
HAL Id: hal-02426107
https://hal.univ-grenoble-alpes.fr/hal-02426107

Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International
License

Cross-layer analysis of software fault models and
countermeasures against hardware fault attacks in a

RISC-V processor
Johan Laurent, Vincent Beroulle, Christophe Deleuze, Florian

Pebay-Peyroula, Athanasios Papadimitriou

To cite this version:
Johan Laurent, Vincent Beroulle, Christophe Deleuze, Florian Pebay-Peyroula, Athanasios Papadim-
itriou. Cross-layer analysis of software fault models and countermeasures against hardware fault
attacks in a RISC-V processor. Microprocessors and Microsystems: Embedded Hardware Design ,
2019, 71, pp.102862. �10.1016/j.micpro.2019.102862�. �hal-02426107�

https://hal.univ-grenoble-alpes.fr/hal-02426107
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Cross-Layer Analysis of Software Fault Models and

Countermeasures Against Hardware Fault Attacks in a

RISC-V Processor

Johan Laurenta, Vincent Beroullea, Christophe Deleuzea, Florian Pebay-Peyroulab, Athanasios Papadimitrioua

a. Univ. Grenoble Alpes, Grenoble INP*, LCIS

26000 Valence, France

firstname.lastname@lcis.grenoble-inp.fr

 b. Univ. Grenoble Alpes, CEA, LETI

38000 Grenoble, France

firstname.lastname@cea.fr

Declarations of interest: none

Abstract – Fault injection is a powerful technique for

attacking digital systems. Software developers have to

take into account hardware fault effects when system

security is a concern. Software fault models have been

developed in an attempt to predict these faults.

However, these models are often designed

independently of any hardware consideration and thus

raise the problem of realism. The generality of these

models often cannot account for the specificities of

each architecture. As a consequence, software

countermeasures based on such software fault models

do not guarantee an effective protection against fault

attacks. Processor microarchitecture should be

precisely analysed to better understand faulty

behaviours. A cross-layer approach can then be

developed, using conjointly hardware and software

characteristics to design stronger software

countermeasures with reasonable overheads. To

illustrate this assumption, this paper shows actual

faulty behaviours observed in a RISC-V processor

RTL simulation, and shows that they can bypass

countermeasures designed to protect against faults

predicted by typical software fault models.

Keywords – Fault attack, software fault model, RISC-

V, software countermeasures

1. Introduction

Nowadays, fault injection is a recognized threat for

system security. This technique has been used extensively

to deduce information from a system or to bypass security

measures [1]. These successful attacks impose the need to

re-assess system security. To this end, fault models have

been designed at different abstraction levels. In this paper,

we use a cross-layer approach considering both Register-

Transfer Level (RTL) and software level fault models.

In its interpretation of the Common Criteria

Methodology for smartcards [2], the Joint Interpretation

Library defined several effects that a fault can produce in

a processor. These effects include: modification of a value

in memory, instruction skipping, instruction replacement,

test inversion, jumps and calculation errors. Because of

their generality, these software fault models have been

used in works treating fault attacks in software [3][4][5].

They offer a relatively easy and flexible way to study the

impact of faults in a program. However, while they seem

plausible, they are not devoid of any criticism. As

Touloupis et al. raised in [6], they suffer from two

intrinsic limitations. First, they do not take into account

microarchitectural states that are not visible to the

programmer. Second, they only consider fault injection

between instructions but not during their execution. These

observations arise from the fact that software fault models

are designed independently of hardware considerations.

They are thus limited in their ability to model reality.

To quantify the inaccuracies of software fault models

compared to injections at lower abstraction levels, several

works have been carried out. Cho et al. showed in [7],

with an extensive fault injection campaign, that realistic

faults, injected at a low level of abstraction, cannot all be

modelled by a simple software model. Wang et al. also

carried out an experiment in [8] to locate the origin of

faults in a processor pipeline. Finally, Espinosa et al.

studied in [9] how a single fault can propagate into

multiple architectural states that affect program execution.

In order to fill the gap between hardware and software

fault models, some works have been conducted. In [10],

Moro et al. carried out a fault injection campaign on an

ARM target. From the results, they deduced which model

was the most relevant for their processor. Dureuil et al.

proposed in [11] and [12] a methodology to infer a

software fault model from injection experiments. They

built a model by iteratively proposing hypotheses for the

origin of faults, and testing these hypotheses. Finally, in

[13], Kelly et al. performed fault attacks on different

instructions to observe their effects on registers and

memory. In these three papers, one of the main

* Institute of Engineering Univ. Grenoble Alpes

This work was funded thanks to the French national program

'programme d’Investissements d’Avenir, IRT Nanoelec' ANR-10-AIRT-05.

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0141933118304745
Manuscript_de01a42009f0ff086612534da2249b9b

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0141933118304745
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0141933118304745
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0141933118304745

assumptions was that the processor was a black-box:

neither its RTL description nor its layout were available;

the faults were thus physically injected in the actual

device. As a consequence, the modelling of fault effects

resulted from observing for example the architectural

registers or the memories during the execution of the

faulted program. This high level point of view can

however lead to misinterpretations of faulty behaviours

because microscopic side effects might get masked by

macroscopic behaviours.

From this difficulty to correctly model faults at the

software level results the difficulty to design software

countermeasures that would correctly thwart actual fault

attacks. This assumption has been illustrated by Yuce et

al. in [14]. They demonstrated that a single clock-glitch

could bypass some typical software countermeasures. The

last section of our paper presents a similar work; more

precisely, we show that single-bit attacks can be a threat

to these countermeasures.

In this paper, we illustrate some shortcomings of

current software fault models. In [15], we already showed

such shortcomings on a few examples. The present paper

is an extension of this first work. It provides a description

of how we extracted faulty behaviours from the processor

microarchitecture, as well as a more thorough report of

faulty behaviours we have observed, and an analysis of

more software countermeasures. Our contribution is

twofold. We first deduce, by analysing its RTL

architecture, some faulty behaviours which can be

expected from a processor attacked with a single-bit fault.

