12.4].

Corollary 6.6. The epimorphisms in MonoGr are the surjective morphisms.

Proof. Assume f : A Ñ B is an epimorphism and let C “ B, g “ f and
pf 1, g1, Dq be the pushout of pA, f, gq defined in the proof of Lemma 6.4, then
for all py, zq P Eb ˆ Ec such that g1pyq “ f 1pzq, there exists a x1 P Ea such that
y “ fpx1q; this is true in particular if z “ y. But f 1 ˝ f “ g1 ˝ f hence f 1 “ g1

and therefore g1pyq “ f 1pyq, thence the existence of x1 for any y; this proves
that f is surjective. The converse is obvious.
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6.3 Adhesivity

It is easy to see that the isomorphisms in MonoGr are exactly the bijective
morphisms: if f : A Ñ B and g : B Ñ A are such that g ˝ f “ idA and
f ˝ g “ idB, then f is bijective since the underlying functions of idA and idB
are IdEa

and IdEb
.

It is well known (see [1]) that pushouts (and similarly pullbacks) are es-
sentially unique in the sense that the pushouts of a given source pA, f, gq only
differ by an isomorphism. Another general property of pushouts (see the notion
of epi-sink in [1, 11.7]) can be expressed in the category Sets as follows: if
pf 1, g1, Eq is a pushout of pA, f, gq then any e P E has either a preimage y by f 1

or a preimage z by g1 (f 1 and g1 are said to be jointly surjective, see [3, 2.17]).

Lemma 6.7. Any square

A B

C D

p1q

f

g h

k

of α-monographs is a pushout (resp. pullback) in MonoGr iff the underlying
square

Ea Eb

Ec Ed

p2q

f

g h

k

is a pushout (resp. pullback) in Sets.

Proof. Let pf 1, g1, D1q be the pushout of pA, f, gq constructed in the proof of
Lemma 6.4, so that pf 1, g1,Ed1q is a pushout of pEa, f, gq in Sets. If p1q is a
pushout then there is an isomorphism i : D Ñ D1 such that f 1 “ i ˝ k and
g1 “ i ˝ h, but i is bijective from Ed to Ed1 , hence is an isomorphism in Sets,
hence p2q is a pushout.

Conversely, if p2q is a pushout then there is a bijection j : Ed Ñ Ed1 such
that f 1 “ j ˝ k and g1 “ j ˝ h. Since h : B Ñ D and g1 : B Ñ D1 are morphisms
in MonoGr then

jăα ˝ d ˝ h “ jăα ˝ hăα ˝ b “ g1ăα ˝ b “ d1 ˝ g1 “ d1 ˝ j ˝ h

and similarly jăα ˝ d ˝ k “ d1 ˝ j ˝ k. Since p2q is a pushout then h and k are
jointly surjective, hence jăα ˝ d “ d1 ˝ j. Hence j : D Ñ D1 is an isomorphism
in MonoGr and p1q is therefore a pushout.

The proof for pullbacks is similar.

Definition 6.8. A pushout square pA,B,C,Dq is a van Kampen square if for
any commutative cube
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C

D

A

B

C 1

D1

A1

B1

where the back faces pA1, A,B1, Bq and pA1, A, C 1, Cq are pullbacks, it is the case
that the top face pA1, B1, C 1, D1q is a pushout iff the front faces pB1, B,D1, Dq
and pC 1, C,D1, Dq are both pullbacks.

A category has pushouts along monomorphisms if all sources pA, f, gq such
that f or g is a monomorphism have a pushout.

A category is adhesive [4] if it has pullbacks, pushouts along monomorphisms
and all such pushouts are van Kampen squares.

Theorem 6.9. The categories MonoGr, StdMonoGr, FMonoGr,
O-MonoGr and O-StdMonoGr are adhesive for every set O of ordinals.

Proof. In any of these categories a commutative cube built on a pushout along a
monomorphism as bottom face and with pullbacks as back faces, has an underly-
ing cube in Sets that has the same properties by Lemma 6.7 and Corollary 6.3.
Since Sets is an adhesive category (see [4]) the underlying bottom face is a van
Kampen square, hence such is the bottom face of the initial cube by Lemma 6.7.
We conclude with Theorems 6.2 and 6.5.

6.4 Pushout complements

Definition 6.10. A pushout complement of morphisms f : A Ñ B and g1 :
B Ñ D is an object C and a pair of morphisms f 1 : A Ñ C and g : C Ñ D

such that
A B

C D

f

g g1

f 1

is a pushout square.

This notion is central in the Double-Pushout approach to algebraic graph
transformation [6, 3], where it is necessary to find a pushout complement to a
graph (or an object in a category) in order to perform a rule-based transfor-
mation of this object. If a pushout complement exists in MonoGr then it is
essentially unique since MonoGr is adhesive (see [4, Lemma 4.5]). But pushout
complements may not exist, hence it is important to be able to test wether this
is the case or not. In the category Graphs this test is known as the gluing
condition (see [3, 3.9]). Before a similar test can be established for MonoGr,
a remark on pushouts is necessary.

