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Turning electronic circuits features into on-chip
locks

Brice Colombier, Lilian Bossuet and David Hély

Abstract In order to fight against counterfeiting and illegal copying of integrated
circuits (ICs) and intellectual property (IP) cores, several design data protection
schemes have been proposed. One of the key-component of such schemes is the one
in charge of locking the circuit in case it has been illegally obtained. This is neces-
sary in order to make illegal copies useless. In this chapter, we show that common
features, found in most electronic devices, can be turned into on-chip locks. First of
all, we identify these features, and then show how they can be modify to lock the
design; The main point to use existing features is to induce low overhead, which
is very interesting for designers. We implemented the proof of concept of the de-
scribed locks in FPGAs, and present resources overhead for the implementation of
them on two reference designs. We also give details on partial locking, which can
be used to provide the design in evaluation mode.

1 Introduction and context

Following Moore’s law, electronic systems are increasingly complex and powerful.
Their complexity is following a similar trend, forcing designers to adopt a modular
approach when designing such systems. Thus a design-and-reuse approach is fol-
lowed, in which functional building blocks are put together by system integrators.
These blocks are provided by IP cores designers, who must transfer their complete
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design in order to have it implemented correctly. However, such a situation neces-
sarily leads to abuses, since the designer can not control the number of instances
implemented from its original design. It results in overbuilding IP cores and coun-
terfeiting of integrated circuits, and the trend is growing. Multiple cases have been
reported in recent years [1, 2, 3].

In order to answer this issue, the circuit can be provided as initially locked. It
is then non-functional, and should be unlocked in order to be used. The unlock-
ing procedure can be initiated only by the designer, allowing precise audit of the
number of instances of the protected design. This is referred to as hardware meter-
ing [4]. In case the design has been obtained illegally, either from overbuilding or
counterfeiting, it remains locked and therefore unusable.

There are several ways to achieve locking of a circuit. Among them, modifying
the combinational logic is a way. It is presented in details in Chapter 3.

Another interesting approach is to look into hardware Trojans [5] that target
Denial-Of-Service attacks. Such attacks are closely related to the kind of remote
locking we want to achieve here. Therefore, the actual means that are used by hard-
ware Trojans to trigger and achieve a Denial-Of-Service attack could be turned
into remote locking techniques. It effectively turns malicious hardware into salu-
tary hardware [6]. In order to be worth considering from the designer’s perspective,
a design protection scheme must also be cheap in terms of additional hardware re-
sources required to implement it. Indeed, if the economic losses associated with the
illegal actions are actually less expensive than the protection scheme itself, the latter
becomes unsuitable. Therefore, the protection scheme should be as lightweight as
possible, and occupy a very small area on the protected chip. This characteristic is
very common for Hardware Trojans, which are usually found in the form of tiny and
stealthy modifications of the original design.

The point here is to achieve locking by targeting very sensitive components.
These components should be crucial to the proper functioning of the system. Thus
their disablement will render the system absolutely unusable, indeed achieving lock-
ing of the whole design. These points of action can be thought of as single points of
failure, which correct behaviour is absolutely necessary to the overall system.

In this chapter, we show that such points can be found in the vast majority of
complex electronic systems [7]. This is valuable since the design protection scheme
should be usable for any type of design, and should not depend on specific design
features.

This chapter is organised as follows. Section 2 identifies the features which could
be turned into on-chip locks, and provides a comparison of them using several cri-
teria. Section 3 shows how such features can be modified to disturb the circuit’s
operation. Section 4 gives implementation results on FPGA. Two reference designs
and two FPGA families were used. Section 5 proposes a discussion on partial lock-
ing, which is an interesting way to provide a circuit in evaluation mode.
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2 Features usable as locking means

Figure 1 shows a complex electronic system. We highlighted the following common
features which can be turned into on-chip locks:

1. The clock circuitry,
2. The inputs/outputs,
3. The processor,
4. The interconnection buses,
5. The system controller,
6. The analog components.

Fig. 1 SoC features which
can be turned into on-chip
locks
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2.1 Clock circuitry

The first feature that is immediately identifiable as a locking point is the clock cir-
cuit. Indeed, it is a universal feature found in most digital designs. Moreover, good
operation of the circuit is heavily dependent on the clock signal. Thus by acting on
the clock signal, it is possible to disable the circuit, making it effectively locked.
Another interesting characteristic of the clock is that its frequency is related to the
device’s performances. Hence by dynamically shifting the clock frequency it is pos-
sible to alter the performances of the circuit. This could be used to provide an eval-
uation version of the device, operating at a lower frequency and exhibiting a lower
level of performance.

