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Abstract

The functional and biological significance of selected CASP13 targets are described

by the authors of the structures. The structural biologists discuss the most interesting

structural features of the target proteins and assess whether these features were cor-

rectly reproduced in the predictions submitted to the CASP13 experiment.

K E YWORD S

CASP, protein structure prediction, cryo-EM, X-ray crystallography

1 | INTRODUCTION

Community wide experiment on the Critical Assessment of Techniques

for Protein Structure Prediction (CASP) operation would not be possible

without the help of experimental structural biologists, who agree to

share with the CASP organization their work-in-progress or recently

solved protein structures in advance of their public release. In the latest

round of CASP (CASP13, 2018), 75 proteins and protein complexes

were suggested as modeling targets by 36 structure determination

groups from 14 countries. All suggested entries were released for pre-

diction, however, eight of them were canceled due to lack of structure

by the time of the assessment or release of relevant structural informa-

tion before the end of the target prediction season. Of the remaining

67 entries, 58 were solved by X-ray crystallography, 7 with cryo-EM

and 2 by NMR. When classified by quaternary structure, 25 entries

were monomeric, 30 homo-oligomeric and 12 heteromeric. The hetero-

meric complexes were released for prediction (and later assessed) as

both, whole multimolecular complexes (12) and constitutive subunits

(25). All in all, 80 single-molecule targets and 42 multi-molecule targets

were part of the CASP13 experiment. CASP organizers, who are co-

authors of this article, want to thank every experimentalist who contrib-

uted to CASP13 (see Table S1) and this way helped developing more

effective protein structure prediction methods.

The chapters of the article reflect the views of the contributing

authors on 13 CASP13 targets (Table 1), including three monomeric:

the Arabidopsis thaliana xylan O-acetyltransferase 1 (T0969), the

LP1413 single-strand DNA binding protein (T0958), the WD40-repeat

domain of the human E3 ubiquitin ligase RFWD3 (T0954); 4 homo-

oligomeric: the H1 domain of human KCTD8 (T0970), a putative

ACAD from B. bacteriovorus (T0961), a glycoside hydrolase family

31 α-xylosidase (T1009), the pentafunctional AROM Complex from

Chaetomium thermophilum (T0999); 6 hetero-oligomeric: the receptor-

binding tip (gp373-gp38) from the Salmonella phage S16 (H0953), the

toxin-immunity protein complex from Escherichia coli 3006 (H0957),

and Klebsiella pneumoniae 342 (H0968), the human MAJIN-TERB2

hetero-tetrameric complex (H0980), the apical end cap of the anti-

feeding prophage (AFP) from Serratia entomophila and its threefold

symmetric needle (H1021 and H1022).
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The results of the comprehensive numerical evaluation of CASP13

models are available at the Prediction Center website (http://www.

predictioncenter.org). The detailed assessment of the models by the

assessors is provided elsewhere in this issue.

2 | RESULTS

2.1 | Structure of the WD40-repeat domain of the
human E3 ubiquitin ligase RFWD3 (CASP: T0954;
PDB: 6CVZ). Provided by Cody Caba, Peter Loppnau,
and Yufeng Tong

Ubiquitination is the covalent attachment of ubiquitin (Ub) to a sub-

strate lysine. It represents the second most prevalent post-

translational modification and follows a three-step enzymatic cascade

involving an E1 Ub-activating enzyme, E2 Ub-conjugating enzyme,

and an E3 Ub-protein ligase. The diverse distribution of E3s, for which

>600 are known to exist in the human genome, affords the

ubiquitome pervasive substrate specificity. As such, Ub-modified tar-

gets are ultimately destined for a myriad of molecular outcomes

depending on the Ub chain length and linkage type.1 Many proteins of

the E3 superfamily incorporate the highly abundant WD40-repeat

(WDR) substrate-recruiting domain as a functional protein-nucleic acid

and protein-protein interaction (PPI) module. As a vital component to

many multiprotein complexes, the WDR domain is unsurprisingly cen-

tral to a range of cellular processes, including checkpoint signaling,

protein trafficking and degradation, DNA replication, and DNA dam-

age repair (DDR). RFWD3 (RING finger and WD repeat domain-

containing protein 3) is a WDR-containing E3 originally identified as

an ATM/ATR substrate involved in DDR.2,3 Evidence has shown that

the WDR domain is primarily responsible for the functional interac-

tions that allow RFWD3 to maintain genomic stability.4,5 Furthermore,

heritable mutations, particularly an Ile639Lys point mutation within

the WDR domain, may lead to the rare genomic instability disease

known as Fanconi anemia (FA),6 thereby implicating RFWD3 as a

potential FA-associated gene (alias: FANCW).4-6 Until recently, the bio-

chemical characterization of RFWD3 has lacked complementary high-

resolution structural information. Here, we discuss the 1.8 Å resolu-

tion X-ray crystal structure of the C-terminal WDR domain of human

RFWD3 (Table 1, Target: T0954; PDB: 6CVZ).