Some of these behaviours are not covered by current

software fault models. Then, with that knowledge, we

attack typical software countermeasures, and expose the

fact that they are not adapted to actual faults injected in a

lower abstraction level. Our goal is to demonstrate that a

precise analysis of the microarchitecture is a required step

to design accurate software fault models. This analysis

can in turn lead to design more effective countermeasures

that are better suited to the end application.

This work does not intend to show an exhaustive

analysis of all possible unexpected faulty behaviours in a

processor, but rather to expose some that can happen, and

that an attacker could take advantage of, so as to bypass

countermeasures. These faults are specific to the hardware

implementation of the processor, and cannot be

anticipated at the software level.

Section 2 describes the fault model that is used, as

well as the simulation methodology. Section 3 presents

the processor under attack, and its microarchitecture.

Section 4 shows faulty behaviours (corresponding to

software faults) that have been observed in simulation.

Finally, section 5 shows how some common software

countermeasures can be attacked with these software

faults.

2. Fault Injection Methodology

This section shows the methodology used in this

study. First, the fault model is discussed and then the

simulation methodology is described.

2.1. Fault Model

There are many ways to model a fault, depending on

the abstraction level under consideration. In the present

work, faults were single bit-flips in RTL descriptions.

That means that we only considered faults in a single flip-

flop at a time. We did not consider electrical masking or

any phenomenon that happens before the fault is captured

in a flip-flop.

We chose to use single-bit faults since even these

simple faults can highlight vulnerabilities of the processor

that are not thwarted by software countermeasures. The

single-bit fault model is a common model [16] that can be

viewed as a preliminary work for more complex models.

It is used by both the hardware and software communities.

This paper is focused solely on faults that affect the

control signals in the pipeline. Faults could also have been

injected in instruction words or in data, like in [17] or [5].

However, these latter faults are also visible in higher

levels of abstraction than RTL. In fact, the analysis of

fault propagation on data is completely independent of

any hardware consideration. As for faults on instruction

words, they are only dependent on the Instruction Set

Architecture (ISA), but not its implementation. Both can

be analysed at ISA level.

2.2. Fault simulation methodology

There are many ways to perform a fault injection

campaign, as described in [18]. In this work, we used a

simulation-based technique. All faults were injected using

a simulator command that sets a signal to a specified

value, until this signal is driven by its source.

Injection targets and clock cycles were not randomly

chosen. They were carefully selected to show potential

vulnerabilities that were found during microarchitecture

analysis. This analysis told us what faulty behaviours

could be expected, and simulation was used to verify that

these behaviours were indeed possible. Faults were first

injected in the simulation of the execution of isolated

assembly instructions. Simulation was used to propagate

each fault in a state visible to the software developer (i.e.,

a general purpose register). In a second phase, we

attacked typical software countermeasures. This time,

simulation told us if the attack was successful: we could

check that the fault corrupted the protected data while

bypassing the countermeasure.

For the sake of simplicity, we did not check every flip-

flop at every clock cycle. As a consequence, it is possible

that faults that are highlighted here also create collateral

effects that we are not aware of. The goal here is not to

give an exhaustive view of all possible faults and of their

effects, but to highlight the existence of these sorts of

behaviours. Besides, the knowledge we have of these

faults is sufficient to successfully attack typical

countermeasures, as we show in section 4. Exhaustiveness

of the fault effects could be a perspective of this work. We

would like to emphasize that aside from checking the

faulty behaviour, we also made sure that no exception was

raised in the processor. We considered that a fault is

detected if an exception is raised. The simulation ended a

thousand cycles after the injection, to make sure that there

was no latent state that raised an exception.

3. Hardware Architecture

 This section shows the processor microarchitecture,

and how it executes instructions. This presentation is

made in the aim of better understanding the faults that are

highlighted thereafter. Finally, a brief discussion on

hardware countermeasures is made.

3.1. RISC-V architecture

RISC-V is an open Instruction Set Architecture [19]

developed by the University of California, Berkeley since

2010. Like its name implies, it is a Reduced Instruction

Set Computer. It uses a load/store architecture, which

means that memory and register operations are decoupled.

Finally, it can operate on various data widths: 32, 64 or

even 128 bits.

The RISC-V architecture is modular: it is composed

primarily of a base integer instruction set (I), to which

several extensions can be attached. Amongst these

extensions are: multiplication/division (M), atomic

operations (A), and floating-point operations with single

(F) or double precision (D). The base integer set with

these four extensions (IMAFD) is commonly called the

general-purpose processor (G).

The basic implementation of RISC-V is called Rocket

core. It is composed of a 5-stage pipeline that implements

the G variant of RISC-V (64-bit in our case). The pipeline

stages are: Instruction Fetch (IF), where instructions are

fetched from instruction memory; Instruction Decode

(ID), which decodes the instruction, drives control signals

and reads data from the register-file; Execute (EX), where

operations are executed by the ALU; Memory (MEM),

which undertakes memory reads and writes; and finally

Write-Back (WB), where results from previous stages are

written in the register-file.

The Rocket core is used in an implementation called

LowRISC. Specifically, we used LowRISC v0.2 [20],

which was released in December 2015. To lift any

ambiguity, in the rest of the paper, registers that are

visible to the developers are called GPR (General Purpose

Registers), while internal registers that are not visible to

the programmers are simply called “registers”. The latter

are microarchitectural states that exist only at RTL. GPRs

are grouped into the register-file.

3.2. Microarchitecture

Before diving into the different faulty behaviours that

have been obtained in RTL simulation, it is necessary to

present in detail the microarchitecture of the processor

and explain how it works. Figure 1 shows the last three

Figure 1: Simplified view of EX, MEM and WB pipeline stages in LowRISC v0.2

pipeline stages (EX, MEM and WB) of the specific

implementation which has been used. The Instruction

Fetch and Instruction Decode stages are not detailed

because few faults were injected in these two stages.

Indeed, most of the control logic is located in the last

three stages, and hence more interesting behaviours are

obtained there. Faults in the Fetch and Decode stages

often result in a wrong instruction being fetched, or an

instruction being mutated. These models are not our focus

since they have already been studied in the past. Figure 1

is a simplified view of the actual architecture, but it

displays all signals that are necessary to understand how

the processor behaves when attacked.