2.2 Inputs/outputs

All electronic designs have input and output ports to interact with other components.
By temporarily disabling these ports, it is possible to prevent new data to be sent to
the design. Even though it does not make the design unusable itself, it makes it
almost useless, since it is then not possible to interact with it anymore.

2.3 Processor

When a processor is present in a digital design, it is usually a central component.
Such processor can be either hardwired or soft-core. A soft-core processor is de-
scribed in a hardware description language and implemented in reconfigurable re-
sources. In essence, the processor executes a sequence of instruction. One way to
alter its functionality is then to prevent the execution of new instructions.

2.4 Buses

Interconnection buses are the backbone of complex systems. They allow multiple
IP cores to communicate. The integrity of the information exchanged between the
different sub-modules of a system is a crucial requirement. Therefore, by altering
this information, it is possible to render the system non-functional.
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2.5 System controller

The control logic of complex designs is usually handled by an FSM. By modify-
ing this FSM’s states, it is possible to alter the operation of the circuit. Another
possibility is to add extra states to control access to the normal mode of operation.

2.6 Analog components

In order to handle physical data, a design can integrate analog components. Such
components are precisely calibrated to suit the needs of the designer. By altering
this calibration, their behaviour can be altered.

Another important analog component of the design is the power supply module.
By shutting down specific areas of the design, they can be efficiently disabled. This
feature is called power gating, and is already implemented in some designs to reduce
power consumption.

2.7 Global comparison

After identifying these features, we can have a first overview of their pros and cons.
Table 1 presents a qualitative comparison.

The first criterion used to evaluate the features is the impact on performance.
It describes how the performance of the circuit is affected during normal operation.
Modifying the clock circuitry has low impact on the performance, although the clock
characteristics such as the jitter can be affected if the modification is poorly handled.
Acting on the inputs/outputs, the FSM or the processor does not have any impact
on the circuit’s performance. Conversely, modifying the buses can lead to slower
data rates and increase the latency. Similarly, modifying the calibration of analog
components can reduce their efficiency.

The second criterion is the ease of locking/unlocking. It quantifies how simple it
is to implement locking using the corresponding feature. It also shows how easy it
is to fall back into normal behaviour after an unlocking request has been received.
For example, acting on the clock circuitry or the inputs is simple. They can be easily
disabled and enabled again. On the other hand, modifying the processor to be able
to stop it can be complicated. Similarly, tampering with the buses can lead to unex-
pected behaviour. In both cases, correctly coming back to normal behaviour might
not be guaranteed. When modifying the FSM, locking refers to entering “hidden”
states, corresponding to altered operation. Therefore, locking or unlocking requires
to have access to the FSM inputs. This is not guaranteed, and most designs do not al-
low to transition between FSM states so easily. Similarly, modifying the calibration
of analog components can be hard to achieve.
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When modifying a feature to achieve locking, the impact on the circuit function-
ality should be as high as possible, to make is completely unusable. Disabling the
clock, the processor, the buses or entering “hidden” FSM states systematically leads
to complete locking. On the other hand disabling the inputs/outputs or altering the
characteristics of analog components has medium impact, which will depend on the
usage.

Finally, partial locking is possible with some of the described features. We de-
fine partial locking as a state in which the design has a correct behaviour, but has
a lower level of performance. This is achievable only by acting on the clock or the
analog components. Modifying the clock frequency directly affects the designs per-
formance. Likewise, altering the calibration of analog components can make them
perform poorly.

The final column on the right of Table 1 gives an overall suitability estimation
for the feature. It estimates how suited the feature is in order to be turned into an
on-chip lock.

Table 1 Qualitative comparison of the presented features when being used as on-chip locks

Evaluation criterion

Feature modi-
fied for locking

Impact of the
locking scheme
on performance

Ease of
dynamic
(un)locking

Efficiency/Impact
on functionnality

Partial
locking

Overall
suitability

Clock Low High High yes •••
Inputs/outputs None High Medium no ••◦
Processor None Medium High no ••◦
Buses Medium Medium High no •◦◦
FSM None Low High no •◦◦
Analog parts Medium Low Medium yes •◦◦

3 Practical transformation into on-chip locks

We now give means how to turn the features presented in Section 2 into on chip-
locks. Analog components modification is not discussed here.