WDR domains exhibit a β-propeller architecture typically com-

posed of seven WD repeats (propeller blades). Each repeat is a four-

stranded antiparallel β-sheet of 40 to 60 residues in length. Other fea-

tures, though not conserved, may exist within the repeats, such as a

DH(S/T)W hydrogen-bonded tetrad, or GH and WD dipeptides. Due

to low sequence homology, predicting the presence of WDR domains

with sequence analysis alone is difficult and results in an underrepre-

sentation within the proteome.7 Some of the common protein

sequence analysis databases predict RFWD3 to contain three distinct

WDRs, while the more specialized WDSP database7 suggests the

presence of six8; however, our structure reveals seven. Stabilizing the

fold are hydrophobic interactions between adjacent repeats, along

TABLE 1 CASP13 target highlights

CASP13 assessment

Target PDB Method Resolution (Å) Stoichiometry Size Protomer Assembly

GDT-TS IDDT QS-score

T0969 6CCI X-ray 1.85 A1 487 58.19 0.51 -

T0958 6BTC X-ray 2.18 A1 96 80.84 0.69 -

T0954 6CVZ X-ray 1.80 A1 350 72.02 0.66 -

T0970 6G57 X-ray 2.80 A2 97 67.94 0.28 0.64

T0961 6SD8 X-ray 1.50 A4 505 91.65 0.80 0.91

T1009 6DRU X-ray 2.70 A2 718 71.24 0.64 0.18

T0999 N/A X-ray 3.00 A2 1589 80.39 0.73 0.82

H0953 6F45 X-ray 1.70 A3B1 72

249

54.48

40.12

0.63

0.40

0.37

H0957 6CP8 X-ray 2.20 A1B1 163

164

45.22

60.97

0.57

0.57

0.07

H0968 6CP9 X-ray 2.55 A2B2 126

116

71.40

78.70

0.61

0.66

0.14

H0980 6GNX X-ray 2.90 A2B2 111

52

54.81

-

0.45

-

0.08

H1021 6RAP EM 3.30 A6B6C6 149

354

295

75.67

68.70

36.77

0.65

0.58

0.57

0.33

H1022 6RBK EM 3.40 A6B3 229

529

43.61

62.25

0.55

0.59

0.43

Note: Columns indicate target ID, PDB ID, experimental method, resolution, stoichiometry, size, and CASP13 assessment results. For each target, the accuracy

of the best model 1 is provided both at the level of individual protomers (best GDT-TS and corresponding IDDT score) and full assembly (best QS-score).
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with a velcro closure between the first and last repeats. Additionally,

there is an exposed disulfide bond on the top surface linking repeats

five and six (Cys638 to Cys696, Figure 1A). It is yet to be determined

whether this is important for conformational stability or a potential

site of redox-regulated activity. Multiple sequence alignment suggests

these cysteine residues are not well conserved. Additionally, only a

single WD dipeptide is present (WD730), located at the C-terminus of

the third strand in repeat six. It should also be noted that a coordi-

nated magnesium ion in the structural model is an artifact of the crys-

tallization condition with no biological relevance (Figure 1A).