Since every pushout of a source pA, f, gq is isomorphic to the pushout built
in Lemma 6.4, it is clear that any property of this particular construction that
is stable by bijective morphisms is true of all pushouts pg1, f 1, Dq of pA, f, gq.
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The gluing condition provided in Theorem 6.11 below is divided in two parts.
The first one, close to the condition on identification points in Graphs, ensures
the existence of a pushout complement Ec in Sets. The second one, close to the
condition on dangling points, ensures the existence of a suitable map c for Ec.

Theorem 6.11 (gluing condition). The morphisms f : A Ñ B and g1 : B Ñ D

have a pushout complement in MonoGr iff

(1) for all y, y1 P Eb, if g
1pyq “ g1py1q then y “ y1 or y P fpEaq, and

(2) for all y P Eb and e P Ed, if g
1pyq | dpeq then e P g1pEbq or y P fpEaq.

Proof. Let α be an ordinal for D.
Only if part. Let g : A Ñ C and f 1 : C Ñ D be a pushout complement

of f and g1. If D is the pushout constructed in the proof of Lemma 6.4, then
property (1) is obvious since g1pyq “ g1py1q entails y „ y1, and by the definition
of „; it is then easy to see that it remains true if D is only isomorphic to this
construction. Similarly we have that g1pyq “ f 1pzq entails y „ z hence y P fpEaq,
for all z P Ec.

For all e P Edzg1pEbq, since pf 1, g1, Dq is jointly surjective then there exists
a z P Ec such that f 1pzq “ e, hence dpeq “ d ˝ f 1pzq “ f 1ăα ˝ cpzq. Then, for
all y P Eb, if g

1pyq | dpeq then there exists a z1 P Ec such that z1 | cpzq and
g1pyq “ f 1pz1q, and therefore y P fpEaq, which proves property (2).

If part. We first build a monograph C: let Ec “ Edzg1pEbzfpEaqq, and
c “ d|Ec

. Suppose there exists an edge e P D such that dpeq is not an Ec-
sequence, then there exists y P EbzfpEaq such that g1pyq | dpeq, hence by (2)
we have e P g1pEbq and there exists y1 P Eb such that e “ g1py1q, so that
dpeq “ d˝g1py1q “ g1ăα ˝bpy1q, hence there is a y2 | bpy1q such that g1pyq “ g1py2q
and by (1) we get y “ y2, hence y | bpy1q. If there were an x P Ea such that
y1 “ fpxq then bpy1q “ făα˝apxq and y would belong to fpEaq. Hence y1 R fpEaq
which proves that e P g1pEbzfpEaqq, i.e., that e R Ec. Thus C “ pEc, cq is a
monograph.

Let f 1 be the canonical injection from Ec to Ed, it is obvious that f 1 is a
morphism from C to D.

For all x P Ea, if g
1 ˝ fpxq R Ec then there exists a y P EbzfpEaq such that

g1pyq “ g1pfpxqq, but by (1) we have either y “ fpxq or y P fpEaq, and both
are impossible. Hence g1 ˝ fpEaq Ď Ec and we let g be the function g1 ˝ f with
codomain Ec; it is obvious that g is a morphism as are g1 and f , and that
f 1 ˝ g “ g1 ˝ f .

There remains to prove that pg1, f 1, Dq is a pushout of pA, f, gq. Let g2 :
B Ñ D1 and f2 : C Ñ D1 be morphisms such that f2 ˝ g “ g2 ˝ f . If there is a
morphism h : D Ñ D1 such that f2 “ h ˝ f and g2 “ h ˝ g1, then

• hpeq “ f2peq for all e P Ec, and

• hpg1pyqq “ g2pyq for all y P Eb.

But if g1pyq R Ec, i.e., if y P EbzfpEaq then by (1) the value of y is determined by
g1pyq, so that h is unique. We now see that such a function exists since, for all
e P Ec X g1pEbq “ g1 ˝ fpEaq, and all x P Ea such that e “ g1pyq where y “ fpxq,
we have

f2peq “ f2 ˝ f 1 ˝ gpxq “ f2 ˝ gpxq “ g2 ˝ fpxq “ g2pyq.
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We finally see that this function is a morphism. For all e P Ed, if e P Ec then

d1 ˝ hpeq “ d1 ˝ f2peq “ f2ăα ˝ cpeq “ hăα ˝ dpeq,

otherwise there exists y P EbzfpEaq such that e “ g1pyq and then

d1˝hpeq “ d1˝g2pyq “ g2ăα˝bpyq “ hăα˝g1ăα˝bpyq “ hăα˝d˝g1pyq “ hăα˝dpeq,

hence d1 ˝ h “ hăα ˝ d, so that h : D Ñ D1.