3.1 Clock circuitry

In practise, acting on the clock circuitry can be achieved in two ways. The first
one is to use a modified clock-gating module. The second one makes use of the
reconfiguration capabilities of some phase-locked loops (PLLs).
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3.1.1 Clock gating

An already approved method to act on the clock is clock-gating. It is commonly
used to reduce power consumption by not clocking the unused regions of the circuit.
Therefore it could also be used to make the circuit unusable.

To achieve clock-gating, we insert a specific module on the clock signal path.
This module is shown in Figure 2. It does not require to add extra logic on the clock
signal path itself, but rather makes use of the clock-enable inputs of existing clock
buffers.

mod N
counter
mod N
counter

2

locking 
signal

clock in clock out

clock-enable

Vcc

=?=?

11

QD

Fig. 2 Clock-gating module acting on a clock buffer (in dark-grey)

Here, the clock-enable input can be driven by three different signals. The first
one, which corresponds to a high logic level (Vcc), allows to leave the clock signal
unchanged. In this case, the circuit is totally unlocked. The second one is the result
of the comparison between the output of an n-bit counter and the n-bit value 1. Thus
the clock-buffer is only active when the counter is equal to 1. In practical terms, the
output frequency is then divided by 2n, where n is the size of the counter.

In this case, the output clock does not have a 50% duty cycle. Instead, the duty
cycle α obtained from the division is given in Equation 1.

α =
tH
T

=
t/2
n.t

=
1
2n

(1)

In such case, if the frequency is chosen to be divided by a large number, the
duty cycle can drop to low values. However, if the setup times were not violated
with the original frequency, then they will not be either with the divided frequency.
The waveforms obtained from the three different modes presented here are shown
in Figure 3. Figure 3a shows the original clock. Figure 3b shows the divided clock.
Here, the division factor is 2. We see that the duty cycle is not 50% but 25%. This
can be useful to provide the design in “evaluation” mode. The operating frequency
is twice lower, and so is the performance. Finally, Figure 3c shows the gated clock.
In this mode, the design does not function at all.
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Fig. 3a Original clock

Fig. 3b Divided clock

Fig. 3c Gated clock

Acting on the clock has multiple advantages. First of all, it is a powerful way
to completely disable the circuit. If the clock is not provided, most of the circuit’s
elements do not operate. Then, it requires very few additional logic resources. In the
module presented in Figure 2, only one counter, one comparator, one multiplexer
and one D flip-flop are used. It also allows to reduce the operating frequency, effec-
tively getting the circuit to operate in evaluation mode.

The main drawback of such a scheme is that it inherently requires to alter the
clock distribution network. This can be problematic in certain designs because the
clock distribution network is usually very precisely tuned to meet timing require-
ments.

Therefore, next subsection proposes another way to act on the clock signal, by
dynamically modifying the PLL configuration.

3.1.2 Dynamic phase-locked loop (PLL) reconfiguration

Another way to act on the clock signal is to directly deal with the phase-locked loop
(PLL). In most of the integrated circuits, the clock signal is handled by a PLL. It al-
lows to generate multiple clean clock signals, which can have a different frequency,
to different parts of the circuit. It is then distributed by the clock tree.

In modern FPGAs, such as Altera Arria V, Cyclone V or Stratix V families [8]
the PLL can be dynamically reconfigured. That is, the multiplication and division
factors can be dynamically tuned. The PLL is then actually used as a frequency
synthesiser.

The output frequency of the PLL is given by the following formula:
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fout = fin.
M

N.C
(2)

C is the post-scale output counter. M is the feedback counter. N is the prescale
counter. The values for M, N and C can be dynamically changed in order to tune the
operating frequency.

In order to do this on FPGAs, a vendor-specific IP core must be instantiated. It
is controlled by a dedicated finite-state machine (FSM), responsible for providing
the C, M and N values. Once the parameters have been sent, the actual reconfigu-
ration starts. The PLL unlocks, and then locks again on the new frequency. This is
illustrated in Figure 4.

normal operation reconfiguration evaluation mode

Fig. 4 Output clock during a reconfiguration

The normal mode of operation corresponds to the maximum frequency. Then the
PLL is reconfigured, and locks again to the new frequency. This one is lower, and
corresponds to the circuit operating in evaluation mode.