Molecular recognition by WDR domains occurs via the top, bot-

tom, sides, and central cavity. Specific PPIs are believed to be

governed by the sequence insertions outside of the repeats them-

selves, such as the extended loops that decorate the top and bottom

faces. A Dali search was used to determine if such insertions exist in

the WDR domain of RFWD3 in comparison to closely related struc-

tural homologs. Included in the top hits were WDR5 (WD repeat-

containing protein 5; PDB: 6DAS, LGA score: 69.6) and RFWD2

(PDB: 5HQG, LGA score: 61.3). Alignment of the structures revealed

that RFWD3 does indeed contain distinct insertions in the form of

disordered loops on the top and bottom faces, specifically

encompassing residues 467 to 477, 594 to 606, and 656 to 664 (Fig-

ure 1B, panels i-iii, respectively). Furthermore, elongated strands of

repeat five appear to be a feature unique to RFWD3 (Figure 1B panel

iv). Interestingly, residues involved in DDR are not part of these inser-

tions, including Trp-543 and Ile-639 for binding RPA32, and the

QKMDF624 consensus motif that mediates the interaction with PCNA

(proliferating cell nuclear antigen) during DNA replication.5

Many disease-associated mutations exist within the WDR domain,

presenting RFWD3 as a potential anti-cancer target. The COSMIC (cat-

alogue of somatic mutations in cancer) database was used to identify

solvent-exposed point mutations that may have roles in various cancers

(Figure 1C). For example, mutation Cys638Tyr, identified in a whole-

genome screen of colorectal cancers, would abolish the observed

Cys638 to Cys696 disulfide (Figure 1A), whereas the FA-related

Ile639Lys mutation will disrupt the hydrophobic packing around Ile639

and likely lead to a destabilized protein. Another interesting feature of

this domain is the surface charge distribution about the top and bottom

faces (Figure 1D). A large electropositive surface is present on the top

face in contrast to a large electronegative surface on the bottom. During

DDR, RFWD3 stabilizes p53 by binding Mdm2 (an E3 and negative reg-

ulator of p53). We propose that the acidic domain of Mdm23 binds the

positively charged top surface of the WDR domain. Indeed, this surface

characteristic would also suggest the potential for phosphopeptide rec-

ognition, similar to that observed with RFWD2.9

How was CASP13 able to predict and model the structure of this

important target? Overall, the modeling efforts were successful with

56 predictions (out of 86 total) providing GDT-TS scores >50. Group

A7D was the most accurate structural predictor with a GDT-TS score

of 72.0 and an RMSD of 1.87 Å across 2066 atom pairs. Superposition

with the crystal structure reveals the overall topology (Figure 1A),

including the large disordered loops (Figure 1B), was well reproduced

F IGURE 1 The WDR domain of human RFWD3. A, Schematic representation of RFWD3's domain organization and cartoon representation
of the WDR domain crystal structure (6CVZ; cyan) aligned with the most accurately predicted model T0954TS043_1 (light blue). All seven blades
of the β-propeller architecture are labeled. The magnesium ion (green sphere) is octahedrally coordinated by the oxygen of six water molecules
(oxygen atoms shown as red spheres). The 2mFo-DFc electron density map is shown contoured to 2.0 σ. The volume of the central cavity is
provided as a surface representation (determined using POCASA v. 1.1). RING, really interesting new gene; CC, coiled-coil. B, Alignment of 6CVZ
(rainbow), 6DAS (dark gray), 5HQG (light gray), and model T0954TS043_1 (light blue). Loops of interest are circled and labeled i to iv,
respectively. C, Visualization of the key residues involved in DDR (blue) and the solvent-exposed residues identified to be mutated in various
cancers using the COSMIC database (red). The disease-related point mutations (red) are tabulated. D, Electrostatic potential map of 6CVZ from
−3 kT/e (red) to +3 kT/e (blue). All structural figures were prepared using PyMOL (v. 2.3.0, Schrödinger LLC)

1040 LEPORE ET AL.



in the model. Importantly, this was achieved despite the notoriously

low sequence similarity between homologous WDR domain-

containing proteins.

2.2 | The H1 domain of human KCTD8 (CASP:
T0970, PDB: 6G57). Provided by Daniel M. Pinkas,
Joshua C. Bufton, and Alex N. Bullock