This figure has been obtained by looking at the

hardware description of the Rocket core. The ID/EX,

EX/MEM and MEM/WB rectangles represent registers

that store signals between different pipeline stages (the

execute stage is between ID/EX and EX/MEM registers

for example). Faults were only injected in these signals.

Anything in-between is combinational logic, and thus

outside of our fault model.

3.3. Fault-free execution of a BEQ instruction

To better understand how the pipeline works, we fisrt

show a simple fault-free example by examining a BEQ

instruction. BEQ stands for “branch if equal”. This

instruction compares the values of two GPRs, and

branches to another part of the program if they are equal.

The syntax of such an instruction is “beq a1, a2,

offset;”, where a1 and a2 are the two GPRs to compare,

and offset indicates where to jump in the code. This is an

offset to the current Program Counter (PC).

The processor uses a gshare branch predictor, so,

depending on the branch history, the processor

dynamically speculates either a branch taken or a branch

not taken. For simplicity, we consider here the case where

branches are predicted not taken. So the processor

continues to fetch the following instructions, even if it

does not know yet if they should be executed or not. If the

branch is finally taken, the processor flushes the pipeline

to disable the instructions fetched as a result of the

misprediction.

During the execution of a BEQ instruction, ID/EX

registers “branch”, “ALU_op”, “Reg_1”, “PC”, “Mux_1”,

“Mux_2”, “Instruction” and “Reg_2” are used. In the

Execute stage, input values read from the register-file are

called “Reg_1” and “Reg_2”. These inputs are transmitted

to the ALU through two multiplexors that select entries 1

and 2 respectively (through signals “Mux_1” and

“Mux_2”). “ALU_op” is used to tell the ALU which

operation to perform. In this case, it is “set if equal”,

which sets the output of the ALU to 1 if the inputs are

equal; 0 otherwise. The result of the ALU is memorized in

one of the EX/MEM registers: “ALU_out”. At the same

time, “Branch” is simply transferred from ID/EX to

EX/MEM registers, as it is only used in this stage.

The more complex part of a BEQ instruction takes

place in the MEM stage. It is in this stage that the decision

to branch is taken. First, it is necessary to compute the

branch target. As can be seen in the MEM stage of Figure

1, branch target is the sum of current PC, and an offset.

This offset is selected by a series of two multiplexors. By

default, the offset is four. That means that the next

instruction should normally be at address PC+4 (which is

correct considering 32-bit instructions). When the

comparison of the branch instruction is true (LSB of

ALU_out is one), the second multiplexor selects the other

entry. So the offset of branch target is modified: it is not

four anymore, but a value that is deduced directly from

the instruction word (Imm_SB, which corresponds to an

immediate value for a conditional branch). The new

branch target is then compared with the PC of the

instruction currently in the EX stage. If they are not equal,

that means that there has been a misprediction: the

following instruction in the pipeline is not the next one to

execute. In this case, the pipeline is flushed and the global

PC is set to the branch target. Finally, nothing is done in

WB stage: no value has to be written in the register-file.

3.4. Other instructions

Of course, other classes of instructions can be

executed by the processor. Here we give a quick overview

of these instructions.

R-type instructions refer to instructions that operate on

two GPRs, and write the result in a third GPR. These

instructions include the addition, subtraction, as well as

logical operations like AND, OR, XOR and shifts.

Operations are made by the ALU in the EX stage, and the

result is written into the register-file during the WB stage.

Loads and stores are operations that are used to read or

write in RAM. Memory address is computed by the ALU

and then sent to the memory. During the EX stage, the

memory also receives a validation signal and the type of

operation to perform (read/write). The MEM stage is only

useful for store operations: data is transmitted to the

memory. Finally, the WB stage is only useful for load

operations when data is written into the register-file.

Jumps are used to unconditionally jump to another

part of the program. The specific instruction used here is

JAL, which means “jump and link”. In addition to

jumping, it also stores the return address (PC of next

instruction) in a GPR. This is similar to the sub-routine

“call” in x86 architectures. Note that the other jump

instruction, JALR, is not represented in Figure 1 to not

make the figure too complex.
Finally, to appreciate one of the most interesting faults

that were found, it is useful to understand a concept used

in most modern processor implementations: forwarding.

Forwarding, also called bypassing, is a technique used to

solve data hazards in an efficient way. A data hazard

happens when there are dependencies between

consecutive instructions: an instruction needs to use the

result of a previous instruction that has not finished

executing. Listing 1 gives an example of such a data

hazard. To solve this problem, modern processors can

directly feed the value of a pipeline stage to the ALU. So

this value can be re-used directly, and there is no need to

wait for the value to be written in the register-file. This

process is called forwarding. R-type instructions can

forward values to the next two cycles, while load

instructions can only forward to the next one. For more

details on how hazards and forwarding work, see [21].

3.5. Discussion on hardware and software

countermeasures

The Rocket core implementation does not have

hardware countermeasures built in. So, one could argue

that this study is not relevant, since an application with

security concerns should preferably be run on a secured

processor. There are however several considerations to

temper this point of view. First, it is difficult to

completely protect a processor in hardware, because it

often induces high costs and performance overheads.

There will often remain parts of the processor that are still

vulnerable. As a side note, because this study is focused

solely on faults injected in the processor pipeline, and not

in the register-file or memories (both instruction and

data), we can consider that these structures are protected.

Faulty behaviours that are shown here would still be

present if these structures were hardened.

Second, it may be better to protect in software rather

than in hardware. Indeed, software countermeasures are

cheaper and more flexible (they can be adapted to the

system more easily). If a processor has to be hardened

against fault injections, it is better to first evaluate if these

faults can be mitigated effectively in software. For

example, if floating point operations are rarely used in an

application, and are not very critical, it is better to protect

them in software (instead of paying expensive hardware

countermeasures). To evaluate how to protect a system

effectively, precise software fault models are needed. This

is another reason why we claim a microarchitecture

analysis is needed.

ADD a2 = a0 + a1

ADD a3 = a2 + a0

Listing 1: Example of a data hazard. Here, a2 is used in the

second instruction, but its value is computed in the previous

instruction, and thus is not comitted to the register-file yet.