The main advantage of using the PLL as a frequency synthesiser is the flexibility
it provides. Indeed, by individually setting the M, N and C parameters, it is possi-
ble to precisely tune the frequency. Moreover, since the reconfiguration process is
natively supported by the PLL, the designer ensures that the output clock meets the
specifications.

On the other hand, such reconfiguration feature might not be found in all the
PLLs. For example, only recent versions of Altera’s FPGAs support this feature.
Another drawback is the area overhead. Indeed, instantiating the reconfiguration
engine and the controlling FSM requires a lot of logic resources. This will be exten-
sively discussed in Section 4.1.

3.2 Inputs/outputs

3.2.1 Embedded flip-flops

In most of the designs, the inputs are synchronised to be handled properly and avoid
metastable states. The D flip-flops used to achieve this synchronisation often have
an enable input. This enable input prevents new data to be sampled by the D flip-
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flop if it is driven low. By controlling this enable input, it is then possible to prevent
the design from receiving new data from its inputs.

For example, for most of the FPGAs, the input/output blocks embed this type of
D flip-flops. In order to specifically use this D flip-flop, some directives should be
inserted in the design.

For Altera devices:

ATTRIBUTE useioff : BOOLEAN;
ATTRIBUTE useioff OF e : SIGNAL IS true;

For Xilinx devices:

ATTRIBUTE IOB : STRING;
ATTRIBUTE IOB OF e : SIGNAL IS "TRUE";

For Lattice devices:

USE DIN TRUE CELL "e";
USE DOUT TRUE CELL "e";

The advantage of such technique is to re-use existing elements of the design. By
using flip-flops which are already implemented, the overhead is very limited. It also
has a strong impact on design operation since it prevents new data to be loaded.
However, it requires a specific type of flip-flop, since an enable input is necessary.

3.2.2 Fuses/anti-fuses

In 2014, Basak et al. also proposed to act on the inputs of a circuit to get it to
operate properly or not [9]. They propose to integrate anti-fuses in the chip’s pins.
Those anti-fuses are blown or not according to an authentication key. If the wrong
key is supplied, then the wrong fuses are blown and the device is not usable. After
the fuses are blown, the correct inputs and outputs are accessible and the device
operates normally.

An interesting feature here is that if a system integrator obtains an integrated
circuit on which fuses are already blown, then it is obviously a refurbished one.
Therefore, such scheme also helps in fighting other types of threats on design intel-
lectual property.
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3.3 Processor

3.3.1 Processor’s program counter

Among complex systems, some integrate a soft-core processor in the FPGA fabric
in order to execute programs. Such processor is described in a hardware descrip-
tion language and instantiated. Altera Nios II [10] and Xilinx MicroBlaze [11] are
examples of proprietary soft-core processors. An example of open-source soft-core
processor is the Plasma CPU, available on the IP cores repository Opencores [12].
Moreover, some SoC actually include a wired processor. For example, recent Altera
Cyclone V SoCs integrate a dual-core ARM Cortex-A9 processor 1.

In order to disable a processor, acting on the program counter, also called instruc-
tion pointer, is a very effective solution. The program counter is a register that gives
the address of the instruction being currently executed. Therefore, by controlling its
value, it becomes possible to prevent new instructions from being executed. This
can effectively halt the processor. Moreover, such halting can be set and released
multiple times during the device’s lifetime, allowing to achieve evaluation periods
for instance. Therefore, acting on the program counter is a versatile way to license
the device. In case of counterfeiting or overbuilding, it can also obviously be used
to render the processor unusable by permanently forcing the program counter to a
fixed value.

The detailed locking process is presented in Algorithm 1.