KCTD1-21 form a subgroup of BTB domain-containing proteins that

commonly function as Cullin3-dependent E3 ligases.10 For example,

KCTD5 is observed to act as a Cullin3 dependent off-switch for GPCR

signaling through ubiquitin-mediated degradation of Gβγ under certain

conditions.11 Similarly, KCTD6, KCTD11, and KCTD21 have been

observed to ubiquitylate HDAC1 in complex with Cullin3, thereby

suppressing Hedgehog activity in Medulloblastoma.12 KCTD8, KCTD12,

and KCTD16 lack Cullin3 binding and instead act as auxiliary subunits

of the GABAB2 receptors
13 that help to modulate signaling outcomes.14

KCTD8 consists of an N-terminal region of 41 amino acids that is

predicted to be unstructured, followed by a BTB domain, which medi-

ates interaction with the GABAB2 receptor15and also axially homo-

and hetero-associates with the BTB domains of KCTD12 and

KCTD16.16 This region is followed by a low complexity region of

54 amino acids and a poorly characterized domain that is conserved

between KCTD8, KCTD12, and KCTD16, termed the “H1” domain. C-

terminal to this domain is another region that is homologous between

KCTD8 and KCTD16 but missing in KCTD12, dubbed “H2.” The H2

region is predicted to be largely unstructured,17 but contains a signifi-

cant HHpred18 signature for a small alpha helical domain with

predicted structural homology to a Yeast Mediator of RNA polymer-

ase II (4H62_V) at the C-terminus of the H2 region.

The KCTD8 H1 domain was solved at the SGC and refined to a

resolution of 2.75 Å (Table 1, Target: T0970; PDB: 6G57, UniProt:

Q6ZWB6, construct residues 201-322). Despite sharing very low

sequence identity with any solved crystal structures, a top HHpred hit

is detected with a probability score of 77.8% to rat GTP

Cyclohydrolase I Feedback Regulatory Protein (GFRP, PDB: 1JG5_B,

Figure 2A). The HHpred match only covers 22% of the protein

sequence (27/122 residues) and does not correspond to a contigu-

ously interacting folded segment (Figure 2A). Despite the low conser-

vation, the HHpred hit shows a good overall fit to the KCTD8 H1

domain with an LGA score of 58.7 (Figure 2B).19

The top scoring model (T0970TS112_1-D1, GDT-TS = 67.94) has

a similar LGA score of 56.1 (Figure 2C), and faithfully recapitulates

some important aspects of the true overall fold, although missing

some key features such as an extended C-terminal β-hairpin (star) and

a short β-strand pair (triangle) that is conserved between GFRP and

KCTD8. However, the extended C-terminal beta hairpin was correctly

predicted in the sixth best overall scoring model (T0970TS043_1-D1,

GDT-TS = 63.23), and the short beta strand pair correctly predicted in

the second best scoring model (T0970TS149_1-D1, GDT-TS = 66.18).

Overall, several interesting points arise from analysis of the

predicted structures. First, the fact that the GFRP template itself has a

slightly higher LGA score than the best solutions raises the question of

whether the excellent fit of this template could have been predicted

and hence incorporated to generate improved constraints on solutions.

Second, although standard high-throughput multi-construct design tech-

niques were used to generate the construct that produced the crystal

structure of KCTD8, the essentially correct prediction of the H1 domain

in this case suggests that current structure prediction techniques could

potentially assist in the process of designing expression constructs.

2.3 | Structure of the human MAJIN-TERB2
heterotetrameric complex (CASP: H0980, PDB:
6GNX). Provided by Manickam Gurusaran and Owen
R. Davies

Meiosis is a two-stage specialized cell cycle that produces haploid

germ cells by reducing the chromosome number by half. It is thus

F IGURE 2 A, Crystal structure of the top HHpred hit (Rat GFRP, PDB: 1JG5_B) for the H1 domain of human KCTD8. Rat GFRP is shown in
green. The region matching the H1 domain of KCTD8 is highlighted in red. B, Superposition of Rat GFRP crystal structure (depicted as in
Figure 2A) and the crystal structure of human KCTD8 H1 domain (PDB: 6G57, cyan). C, Structure superposition of the crystal structure of human
KCTD8 H1 domain (depicted as in Figure 2B) and the top scoring model from CASP13 (T0970TS112_1-D1, magenta). Two key differences
between model and reference are highlighted: a star highlights the region of the C-terminal beta hairpin structure and a triangle highlights the
short beta strand pair
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essential for reproduction, genetic diversity, and evolution, with errors

in meiosis leading to human infertility, miscarriage and germ cell can-

cers.20 At the center of this process is the establishment of homolo-

gous chromosomes pairs through their physical tethering by the

synaptonemal complex, and the resultant formation of genetic cross-

overs.21,22 To achieve this requires an ornate choreography in which

meiotic chromosomes are rapidly moved around the nucleus to enable

the identification of establishment of homologous pairs through mei-

otic recombination.23 These meiotic prophase movements are driven

by microtubule forces that are transmitted across the nuclear enve-

lope via the LINC complex, and directed to the telomeric ends of mei-

otic chromosomes.24 In mammals, the meiotic telomere complex

(formed by MAJIN, TERB1, and TERB2) physically tethers meiotic

chromosome telomere ends both to the inner nuclear membrane and

the LINC complex,25 thereby permitting microtubule-driven chromo-

some end movements within the plane of the nuclear envelope. The

molecular architecture of the meiotic telomere complex is defined by

a core MAJIN-TERB2 complex that connects its key functionalities.