Instruction Origin Faulty behaviour

Branch Prevent the branch from being taken

Mux_1 or Mux_2 Comparison to 0 instead of one of the arguments.

ALU_op Test inversion
(4)

Write_enable Normal operation, plus set one GPR to zero or one
(3)

 (not represented) Execution of the following instruction, even if branch is taken
(2)

Write_enable Prevent the result from being written into register-file
(1)

Branch Jump in addition to the normal operation (only if the result of the ALU is odd)
(3)

Mux_1 or mux_2 Replace one argument with 0

ALU_op Perform another operation
(4)

Write_enable Prevent the value read from being written into register-file
(1)

Ctrl_mem Prevent the reading and write the address into destination GPR.

ALU_op Subtraction instead of addition for address calculation.

Mem_cmd Write last written data in memory, and write the address into destination GPR.

Mem_cmd Normal load operation, then write last written value in memory.

Mem_cmd Normal load operation, then write in memory the sum of loaded value and the last written value.

Ctrl_mem Prevent the store operation.

ALU_op Subtraction instead of addition for address calculation.

Write_enable Normal store operation, and write the address into a GPR (depending on the address offset).

En_store Write last written value instead of the new one.

Mem_cmd Write new value XOR last written value.

Write_enable Prevent return address from being written in destination GPR.

Mux_2 Write PC instead of PC+4 for the return address.

Jal Prevent the jump from happening

 (not represented) Execution of the following instruction
(2)

Branch

R-type

Load

Store

Jump (jal)

Table 1: Faulty behaviours for different instructions. Faults marked with a number can have side effects or consequences

that are explained in the part about complex faults.

4. Fault propagation analysis

Now that some parts of the microarchitecture and a

fault-free behaviour have been explained, the fault

propagations can be easily understood. We now disrupt a

correct execution by changing one of the control signals.

To illustrate this, we first describe two simple faults on

the BEQ instruction. Then, we display some faulty

behaviours that we obtained for different instructions.

They are shown in Table 1, as well as the origin of the

error, i.e., where the fault was injected. We then describe

a few more complex faulty behaviours. Finally, from the

different behaviours obtained in simulation, we discuss

the relevance of typical software fault models.

4.1. Faults on a BEQ instruction

A simple fault on BEQ can prevent the branch from

being taken, regardless of the result of the comparison. By

faulting the “branch” signal, we can make sure that the

multiplexors in the MEM stage select the default entry

(value 4). In this case, the branch target is thus PC+4

whatever the result of the comparison. Hence, the branch

is never taken.

Another fault can modify the comparison in the EX

stage by faulting the selection signal of one of the two

multiplexors “Mux_1” or “Mux_2”. Thereby, the ALU

compares a GPR to 0 instead of comparing the two GPRs.

This fault has a side consequence: pseudo-instructions

like “BEQZ” (branch if equal to zero) can be forced to

branch. Indeed, in this case, one argument is already equal

to zero, and we can inject the fault described to set the

other argument to zero, and thus make the equality true.

These two faults are quite straightforward. More

interesting faulty behaviours are shown in Table 1, for

different classes of instructions.

4.2. More complex faults

In this section, we study in more detail the behaviours

that are numbered in Table 1. These paragraphs give

precisions, side effects or consequences of these faults. In

particular, we show how they can interact with some

optimisation structures in the pipeline, namely forwarding

and speculative execution. These structures, which have a

clear impact on the processor performance, also make the

study of fault effects more complex.

(1) First, an interesting fault uses the forwarding

capability of the processor. In Table 1, the fault R-

type/write_enable can prevent a result from being

committed into the register-file. However, in case there is

a data hazard on this faulted instruction, the forwarding

can still happen with the correct value. This is due to the

fact that forwarding happens before the value is written

into the register-file. The forwarding can be deactivated or

not, depending on when the attack is performed (EX,

MEM or WB stages). For the sake of clarity, we quickly

examine the code example in Listing 1. By attacking the

first instruction, an attacker can prevent the processor

from writing the result of the addition into a2. Thus, a2

keeps its previous value. But the value computed by the

second instruction can still be correct; as if the fault on a2

did not happen (i.e., a3 would be equal to a0+a1+a0).

This behaviour can have some interesting uses. For

example, in the next section, we show that it is possible to

pass through a comparison with a wrong value.

There are other uses of forwarding in the context of

fault injection. It is possible to activate forwarding when it

should not be used (or use it to forward the wrong value).

As a result, it is possible, for any instruction, to replace

one of its arguments (that should be read from the

register-file) by the result of the previous instruction or

the instruction before. Contrary to the preceding fault,

where forwarding was used passively, as a side

consequence of the code; here we use forwarding actively.

(2) A second interesting fault can allow an attacker to

execute an instruction following a jump or a branch

instruction. This is due to speculative execution. When the

processor realises that wrong instructions have been

speculated, it deactivates these instructions. It is possible

to inject a single-bit fault to re-activate one of these

instructions, and allow it to finish executing. More

precisely, in case of a fault attack, the first or the third

instruction of the wrong branch can be executed. For

example, in Listing 2, instructions 11 or 13 could be

executed before instruction 1; and conversely, instructions

1 or 3 could be executed before instruction 11. This fault

can be used to execute an instruction that is not intended

in a particular context.

(3) Another fault consists in writing in a GPR during a

branch instruction (Branch/write_enable). The value

written is the result of the comparison: 0 if it is false; 1 if

it is true. Target GPR depends on the offset of the branch.

Only GPRs whose number is a multiple of four or GPRs

equal to 1 modulo 4 can be targeted (otherwise, there is a

problem in the code since the offset results in a

misaligned PC). Indeed, the target GPR is selected by

interpreting some bits of the offset of the branch. It is a

consequence of the way instruction words are designed in

the ISA.

A similar fault can be executed on R-type instructions:

R-type/branch. In some way, it could be considered as the

 BEQ a1, a2, label;

 Inst_1

 Inst_2

 Inst_3

 […]

Label:

 Inst_11

 Inst_12

 Inst_13

 […]

Listing 2: Example assembly code

symmetric of the previous one. With this fault, the

instruction is correctly executed, but there is also a branch

to another part of the program, depending on the operation

and the destination GPR. This fault can only be exploited

when the result of the ALU is odd. To have a correct jump

target, GPRs multiple of four or equal to 1 modulo 4 have

to be used (others raise an exception for misaligned PC).