Algorithm 1: Backup and locking procedure
if locking request then

if No branching or long instruction going on then
if No branching or long instruction coming then

PCbackup← PC

Wait for ongoing instruction to finish then
PC← ”000...000”
instruction← NOP
Locking completed

The first thing to do is to intercept the locking request. After that, it is impor-
tant to verify that no problematic instruction is currently being executed. Indeed,
if this is the case, then the return to normal operation is uncertain. Problematic in-
structions are long and branching instructions. Long instructions can not be stopped
during their execution, and should terminate before. Similarly, during a branching
instruction, the locking request should be postponed. This might cause the branching
instruction to be skipped. The locking request should also be postponed if a prob-
lematic instructions is meant to be executed during the next clock cycle. In order

1 https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overview.html
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to detect these instructions, the opcodes corresponding to problematic instructions
can be read directly from the memory bus. These opcodes are provided by the pro-
cessor’s designer. This decision is based on practical experiments. It is important
to ensure that a correct backup of the processor’s current state is possible. Locking
requests are not time-critical and can be postponed for several clock cycles to ensure
processing integrity.

After that, the current value of the program counter is stored in a dedicated reg-
ister: PCbackup. At the end of the running instruction, which is not problematic, the
program counter is set to a non-functional value. In Algorithm 1, we took the exam-
ple of the zero value (”000...000”) but this can be different depending on the pro-
cessor. The instruction register is set to NOP. This is to avoid executing the same
instruction over and over when the processor is locked. It could modify its internal
state and make the return to normal operation impossible.

Finally, the locking process is considered as completed.
In order to return to normal operation, the previous program counter value should

be restored. This is shown in Algorithm 2.

Algorithm 2: Restore procedure
if unlocking request then

PC← PCbackup

Wait for instruction to be loaded then
Unlocking completed

An interesting feature of this locking scheme is that it is fully reversible. Indeed,
if the locking procedure has been followed properly, the instruction during which
the locking occurred is not problematic. Therefore, the system can then be unlocked
and start again without problem.

3.4 Buses

Buses integrity is crucial for correct communication between the different compo-
nents of a system. Integrity can be more precisely defined in two terms: value and
position. Thus data from a bus is sound if it has a correct value and it is correctly
ordered.

Therefore, by acting on either the value or the position of the bus data, we can
alter the bus operation. The first option is then to scramble the bus lines. The second
option is to randomly mask the bus data.

For the subsequent sections 3.4.1 and 3.4.2 we assume that the bus is error-free.
The input value is identical to the output value during normal operation.
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3.4.1 Deterministic scrambling

A bus can be defined as the following function f :

f : {0,1}n→{0,1}n (3)

∀x ∈ {0,1}n : f (x) = x (4)

It can thus be referred to as the identity function.
We define a deterministic scrambling function σ as :

σ : {0,1}n→{0,1}m with n≥ m (5)

∀x ∈ {0,1}n : σ(x) 6= x (6)

However, such function can be heavy to implement. The requirement given in
equation (6) is hard to fulfil for all x.

Therefore, we can defined a relaxed version of the deterministic scrambling func-
tion σR as :

σR : {0,1}n→{0,1}m with n≥ m (7)

such that for most of the input values:

σR(x) 6= x (8)

In fact, the relaxed version is sufficient for the usage we consider here. Indeed,
disturbing a bus for even half of the input values is enough to render the overall
system unusable.

The other point is to make the scrambling controllable by an additional input
such that the scrambler can be turned on and off. A simple 2-to-1 n-bit multiplexer
can be used to this end, selecting between the original bus data and the scrambled
one. This is shown on Figure 5.

Scrambler

n n

n

active

n
n

Fig. 5 Integration of the scrambler on an n-bit bus

From a practical point of view, implementing a scrambler is trivial. An n-bit
circular shifter defined as σR(xi) = xi−1 mod n and shown in Figure 6 is efficient. It
is only a relaxed deterministic scrambler since it does not alter the data if it consists
or only 0s or only 1s.
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i0
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i2

i3

i4

i5

i6

i7

o0

o1

o2

o3

o4

o5

o6

o7

Fig. 6 8-bit circular shifter

However, there are even more trivial structures which can be used to scramble the
bus. We do not give more details here as the chosen method is strongly dependent
on the bus purpose.

Implementation details can require to add extra specifications to the scheme
shown in Figure 5. As shown on Figure 1 of this chapter, a scrambler can be added
to the address bus of the shared memory. This is a suitable choice, since reading
from a wrong memory address disturbs the system heavily. However, writing to an
unauthorised memory address could potentially alter the ability of the system to
recover once the scrambler will be deactivated. For instance, the program memory
could be irremediably altered. Therefore, in this case, the bus should be scrambled
only during read operations, not write.