Note that C is finite whenever D is finite. This proves that this gluing condi-
tion is also valid in FMonoGr, and it is obviously also the case in StdMonoGr,
O-MonoGr and O-StdMonoGr for every set O of ordinals.

6.5 Terminal objects and products

The construction of products of monographs and the related question of the
existence of terminal objects (since products can be formed as pullbacks on
terminal objects) are major differences between Graphs and MonoGr. We
now see that some categories of monographs do not have terminal objects.

Definition 6.12 (monographs Mα). For every ordinal α ą 0 let aα be the
functional relation that to every λ ă α associates the unique t0u-sequence of

length λ. Let Mα
def
“ pα, aαq.

It is clear that Mα is a standard α-monograph, since aα is a functional
relation from α to αăα, and aαp0q “ ∅, i.e., 0 is a node of Mα.

Lemma 6.13. For all ordinals α ą 0, β and every β-monograph B, if there is
a morphism f : Mα Ñ B then α ď β.

Proof. α is the grade of Mα, since for any λ ă α there is an edge of length λ,
that is ℓaαpλq “ λ, hence aαpλq R αăλ, and therefore Mα is not a λ-monograph.
By the existence of f the grade α of Mα is less than the grade of B, hence
α ď β.

Theorem 6.14. MonoGr, StdMonoGr and FMonoGr have no terminal
object.

Proof. Suppose that B is a terminal monograph, then there is an ordinal β such
that B is a β-monograph, and there is a morphism from Mβ`1 to B. By Lemma
6.13 this implies that β`1 ď β, a contradiction. This still holds if B is standard
since Mβ`1 is standard. And it also holds if B is a finite ω-monograph, since
then β can be chosen finite, and then Mβ`1 is also a finite ω-monograph.

Products of monographs are difficult to define for the simple reason that we
are not generally able to combine edges of different lengths in a reversible way.
It is however possible to generalize the method for building products of graphs
to some pairs of monographs.

Definition 6.15. Any two α-monographs A, B are said to be ˆ-compatible if
ℓa ˝ papxqq “ ℓb ˝ pbpyqq for all px, yq P Ea ˆ Eb such that ℓapxq “ ℓbpyq. In this
case let

Eaˆb
def
“

ď

λăα

ℓ´1
a rλs ˆ ℓ´1

b rλs
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and aˆ b be the functional relation that to all px, yq P Eaˆb maps the pEa ˆEbq-
sequence papxq, bpyqq. The product of A and B is

A ˆ B
def
“ pEaˆb, a ˆ bq.

Note that, if px, yq P Eaˆb then ℓapxq “ ℓbpyq, hence apxq and bpyq are
functions with the same domain ℓapxq, hence papxq, bpyqq is a function from this
domain to the product of their codomains (see Section 2), in this case EaˆEb. Of
course, the product AˆB is an α-monograph if and only if aˆb Ď Eaˆb ˆEăα

aˆb,
hence iff the functions papxq, bpyqq are Eaˆb-sequences.

Lemma 6.16. For any ˆ-compatible α-monographs A and B, pA ˆ B, π1, π2q
is a product in MonoGr.

Proof. AˆB is a monograph since, for all px, yq P Eaˆb and all ι ă ℓaˆb px, yq “
ℓapxq “ ℓbpyq, we have pa ˆ bq px, yqι “ papxqι, bpyqιq and

ℓapapxqιq “ ℓa ˝ papxqqι “ ℓb ˝ pbpyqqι “ ℓbpbpyqιq,

hence papxqι, bpyqιq P Eaˆb and pa ˆ bq px, yq is therefore an Eaˆb-sequence.
We also see that π1 : A ˆ B Ñ A is a morphism since πăα

1 ˝ pa ˆ bq px, yq “
apxq “ a ˝ π1px, yq, and similarly π2 : A ˆ B Ñ B.

For any monograph C and morphisms f : C Ñ A and g : C Ñ B, we have
ℓapfpzqq “ ℓcpzq “ ℓbpgpzqq for all z P Ec, hence h “ pf, gq is a function from Ec

to Eaˆb. We also have

pa ˆ bq ˝ hpzq “ pa ˝ fpzq, b ˝ gpzqq “ pfăα ˝ cpzq, găα ˝ cpzqq “ hăα ˝ cpzq,

hence h : C Ñ AˆB is a morphism. It is obvious that h is the unique morphism
such that π1 ˝ h “ f and π2 ˝ h “ g.

Theorem 6.17. The categories StdMonoGr, O-StdMonoGr and
tαu-MonoGr have products for every set of ordinals O and every ordi-
nal α.

Proof. By Lemma 6.16 since every pair A,B of standard monographs or tαu-
monographs is ˆ-compatible. Also, if A ˆ B exists then obviously trpA ˆ Bq “
trpAq X trpBq, hence the product of O-monographs is an O-monograph.
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