So these GPRs are more susceptible to faults.

These two faults execute a hybrid instruction that

executes both the specified instruction, and a side effect

from another instruction. Both faults put the processor

into an intermediate state that is neither a branch nor an

R-type instruction, but something in-between.

(4) It is possible to fault the operation executed in the

ALU by targeting the ALU_op signal. This type of fault

looks like an instruction replacement that could be

analysed directly with the instruction word, but it is

different. ALU_op is an internal signal, and thus, its

mutations are different from those in an instruction word.

“ALU_op” is a four bits wide register, so an array of

the operations ordered in Gray code (Table 2) can be used

to easily see all single-bit mutations for each operation, by

looking at adjacent cells. For example, this array shows

that we can change an addition (add) into a XOR, a left

shift (sl), a “set if equal” (seq) or even an unrecognized

operation.

There are two interesting things about faults on the

ALU_op signal. First, we can see that every comparison

operation is right next to its inverse (seq next to sne; slt

next to sge; sltu next to sgeu). This is an efficient way to

design the ALU, but it is unfortunately also more

vulnerable to single bit faults. A single-bit fault can easily

reverse the condition of a test (note that the test inversion

behaviour is already known in typical software fault

models; here we see a justification of this model). The

second interesting thing about this table is that any

arithmetic or logic operation can be transformed into a

comparison. As a consequence, the result of the ALU can

easily be set to 0 or 1 instead of the correct result.

4.3. Discussion

This study has shown that when examining the

microarchitecture of a processor, in presence of a single

bit-flip, we can find unexpected behaviours that are not

covered by typical software fault models. These faulty

behaviours can put the pipeline into an intermediate state,

where the control signals do not perfectly match any

instruction. This is perhaps the main difference compared

to typical software fault models. In typical software fault

models, instructions are often replaced by another one

(instruction skip, test inversion, instruction replacement)

or some data are corrupted (in memory or the register-

file). All these behaviours, even if faulty, are still valid (in

the sense that the processor could theoretically reach these

states). Here, the processor is put in an unknown state

which can have multiple effects and which is impossible

to anticipate at the software level. For example, the fault

R-type/write_enable looks like a typical instruction skip,

i.e. a replacement with a NOP. However, it has a side

effect (forwarding) that can impact security and that is not

considered in any software fault model (as far as we

know). Another important example is

Branch/write_enable which modifies a register after the

comparison. Its side effect can have a huge impact on

security since comparison instructions are at the heart of

many security measures. Even if these processor states are

not attainable in a normal execution, it is still possible to

model them at the software level, by adding different

instructions. Examples are shown in next section, to

model attacks on various countermeasures.

Some of the faults shown here are only activated when

specific conditions are met. Thus, they can be easily

avoided by taking into account these characteristics when

designing the software. Conditions can be on the ordering

of instructions (forwarding faults), on the values

manipulated (branching when the result is odd), or the

offset of a branch for example. These faults also show that

some values or GPRs are more prone to errors than others.

It is possible to inject a fault to force an argument to 0 or

to force the result of the ALU to 0 or 1. These values

should be handled with caution in an application. The use

of Hardened Booleans (Booleans whose values are

different from 0 and 1; for example 0x55 and 0xAA), as

defined in [22], would be a good practice in the

considered processor. Likewise, GPRs multiples of four

seem more susceptible to faults, so they should be used

with that in mind when designing software. All these

remarks lead to the idea that to assess system security,

hardware and software should be analysed together. This

co-analysis could detect potential vulnerabilities or lack

thereof.

5. Software countermeasure analysis

To prevent faults from impacting the execution of a

program and creating vulnerabilities, many software

countermeasures have been developed over time. In this

section we analyse some of these countermeasures and see

how they handle precise faults extracted from the

processor microarchitecture in section 4.

In [23], the authors did an extensive evaluation of the

efficiency of software countermeasures in simulation.

This is a quantitative evaluation of the consequences of

Table 2: ALU operations ordered in Gray code. Operations

2 and 3 are not specified in the RTL description (they

should not happen), but would in most cases result in 0 and

1, respectively.

LSB�

MSB

00 add sl - -

01 xor sr and or

11 slt sge sgeu sltu

10 seq sne sra sub

00 01 11 10

faults in protected software. We propose here to do a

qualitative evaluation using the knowledge we have from

previous section. We will be able to understand precisely

why some countermeasures do not necessarily work.

Software countermeasures can be divided into two

categories: those that target data-flow integrity and those

that target control-flow integrity. The former consist in

ensuring that data are manipulated correctly while the

latter consist in ensuring that no spurious jumps can

corrupt the system.

The purpose of this last section is to show that single-

bit faults found in previous section can be used to defeat

typical countermeasures while corrupting protected data.

5.1. Data-flow integrity

Data-flow countermeasures often consist in adding

redundancy in the code. Redundancy can be used to

detect, or even correct a fault. Here, we first examine the

duplication scheme described in [24], which aims at

ensuring a correct code execution, even in presence of an

instruction skip. Then, we examine the duplication and

triplication proposed in [25]. The schemes in this second

paper can be used against more general fault models:

instruction skips or any kind of data or computation

corruption. However, the duplication can only detect and

not correct a fault, contrary to [24].

In these schemes, redundancy is used at instruction

level. There is also a common countermeasure that is

algorithm duplication. In that case, the whole algorithm is

executed, and then executed a second time (the second

execution can differ from the first; for example, it can

consist in ciphering and then deciphering to verify that

there was no problem). However, as pointed out in [25], it

is harder to inject the same fault in two subsequent

instructions than it is to inject them in two executions of

an algorithm. The former requires high-end means. That is

why it can be preferred. We show however that they are

not immune against the faulty behaviours we have

extracted in section 4.