3.4.2 Pseudo-random masking

Another way to corrupt a bus is to act on the actual data which is transmitted through
it. To this end, pseudo-random masking can be used.

In order to get pseudo-randomness, we use a linear feedback shift register, or
LFSR. Then, the shift register state bits are XOR-ed bitwise with the bus lines. For
an n-bit bus, an n-bit shift register is used. If the feedback polynomial is carefully
chosen, i.e. is primitive, a 2n−1 clock-cycles period can be obtained. This is shown
in Figure 7.

1 0 1 0 1 1 0 1 1 1 0 1 0 0

n
n n

Fig. 7 Pseudo-random masking of a bus using an LFSR



Turning electronic circuits features into on-chip locks 15

Similarly, the note made in the previous section about implementation-specific
issues also applies to the pseudo-random masking scheme.

In order to reduce the power overhead induced by the LFSR, it can be clocked at
a lower frequency then the nominal one of the design. Indeed, power consumption
is proportional to the operating frequency.

3.5 Finite state machine

The first way to modify the FSM is to add extra states before the original reset state.
This is described in Section 3.5.1. The second option is to duplicate intermediate
states to stop normal operation if the correct key is not provided. This is detailed in
Section 3.5.2.

3.5.1 Pre-reset states

The first possibility to modify the FSM is to add extra states before the original reset
state [4, 13, 14]. This way, when the system is powered up or reset, it starts again
in these extra states. In order to reach normal operation, the design must transition
from one extra state to the other until it reaches the original reset state. If the state
transitions of the extra states are only known to the original designer, then an at-
tacker will not be able to reach the original reset state. The only possibility would
be to explore all the extra states until the original reset state is reached.

The extra states can come at no cost if the original state machine is encoded
in a way that so-called don’t care states exist. If the FSM’s states follow binary
encoding, then an M-state FSM must use at least dlog2(M)e D flip-flops to store
the current state’s value. If the number of flip-flops used is n, then there are 2n−M
states which are not used. These are don’t care states. They can be used to encode
the extra states.

A graphical representation of the modified FSM is shown in Figure 8.
In this example, the original FSM includes five states. dlog2(5)e = 3, so three

flip-flops are needed for state encoding. However, three flip-flops can encode 23 = 8
states. Therefore, the three don’t care states can be used as pre-reset states.

The new reset state is S′0. In order to transition to the original reset state S0, the
correct values for K0, K1 and K2 should be sent. If one key bit is wrong, then S′0 is
reached again.

The advantage of such technique is to have low overhead since it makes use of
don’t care states. It has several drawbacks though. First of all, from a security point
of view, this locking scheme exhibits a key even though it is not secure on its own.
This can be misleading and get the designer to consider the scheme secure. However,
security should rely on a cryptographic primitive. Second of all, transitions from one
state to the other could be detected by the transient power consumption of switching
flip-flops which encode the current state. Thus, finding the right key becomes trivial.
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Fig. 8 Pre-reset states with key (K0K1K2) = 110

One option explored to make the scheme more secure is to initialise the state flip-
flops to a random value, given by the response of a PUF to a specific challenge [4].
Since only the designer knows the PUF’s challenges/responses pairs, only he can
find out the start-up state associated with a challenge. Therefore, in order to reach
the original FSM, he must provide the system integrator with the right sequence of
inputs to provide to the FSM. However, this only makes each FSM instance behave
differently. It does not account for the two drawbacks previously described. Further-
more, it does not consider the variability of PUF’s responses. If the PUF’s response
differs, the start-up state expected by the designer is different than the actual one of
the powered-up device. Thus the designer can not provide the appropriate sequence
of inputs to unlock the circuit.

Another option to modify the FSM is to duplicate specific states. This is de-
scribed in the following section.

3.5.2 Duplicated states

Similarly, it is possible to use don’t care states to duplicate some intermediate states.
This is described in [15], and shown in Figure 9. In this example, state S2 is dupli-
cated.

The transitions from S1 to one of the duplicated states S21, S22, S23 and S24 is
controlled by the output of a PUF, called random unique block in [15]. After that,
in order to transition to the next state, here S3, a specific key must be applied to the
FSM’s inputs. This key is associated with the PUF’s response, and known only by
the designer. If the wrong key is applied, the FSM does not transition to the next
state and remains locked.