MAJIN mediates inner nuclear membrane attachment through a trans-

membrane helix, while TERB2 binds to TERB1, which interacts with

shelterin component TRF1 to recruit telomeric DNA, and is also

thought to bind to the LINC complex.25-27 Previous genetic studies in

mice demonstrated that individual disruption of MAJIN, TERB1, or

TERB2 leads to impaired telomere attachment, failure of chromosome

movements and infertility.25-28 We thus initiated structural studies to

understand the molecular basis of this essential process of mammalian

meiosis.

The crystal structure of the MAJIN-TERB2 core complex (Table 1,

Target: H0980; PDB ID: 6GNX) revealed a 2:2 heterotetramer in

which two TERB2 chains wrap around a globular MAJIN dimer

(Figure 3A).29 Each MAJIN protomer adopts a β-grasp fold, in which a

β-sheet grasps around a core α-helix (Figure 3A). The structural archi-

tecture of the β-grasp fold consists of a five-stranded β(2)-

α-β(3) assemblage with a two-stranded β-sheet insertion, which is

seemingly unique to MAJIN-TERB2. The MAJIN dimerization inter-

face is stabilized through aromatic and proline interactions (Figure 3E,

left), with additional stabilization from TERB2. The structure displays

an extensive basic patch on the surface of each MAJIN protein

(Figure 3B), which binds to DNA and thereby provides a novel means

for meiotic telomere recruitment. Further, the relative orientation of

N- and C-termini of both protein components allowed us to model

the architecture of the wider MAJIN-TERB2-TERB1 complex.29

The category of prediction experiments of a MAJIN monomer

included 92 models, of which many successfully predicted a β-grasp

fold (eg, T0980s1TS089_1-D1, GDT-TS = 54.81), while others were

highly divergent (eg, T0980s1TS458_1-D1, GDT-TS = 19.71). Model

T0980s1TS089_1-D1 most closely resembles the MAJIN protomer

of the crystal structure, with a TM-score of 0.54 (GDT-TS = 54.81), and

so is discussed presently. Superposition of model T0980s1TS089_1-D1

onto the MAJIN protomer structure (PDB code: 6GNX, chain A) dem-

onstrates that the topology of the fold was predicted with an impres-

sive level of accuracy (Figure 3C). The core α-helix was predicted with

local Cα RMSD of ~1 Å and interacts with the grasping β-sheet through

largely native contacts; the β-strands are similarly predicted correctly,

although the angulation between α-helix and β-sheet deviates slightly

from then native structure (Figure 3C). The main divergent regions of

the model are the MAJIN N-termini and two-stranded β-sheet inser-

tion. MAJIN N-termini lack secondary structure and form surface

hydrophobic contacts with the remainder of the structure (Figure 3C).

While the β-sheet insertion correctly links between strands of the

grasping β-sheet, its conformation and orientation differ from the crys-

tal structure, although it is possible that the conformation of this region

is stabilized by crystal lattice (Figure 3C). Importantly, the model shows

similar electrostatic properties along the MAJIN DNA binding surface

(Figure 3D).

In the category of oligomeric modeling, there were 73 predictions,

of which none correctly modeled the MAJIN-TERB2 2:2 complex. A

number of models accurately predicted the core of the MAJIN β-grasp

fold but failed to predict the MAJIN dimer interface, which involves

amino acids Pro64, Phe73, Tyr75 (Figure 3E, left). In some cases, the

overall MAJIN dimers show superficial similarity with the crystal

structure, but with incorrect β-grasp topologies placing residues

Pro64, Phe73, Tyr75 far from the interface (eg, TS068_5; Figure 3E,

right). In other cases, the interface shows no resemblance to the crys-

tal structure (eg, TS135_1; Figure 3E, mid). Modeling of TERB2 was

consistently aberrant as it was typically predicted to adopt a small

globular fold that binds to MAJIN, in stark contrast to its extended

conformation wrapping around a MAJIN protomer, through a series of

surface hydrophobic and β-sheet interactions in the crystal structures.