5.1.1. Duplication

 In [24], Moro et al. proposed a countermeasure to

thwart instruction skip attacks. This countermeasure

consists in duplicating every instruction, so that if one of

the two instructions is skipped, the other one still manages

to compute the correct result. Idempotent instructions are

simply duplicated, while non-idempotent instructions first

need to be replaced by an idempotent sequence. Listing 3

shows how a non-idempotent XOR is protected (the

instruction in Listing 3.a is not idempotent because

executing it twice changes the result).

 In their paper, the authors formally prove that this

countermeasure is resistant against instruction skips. This

is true for direct instruction skips. However, other attacks

in the hardened code can behave like if there was an

instruction skip in the original code. In the protected

sequence in Listing 4, it is possible to do a forwarding

attack on the last XOR, so that the first argument is

replaced by the result of the previous instruction. In that

case, the final result is equal to the initial value (XORing

twice with the same value is equivalent to doing nothing).

Hence, this fault in the protected code is equivalent to an

instruction skip in the unprotected code.

5.1.2. Duplication - Comparison

In [25], Barenghi et al. propose different methods to

protect a code by adding redundancy.

One of their countermeasures consists in duplicating

an instruction and then comparing their results. We

examine this countermeasure in the case of a load

instruction. Listing 5.a provides a code example.

Offset(s0) is the memory address (addition of an offset to

the content of GRP s0). The content of this memory

address is read twice, and stored in GPR a1 and a2. Then

there is a comparison between these GPR and a jump to

label “error” in case they are different. Against this

countermeasure, an attack can be performed on the second

load. Indeed, with the fault Load/Write_enable in Table 1,

it is possible to prevent a load from writing into the

destination GPR. But due to the forwarding, which is

activated in the final BNE instruction, the correct value is

used in this instruction. Thus, the value read from

memory is directly forwarded to the comparison

instruction, and this value (which is the correct one) is

MOV t0 = a0

MOV t0 = a0

XOR a0 = t0 ⊕ a1

XOR a0 = t0 ⊕ a1

(a)

MOV t0 = a0

MOV t0 = a0

XOR a0 = t0 ⊕ a1

XOR a0 = a0 ⊕ a1

 (b)

Listing 4: Forwarding attack on a duplicated XOR

XOR a0 = a0 ⊕ a1

(a)

MOV t0 = a0

MOV t0 = a0

XOR a0 = t0 ⊕ a1

XOR a0 = t0 ⊕ a1

(b)

Listing 3: (a) Unprotected xor instruction; (b) Xor protected

with Moro countermeasure

LW a1 offset(s0)

LW a2 offset(s0)

BNE a1, a2, error

(a)

LW a1 offset(s0)

MOV t0 = a2

LW a2 offset(s0)

BNE a1, a2, error

MOV a2 = t0

(b)

Listing 5: Load/write_enable attack on load duplication.

BNE stands for “branch if not equal”. The attack is

modelled by saving the value of register a2 and then

restoring it after the comparison.

compared with a1. As both values are the same, the

program does not detect any error. However, a2 keeps its

previous value. Listing 5.b shows how the code behaves

under the attack. We added two instructions to the original

code (in bold in Listing 5.b): one for storing the initial

value of a2 in an unused temporary GPR before the load

modifying a2, and one for restoring this value into a2 after

the comparison. It is interesting to note that the single

hardware fault results in two distinct effects in the code:

corrupting an instruction and bypassing another at the

same time.

5.1.3. Duplication and double comparison

One criticism of the previous countermeasure could be

that only the instruction to protect is duplicated, and not

the comparison. A duplication of the comparison, as

shown in Listing 6.a, could prevent the attack shown,

because a load instruction can only forward its value to

the next cycle.

However, the completely duplicated countermeasure is

not entirely safe either. The Branch/write_enable fault can

modify a GPR during a branch operation. a2 could be this

GPR, depending on the offset of the branch instruction (as

described in section 4.2). Listing 6.b shows how this fault

could behave if a2 were impacted. Both comparisons are

executed normally, and right after that, a2 is modified. It

is important to emphasize that: all the code is executed

normally, but the last comparison changes the value. With

more comparisons, the result would be the same.

One interesting thing to note is that the efficiency of

the countermeasure depends on the protected instruction.

For the same countermeasure, different instructions would

need different attacks. Here we have presented two

attacks on a load operation, but if we were protecting an

addition instead, different attacks would also be possible.

For example, the forwarding attack would still be possible

with the duplication of the comparison, because the

forwarding can happen during two cycles, as explained in

section 3. Another possible attack would be to skip all the

duplicated section of the code (R-type/branch), thus

leaving a single ADD instruction. This example is

presented in Listing 7. However, this attack could only

work under specific conditions (the result of the addition

is odd, and its destination GPR is a6 for example).

5.1.4. Triplication

The next countermeasure studied is the triplication of

an instruction, coupled with a majority vote. The

advantage of this countermeasure is that it can correct

single software faults (instruction skip or

data/computation corruption). But this feature, which

improves fault robustness, can also become the source of

new fault attacks. An attacker could use this feature to

correct a value into a wrong result. We saw in Table 1

that there are multiple ways to modify the contents of the

memory during a load operation (faults Load/Mem_cmd).

A fault during the first load operation can modify the

memory. So, the next two load operations read the

corrupted value. Amongst the three load instructions, the

second and third read the same (wrong) value. Then,

because the majority of reads have the same corrupted

value, the countermeasure considers that it is the correct

one. What is interesting here is that if the triplication were

only used to detect faults, the attack would not be

possible. Allowing the code to correct faults can be

counter-productive.

This attack would not work if the memory were also

triplicated. However, this would need a triplication of the

preceding store operation, which also has vulnerabilities.

A faulty store instruction can modify a GPR

(Store/Write_enable). So if the first store operation

modifies its GPR, the two following operations write a

wrong value in memory.

5.2. Control Flow Integrity

5.2.1. Overview

 Aside from all previous countermeasures that aim at

protecting the data-flow integrity, there is also another

kind of countermeasures that target control-flow integrity.