The advantages and drawbacks of this method are the same as the ones describes
in Section 3.5.1.
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Fig. 9 Duplicated states S21, S22, S23 and S24

4 Implementation on FPGA and results

We implemented the on-chip locks proposed in Section 3 on FPGA. We first give
the cost for all solutions in terms of hardware resources. We then them implement
on reference designs to estimate the implementation overhead. All the results are
given with optimisation for lowest area. We used Quartus II 13.1 and ISE 13.4 for
synthesis.

4.1 Hardware resources

The experimental results obtained are given in Table 2. The implementation was
carried out on two FPGA families: Altera Cyclone III and Xilinx Spartan 3. They
are provided as the number of 4-input look-up tables (LUTs) and D flip-flops used
for the implementation.

First, we can see that logic resources usage is very low for all the locks, except for
the PLL reconfiguration. Indeed, in this case, the heaviest module is the one respon-
sible for achieving the reconfiguration. It is provided by the FPGA manufacturer
and can hardly be modified or optimised.

Conversely, all the other locks require very few logic resources. The most
lightweight one consists in acting on the enable input of the input/output flip-flops.
For buses, we give the required resources in terms of the bus-width. They are always
proportional to the bus width. When extra states are added to the FSM, either as pre-
reset or duplicated states, the resources overhead grows logarithmically with respect
to their number. We didn’t take into account here the possibility to reuse don’t care
states. This would reduce the required resources even further.

Modifying the program counter is a specific process for each processor. This is
detailed in Section 4.2.2 for the Plasma CPU.
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Table 2 Implementation results of on-chip locks alone on Altera Cyclone III and Xilinx Spartan 3

Modified feature On-chip lock #4-input LUTs #D flip-flops

Clock circuitry Reconfigurable PLLa (+ control FSM) 247(+55) 118(+18)
Clock-gating module 9 6

Inputs/outputs Inputs/outputs DFF enable 0 0

Interconnection bus Deterministic scramblingb 8n/5 0
Pseudo-random maskingb n n

FSM Pre-reset statesc log(n) log(n)
Duplicated statesc log(n) log(n)

aonly on Cyclone III, not available on Spartan 3
bof an n-bit bus
cfor n extra states

4.2 Reference designs

We then propose to implement the locks on two reference designs: an Ethernet con-
troller and a soft-core processor. Both designs are available on the Opencores web-
site [12]. For comparison, we give the resources required to implement the original
designs in Table 3.

Table 3 Required resources to implement the original designs

Unmodified Altera Cyclone III Xilinx Spartan 3
design #4-input LUTs #D flip-flops #4-input LUTs #D flip-flops

Ethernet controller 275 108 357 99
Plasma CPU 2395 452 2901 394

4.2.1 Ethernet controller

The first reference design is an Ethernet controller. It is a fairly small design, mainly
consisting in an FSM.

We first modified the clock circuitry. On the one hand, the clock gating module
requires 3% more combinational fabric and 6% more D flip-flops. The resources
overhead is then rather low. On the other hand, implementing a reconfigurable PLL
doubles the required resources, and is clearly not practical.

As expected, acting on the D flip-flop enable input requires no extra-resources.
When acting on the bus, scrambling is cheaper than masking. We implemented

them both on a 32-bit bus. Scrambling requires extra combinational logic, around
9% more. On the other hand, pseudo-random masking needs D flip-flops to imple-
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ment the LFSR. Therefore, the associated overhead is quite high, around 30% more
D flip-flops.

Finally, we also modified the FSM in both ways. First, we added 32 pre-reset
states. Even if it only requires one extra flip-flop, the combinational logic handling
the transitions between the extra states is heavy, and requires almost 25% more re-
sources. Then, we duplicated one of the state 32 times. Similarly, only one extra
flip-flop was added to the design but the requirement for combinational logic ex-
ceeds 70% here, which is excessive.

All the results of the implementation on the Ethernet controller are shown in
Table 4.