Components of a constitutive complex, such as MAJIN-TERB2, likely

undergo a coordinated folding process in vivo that results in their co-

dependence for stability. This likely highlights an important challenge

in modeling, that in such cases it is inappropriate to predict oligomers

through modeling of prefolded protomers, and instead requires co-

folding of multiple chains in silico.

2.4 | Crystal structure of LP1413, an unusual single-
stranded DNA binding protein (CASP: T0958, PDB:
6BTC). Provided by Ignacio Mir-Sanchis and Phoebe
A. Rice

We named this protein LP1413 as it is a little protein (96 amino acids)

annotated as containing DUF (domain of unknown function) 1413.30

We were interested in its structure and function as part of our ongo-

ing project to understand the SCC family of mobile genomic islands,

many of which carry methicillin resistance. Insertion of these elements

into the Staphylococcus aureus chromosome creates MRSA (methicil-

lin-resistant S. aureus) strains. We have defined the set of core con-

served genes carried by these highly mosaic mobile elements, and are

working to determine their functions.31

LP1413 is encoded in the same operon as a helicase, Cch, that has

sequence homology to replication initiator proteins from a different

family of mobile elements, the SaPIs, and that has structural homology

to MCM helicases.31 We detected no enzymatic activities in purified

LP1413 but found that it binds single-stranded DNA with high affin-

ity. The protein was monomeric in solution30 (Table 1, Target: T0958).
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We thought that LP1413 might be an interesting CASP target

because our crystal structure shows it to be a winged helix-turn-helix

domain (Figure 4A), but it was not annotated as such in sequence

databases. Also, the structure has two unusual features: a β-bulge in

strand 2, and an unusually long turn between helix 3 and strand

2 hosting conserved prolines which helps create a small hydrophobic

pocket (Figure 4B). In the crystal, M1 of an adjacent monomer is

inserted into this pocket. However, we found that an M1G change

caused almost no change in affinity or cooperativity in binding single-

stranded DNA, so the natural ligand for this pocket remains unknown.

Among the highest ranked models according to GDT-TS, all

predicted the correct overall fold except one (T0958TS124_1-D1,

ranked third with GDT-TS = 74.03) where the order of beta strands

2 and 3 was reversed. Overall, the models diverged most in the place-

ment of the shortest helix, helix 2, and the turn between helices 2 and

3. Except for the poorly ordered N- and C-termini, which were not

included in the prediction contest, the backbone atoms of that turn

had the highest backbone B-factors in the model, and was the one

region where the two copies in the asymmetric unit diverged slightly.

This suggests, not surprisingly, that flexibility correlates qualitatively

with difficulty in prediction.

Only 6 of the top 40 models correctly predicted the β-bulge at

Val68. In terms of overall GDT-TS scores, they were near both the

top and the bottom: rank 1, 2, 5, 28, 30, and 39. The top two scoring

models also contained the best predictions for the conformation of

the helix 3––strand 2 turn. These two models, both from the Laufer

F IGURE 3 A, Cartoon
representation of the crystal structure
of MAJIN-TERB2 illustrating a 2:2
hetrotetrameric complex. B, Surface
electrostatic potential (blue:
electropositive; red: electronegative)
of the MAJIN-TERB2 displaying an
extensive basic surface, which
mediates direct interaction with
DNA. C, Superposition and residue-
wise RMSD plot of the MAJIN
protomer (PDB code: 6GNX, chain A)
and T0980s1TS089_1-D1. D, Surface
electrostatic potential (blue:
electropositive; red: electronegative)
of T0980s1TS089_1-D1, MAJIN
protomer (PDB code: 6GNX, chain A)
illustrating the basic patches. Right-
hand panel compares the basic patch
on T0980s1TS089_1-D1 and the
target. E, Compares the MAJIN dimer
interface with the two best models.
Aromatic and proline residues that are
essential for dimer stabilization are
highlighted
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group, also at least partially predicted the hydrophobic pocket,

although this feature was hard to score objectively. Overall, 39 of the

top 40 models predicted the correct fold, and the top two were

remarkably correct in detail. Ironically, had we known that this protein

adopts a winged helix-turn-helix fold, we would have guessed double-

rather than single-stranded DNA binding as its function.