Control-flow integrity countermeasures are designed to

ensure that no spurious jumps can happen during code

execution. When studying control-flow integrity, the code

is first separated into basic blocks. These are pieces of

code where no jump can happen (as origin or target of the

jump), except at the beginning or at the end. Control-flow

integrity can be divided into two problems: inter-block

and intra-block jumps. The former refers to jumps from

one basic block to another, wrong, one, while the latter

refers to jumps inside the same basic block (which is

LW a1 offset(s0)

LW a2 offset(s0)

BNE a1, a2, error

BNE a1, a2, error

(a)

LW a1 offset(s0)

LW a2 offset(s0)

BNE a1, a2, error

BNE a1, a2, error

LI a2 = 0

 (b)

Listing 6: Branch/write_enable attack on load

duplication/comparison. a2 is modified if the error label is

at the right location. Otherwise, another GPR would be

targeted. “LI” is short for “load immediate”.

ADD a6 = a0 + a1

ADD a2 = a0 + a1

BNE a6, a2, error

BNE a6, a2, error

 (a)

ADD a6 = a0 + a1

(b)

Listing 7 : R-type/branch attack on add duplication. Three

instructions are skipped because a6 is the destination GPR.

Another destination would skip a different number of

instructions.

inherently wrong since basic blocks are jump-free by

definition).

 Protecting against intra-block jumps is difficult to do

in software since the finest granularity level is the

instruction: we need to add instructions to ensure that

each instruction is executed... The common

countermeasure is to increment a counter after each

instruction and check its value at the end of the basic

block. On the other hand, inter-block jumps have been

subject to a lot of research. Many different schemes exist

to protect against these attacks. They are mainly based on

the computation of a run-time signature which is checked

against a pre-computed signature, in each basic block.

[26] surveys these schemes and compares their detection

ratio. Most of the time, some instructions are added at the

beginning and/or the end of a basic block to update the

signature and check its value (not necessarily in this

order). Listing 8 shows how the protected code is

structured. After the BEQ instruction, there are two basic

blocks (one if the condition is true; the other if it is false).

In each basic block, we add two instructions to update and

check the run-time signature.

5.2.2. Attack on inter-block control-flow integrity

 The schemes used in inter-block control-flow integrity

are designed to thwart “direct” jumps that result for

example from a modification of the PC. However, the

control-flow can also be attacked by more complex faults

that we have shown in section 4. Using speculative

execution, it is possible to commit the third instruction of

the wrong branch. So if the control-flow integrity

countermeasure only adds two instructions at the

beginning of a basic block, the attack can reach an

instruction that should have been protected.

 In Listing 8, it is possible to execute inst_13 before

going into the left basic block, and likewise, it is possible

to execute inst_3 before going into the right basic block.

In either case, there is a violation of the control-flow that

is not detected by the countermeasure.

5.3. Discussion

In this section, we have seen that it is necessary to

exercise caution when using typical software

countermeasures. While certainly effective at thwarting

general software fault models, they can be ineffective or

even detrimental to system security when considering

actual faults.

The question that arises from all this study is: is there

a way to protect a code effectively against the complex

faulty behaviours our analysis describes? As we have seen

in Table 1, various complex faulty behaviours can happen

in a processor, and these behaviours are often very

different from each other. In addition, some of these

faulty behaviours can happen only under specific

circumstances. It is possible to give some general advices

to protect a program, like the ones shown in section 4

(using hardened Booleans, avoiding common values like

0…). Another example is to add dummy operations in

order to lessen the impact of some structures like

forwarding or speculative execution (note that this advice

goes exactly against the principles behind these

optimizations: they are built to avoid wasting cycles, but

for security reasons, it is better to reintroduce those

wasted cycles). Indeed, these dummy operations can

reduce dependences between instructions, thereby

preventing some complex faulty behaviours.

While these advices can help, finding a general

software countermeasure that can effectively counter

every faulty behaviour in every circumstance seems to be

very difficult. Making hardware and software

countermeasures interact with each other could be a good

way to improve the overall security (again, this is a hint to

use a cross-layer approach). However, the end goal in

security is not to counter every fault, but those that give

the attacker an advantage. In the end, the design of

software countermeasures should not rely “blindly” on the

microarchitecture and the software, but should be geared

towards specific security goals.

6. Conclusion and perspectives

In this paper, we have shown some simulated faulty

behaviours that can be observed when injecting single-bit

faults into a LowRISC v0.2 processor. These faults were

injected in unprotected sections of the processor pipeline,

and created behaviours that are not thwarted by software

countermeasures either. This was shown on several

countermeasures targeting either data-flow or control-

flow integrity.

Most of these faults are difficult to predict without

undertaking a precise analysis of the RTL architecture of

the processor. The ISA level is not sufficient to really

understand how the processor behaves under an attack.

An analysis of processor microarchitecture can bring

realism to software fault models, and that knowledge can

in turn be used to design better countermeasures to

enhance system security.

Some faults depend heavily on the software context;

the forwarding fault and the speculative execution fault in

particular, which depend on the previous or the next

instructions to execute. Some faults have different effects

[…]

BEQ a1, a2, label;

Listing 8: Code example with control-flow

integrity countermeasure

Inst_1: update sig

Inst_2: check sig

Inst_3

[…]

Inst_11: update sig

Inst_12: check sig

Inst_13

[…]

depending on the values manipulated, or the GPRs used.

These observations lead to the idea that security

assessment should rely conjointly on a hardware and

software cross-layer analysis.

Several perspectives come out of this study. First, it

would be interesting to study the impact of faults on an

actual application. Indeed, some single-bit faults could

have interesting effects that cannot appear on isolated

countermeasures. Another perspective would be to have a

methodology to automatically model faulty behaviours

from the RTL description of a processor. This search for

exhaustiveness could lead to the design of more effective

software countermeasures. Another interesting

perspective would be to take into account multi-bit faults

and see which behaviours can be obtained under this more

general fault model. To cope with the huge fault space of

multi-bit attacks, the methodology described in [27]

would be a good starting point.

Finally, we have pointed out the idea that

countermeasures should primarily be designed to thwart

attacks on specific security goals instead of trying to

counter every possible attack. To do that, some techniques

from static code analysis can be exploited. Indeed, they

can be used to prove the correctness of properties in the

code. So we could use them to ensure that security

properties in the code are unharmed against faults

extracted from the microarchitecture. The use of static

analysis to automatically detect vulnerabilities in a system

is the focus of our current work.