Table 4 Implementation of on-chip locks on the Ethernet controller

Modified Altera Cyclone III Xilinx Spartan 3
design #4-input LUTs #D flip-flops #4-input LUTs #D flip-flops

Clock-gating module 284 (+3%) 114 (+6%) 367 (+3%) 105 (+6%)
PLL reconfiguration 522 (+90%) 226 (+109%) Not available

Inputs/outputs DFF enable 275 (+0%) 108 (+0%) 357 (+0%) 99 (+0%)

Deterministic scramblinga 297 (+8%) 108 (+0%) 388 (+9%) 99 (+0%)
Pseudo-random maskinga 313 (+14%) 140 (+30%) 391 (+9%) 131 (+32%)

32 pre-reset states 343 (+25%) 109 (+1%) 425 (+19%) 100 (+1%)
Duplicated state (x32) 493 (+80%) 109 (+1%) 612 (+71%) 100 (+1%)
afor a 32-bit bus

For a design of this size, we can then estimate that only input/output locking is
suitable. Adding a clock-gating module can be also considered, since the overhead
is still rather low. All the other modifications lead to an important overhead.

4.2.2 Plasma CPU

A larger design is now presented, the soft-core processor Plasma CPU.
Here, the clock gating module is even cheaper in terms of resources. However,

PLL reconfiguration remains expensive, with 13% more combinational resources
and 30% more D flip-flops.

Like before, using integrated input/output D flip-flops adds no logic resources.
Modifying the bus becomes affordable with this kind of large designs. Scram-

bling it in a deterministic way induces almost no overhead. Pseudo-random masking
leads to low overhead, below 8% Therefore, it can be implemented as a powerful
way to disturb the bus data.

Since the Plasma CPU does not comprise an FSM, pre-reset and duplicated states
could not be implemented on this design.

Finally, being able to control the program counter value is also quite expensive,
and requires 10% extra resources. However, this was implemented on an already
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existing design. We assume it could be implemented in a more lightweight way if
this feature was taken into account during the design phase.

All the implementation results are provided in Table 5.

Table 5 Implementation of on-chip locks on the Plasma CPU

Modified Altera Cyclone III Xilinx Spartan 3
design #4-input LUTs #D flip-flops #4-input LUTs #D flip-flops

Clock-gating module 2399 (+0.17%) 458 (+1%) 2932 (+1%) 400 (+2%)
PLL reconfiguration 2697 (+13%) 588 (+30%) Not available

Inputs/outputs DFF enable 2395 (+0%) 452 (+0%) 2901 (+0%) 394 (+0%)

Deterministic scramblinga 2430 (+1%) 452 (+0%) 2894 (+0%) 394 (+0%)
Pseudo-random maskinga 2446 (+2%) 484 (+7%) 2927 (+1%) 426 (+8%)

Program counter halt Not implemented 3186 (+10%) 428 (+9%)
afor a 32-bit bus

On larger designs, implementing more complex locks is possible. The associated
overhead is limited, and even multiple locks could be integrated.

5 Discussion: partial locking

For some of the features presented previously, it is possible to achieve partial lock-
ing. Partial locking can refer to the following features:

• Lower performance: lower operating frequency...
• Less features: reduced instruction set...
• Limlited period of use: trial period.

However, the system is still perfectly functional.
Such partial locking feature is very interesting from the point of view of the

designer. In fact, it allows the designer to provide the design in evaluation mode.
This way, the design can be thoroughly tested by the future user before buying it.
With the increasing number of designs provided as IP cores, this allows to support
a business model similar to the one used in for software distribution. The product is
first provided as an evaluation version, and can then be fully unlocked to perform
optimally. This offers interesting flexibility to the licensing model.

What is important to partially lock a design is to choose a locking scheme that
provides some granularity. Among the modifications we have shown in the previous
sections, acting on the clock circuitry is the only one able to achieve this. Indeed,
as said before, the clock frequency is directly related to the performance of the
design. Therefore, acting on the clock frequency using a clock gating module or by
dynamically reconfiguring the PLL is a way to tune system performance.
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In order to implement this kind of functionality, a controller should also be im-
plemented to handle the different states in which the system can operate: locked,
evaluation or unlocked. Different commands and the associated unique keys are
controlling the transitions from one state to another. It leads to additional resources
overhead, which must be taken into account.

6 Conclusion

This chapter shows how some features, already existing in most electronic designs,
can be turned into powerful on-chip locks. Since they are already present, using
them leads to low resources overhead. We provide different techniques about how
to effectively implement these locks. We also give details on partial locking. This
can help to achieve a more flexible licensing model for IP cores, allowing to provide
devices in evaluation mode.

The most suited way to modify a design to make it lockable seems to be the
modification of the clock circuitry. It is lightweight and can effectively tune the
performance of the design.
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