2.5 | Contact-dependent growth inhibition toxin-
immunity protein complexes from E. coli 3006 (CASP:
H0957, PDB: 6CP8) and K. pneumoniae 342 (H0968,
PDB: 6CP9). Provided by Karolina Michalska,
Christopher S. Hayes, Celia W. Goulding, Andrzej
Joachimiak

Bacteria use several mechanisms to communicate, cooperate, and

compete with neighboring microbes in the environment. In dense

communities, bacteria use a number of secretion systems to deliver

protein toxins directly into their competitors.32 This phenomenon was

first discovered in E. coli isolate EC93 and was termed “contact-

dependent growth inhibition” or CDI.33 CDI is mediated by the CdiB

and CdiA two-partner secretion proteins, which form a complex on

the cell surface.33 CdiA is a filamentous protein that extends several

hundred angstroms to interact with receptors on the surface of sus-

ceptible target bacteria. Upon binding its receptor, CdiA undergoes a

series of conformational changes that ultimately deliver its C-terminal

toxin domain (CdiA-CT) into the target cell.34 To protect themselves

from self-intoxication, CDI+ cells also produce a CdiI immunity protein

that binds the CdiA-CT to neutralize toxin activity. Though character-

ized most extensively in E. coli, CDI systems are broadly distributed

throughout Gram-negative bacteria including pathogens35 and have

been implicated in cooperative behaviors, such as biofilm formation,

persistence, and virulence.36-38 CdiA effectors carry extraordinarily

diverse CdiA-CT regions, indicating that the systems deploy many dis-

tinct toxins. Similarly, CdiI sequences are also highly variable, and each

immunity protein only provides protection against its cognate toxin.

Thus, CDI toxin-immunity protein polymorphism underlies an impor-

tant mechanism of self/nonself discrimination in bacteria.

CDI toxin-immunity protein complexes are excellent targets for

methods development in the CASP competition, because the activities

of most toxins are unknown and their interactions with cognate immu-

nity proteins are not easily predicted. Over the past several years, we

have taken complementary biochemical and structural approaches to

identify CDI toxin activities and explore the diversity of their interac-

tions with immunity proteins.39-43 We recently solved the crystal

structures of CdiA-CT•CdiI complexes from E. coli 3006 (EC3006) and

K. pneumoniae 342 (Kp342) at 2.20 and 2.55 Å resolution. The CdiA-

CTEC3006 toxin consists of a globular α/β core and an extended

α-helical subdomain (Figure 5A). The core is composed of two

3-stranded antiparallel β-sheets that interact in parallel and wrap

around helix α5, which forms the spine of the subdomain (Figure 5A).

The extension subdomain comprises three α-helices that mediate

many of the direct contacts with CdiIEC3006 (Figure 5A). CdiA-CTKp342

shares a number of structural elements with the CdiA-CTEC3006 core;

though the CdiA-CTKp342 domain lacks the N-terminal β-sheet, and its

C-terminal β-sheet consists of four strands (Figure 5B). Further, the

α-helical extension subdomain is abbreviated to one helix and a loop

in CdiA-CTKp342. Though the toxins share significant structural homol-

ogy, the immunity proteins have completely unrelated structures.

CdiIEC3006 is an α-helical monomer that adopts an α-solenoid fold

(Figure 5A), whereas CdiIKp342 forms a dimeric β-sandwich (Figure 5C).

The structures reveal that both toxins are members of the barna-

se/EndoU/colicin E5-D/RelE (BECR) superfamily of RNases,44 though

they exhibit no detectable sequence similarity to BECR enzymes and

are not annotated as such. DALI identifies the C-terminal nuclease

domain of colicin D as the closest structural homolog of CdiA-

CTKp342. CdiA-CTKp342 residues Lys157, Tyr160, and Thr255 superim-

pose onto the active site residues of colicin D. Furthermore, CdiA-

CTEC3006 contains a similar triad of Lys204, Tyr208, and Thr330

arranged in the same configuration. The toxins also share conserved

Arg and His residues that could play roles in binding substrate and

catalysis. Previous activity studies have shown that CdiA-CTEC3006

specifically cleaves tRNAIle molecules,45 indicating that the toxin is

indeed a BECR family RNase. Notably, the CdiI proteins both bind

over the predicted active sites of their cognate toxins (Figure 5A,B),

indicating that the immunity proteins neutralize toxicity by blocking

access to RNA substrates.