References
[1] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance of

Checking Cryptographic Protocols for Faults,” in Advances in

Cryptology — EUROCRYPT ’97, 1997, pp. 37–51.

[2] Joint Interpretation Library, “Application of Attack Potential to

Smartcards.” Jan-2013.

[3] P. Berthomé, K. Heydemann, X. Kauffmann-Tourkestansky, and J.

F. Lalande, “High Level Model of Control Flow Attacks for Smart

Card Functional Security,” in 2012 Seventh Int. Conf. on

Availability, Reliability and Security, 2012, pp. 224–229.

[4] G. Barthe, F. Dupressoir, P.-A. Fouque, B. Grégoire, and J.-C.

Zapalowicz, “Synthesis of Fault Attacks on Cryptographic

Implementations,” presented at the ACM CCS 2014, 2014, p. 16.

[5] A. Höller, A. Krieg, T. Rauter, J. Iber, and C. Kreiner, “QEMU-

Based Fault Injection for a System-Level Analysis of Software

Countermeasures Against Fault Attacks,” in 2015 Euromicro

Conference on Digital System Design, 2015, pp. 530–533.

[6] E. Touloupis, J. A. F. Member, V. A. Chouliaras, and D. D. Ward,

“Study of the Effects of SEU-Induced Faults on a Pipeline

Protected Microprocessor,” IEEE Trans. Comput., vol. 56, no. 12,

pp. 1585–1596, Dec. 2007.

[7] H. Cho, S. Mirkhani, C. Y. Cher, J. A. Abraham, and S. Mitra,

“Quantitative evaluation of soft error injection techniques for

robust system design,” in 2013 50th ACM/EDAC/IEEE Design

Automation Conference (DAC), 2013, pp. 1–10.

[8] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing

the effects of transient faults on a high-performance processor

pipeline,” in International Conference on Dependable Systems and

Networks, 2004, 2004, pp. 61–70.

[9] J. Espinosa, C. Hernandez, and J. Abella, “Modeling RTL fault

models behavior to increase the confidence on TSIM-based fault

injection,” in 2016 IEEE 22nd International Symposium on On-

Line Testing and Robust System Design (IOLTS), 2016, pp. 60–65.

[10] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E.

Encrenaz, “Electromagnetic Fault Injection: Towards a Fault

Model on a 32-bit Microcontroller,” in 2013 Workshop on Fault

Diagnosis and Tolerance in Cryptography, 2013, pp. 77–88.

[11] L. Dureuil, M.-L. Potet, P. de Choudens, C. Dumas, and J.

Clédière, “From Code Review to Fault Injection Attacks: Filling

the Gap Using Fault Model Inference,” in Smart Card Research

and Advanced Applications, 2015, pp. 107–124.

[12] L. Dureuil, “Analyse de code et processus d’évaluation des

composants sécurisés contre l’injection de faute,” phdthesis,

Communauté Université Grenoble Alpes, 2016.

[13] M. S. Kelly, K. Mayes, and J. F. Walker, “Characterising a CPU

fault attack model via run-time data analysis,” in 2017 IEEE

International Symposium on Hardware Oriented Security and

Trust (HOST), 2017, pp. 79–84.

[14] B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick,

and P. Schaumont, “Software Fault Resistance is Futile: Effective

Single-Glitch Attacks,” in 2016 Workshop on Fault Diagnosis and

Tolerance in Cryptography (FDTC), 2016, pp. 47–58.

[15] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and A.

Papadimitriou, “On the Importance of Analysing

Microarchitecture for Accurate Software Fault Models,” in 2018

21st Euromicro Conference on Digital System Design (DSD),

2018, pp. 561–564.

[16] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan,

“The Sorcerer’s Apprentice Guide to Fault Attacks,” Proc. IEEE,

vol. 94, no. 2, pp. 370–382, Feb. 2006.

[17] J. B. Machemie, C. Mazin, J. L. Lanet, and J. Cartigny, “SmartCM

a smart card fault injection simulator,” in 2011 IEEE International

Workshop on Information Forensics and Security, 2011, pp. 1–6.

[18] H. Ziade, R. Ayoubi, and Velazco, “A Survey on Fault Injection

Techniques,” Int. Arab J. Inf. Technol., vol. 1, no. 2, Jul. 2004.

[19] “The RISC-V Instruction Set Manual,” RISC-V Foundation.

[Online]. Available: https://riscv.org/specifications/. [Accessed:

28-Mar-2018].

[20] “lowrisc-chip: The root repo for lowRISC project and FPGA

demos,” Github, 16-Jun-2018. [Online]. Available:

https://github.com/lowRISC/lowrisc-chip. [Accessed: 19-Jun-

2018].

[21] D. A. Patterson and J. L. Hennessy, Computer Organization and

Design RISC-V Edition: The Hardware Software Interface.

Morgan Kaufmann, 2017.

[22] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and P. de

Choudens, “FISSC: A Fault Injection and Simulation Secure

Collection,” 2016, pp. 3–11.

[23] N. Theißing, D. Merli, M. Smola, F. Stumpf, and G. Sigl,

“Comprehensive analysis of software countermeasures against

fault attacks,” in 2013 Design, Automation Test in Europe

Conference Exhibition (DATE), 2013, pp. 404–409.

[24] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal

verification of a software countermeasure against instruction skip

attacks,” presented at the PROOFS 2013, 2013.

[25] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and F. Regazzoni,

“Countermeasures against fault attacks on software implemented

AES,” 2010, p. 7.

[26] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens,

“Random Additive Signature Monitoring for Control Flow Error

Detection,” IEEE Trans. Reliab., vol. 66, no. 4, pp. 1178–1192,

Dec. 2017.

[27] A. Papadimitriou, D. Hély, V. Beroulle, P. Maistri, and R.

Leveugle, “A multiple fault injection methodology based on cone

partitioning towards RTL modeling of laser attacks,” in 2014

Design, Automation Test in Europe Conference Exhibition

(DATE), 2014, pp. 1–4.