For the CASP13 competition, the components of each CdiA-

CT•CdiI complex were first modeled as monomers, and the top

F IGURE 4 Crystal structure and models for LP1413. A, Ribbon diagram of the crystal structure, shaded from blue (N-terminal) to red (C-
terminal). B, The crystal structure from a slightly different viewpoint, with a transparent molecular surface showing the hydrophobic pocket (roughly
center) and the conserved Proline residues of the helix 3––strand 2 turn shown as sticks. C, Superposition of the top 40 predicted models (wall-eyed
stereo), from the same viewpoint as in panel A. The two chains from the asymmetric unit of the crystal structure are shown in black
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10 predicted models according to GDT-TS were evaluated (Table 1,

Target: H0957). For CdiA-CTEC3006, the best five predictions have

GDT-TS scores ranging from 49.07 (T0957s1TS043_4) to 45.22

(T0957s1TS043_1). These models predict the existence of the C-

terminal β-sheet, the spine α-helix, and the α-helical extension sub-

domain (Figure 5D). The N-terminal β-sheet and following α-helix of

CdiA-CTEC3006 are positioned incorrectly, displacing the C-terminal

β-sheet from its position in the experimental structure. This results in

the high global deviation for the top model T0957s1TS043 with a

GDT-TS of 49.07 (Cα RMSD = 13.80 Å); local agreement of 1.77 Å is

attained for only 47% of residues within a 5 Å distance cutoff. The

sixth model (T0957s1TS117_4, GDT-TS = 39.97 and RMSD = 10.69 Å)

includes the α-helical extension, but fails to capture the core α/β sub-

domain. Neither of the β-sheets is properly generated, and the two

α-helices are not positioned correctly. The remaining four models are

essentially identical (GDT-TS = 38.73) and bear little similarity to the

experimental structure. Finally, none of the models arrange the puta-

tive active site residues properly.

The top 10 CdiA-CTKp342 models are very similar to one another

and more accurately reflect the experimental structure (Table 1, Target:

H0968; Figure 5E), with GDT-TS scores ranging from 77.54

(T0968s1TS043_4-D1, global RMSDCα 5.04 Å) to 69.92

(T0968s1TS043_2-D1, global RMSD 4.53 Å). Some deviations are

observed at the N-terminus and the protruding α-helix (Figure 5E).

Locally, the top model aligns within 1.71 Å over 85% of residues. These

results suggest that the structure of the isolated CdiA-CTKp342 toxin

domain is very similar to that observed in complex with CdiIKp342.

The CdiIEC3006 models mirror the crystallographic structure quite

well, with GDT-TS scores of 65.32 to 60.65. All of the models feature

consecutive α-hairpins and differ only in the placement of the C-

terminal α-helix and the α1-α2 loop, for which none of the models

show good alignment with the target (Figure 5F). We note that the

positions of these latter elements may be constrained through interac-

tions with the CdiA-CTEC3006 toxin domain. The top model

(T0957s2TS043_5-D1, GDT-TS = 65.32) yields an overall Cα RMSD of

4.15 Å and local of 2.11 Å over 68% of residues.

More accurate predictions were obtained for CdiIKp342, with the

10 best models scoring GDT-TS of 78.70 to 71.30. As with CdiIEC3006,

the major deviations were localized to the N- and C-terminal regions,

which the top model (T0968s2TS043_1-D1; GDT-TS = 78.70, 2.33 Å

global Cα RMSD and 1.77 Å over 96% residues) misrepresents as helical

turns (Figure 5G). It is the third model (T0968s2TS214_2-D1; GDT-

TS = 77.39, 2.05 Å global Cα RMSD and 1.81 Å over 92% residues) that

correctly predicts a random coil and a β-strand at the termini. Again, the

latter section is in close proximity to the toxin domain in the complex

structure.

As we found during CASP12, the prediction of protein-protein bind-

ing interfaces remains a significant challenge. Even with decent mono-

meric models and supporting information from SAXS and cross-linking

data for CdiA-CT•CdiIKp342, no meaningful theoretical complex was

F IGURE 5 A, Experimental structure of CdiA-CT•CdiIEc3006. The CdiA-CTEc3006 toxin domain is shown in yellow with functionally important
residues shown in stick representation. The CdiIEc3006 immunity protein is shown in gray. B, Experimental structure of the CdiA-CT•CdiIKp342

(heterodimer) with CdiA-CTKp342 shown in red and CdiIKp342 in gray/black. C, Experimental structure of the CdiA-CT•CdiIKp342 (hetero-tetramer)
with CdiA-CTKp342 shown in red and CdiIKp342 in gray/black. D, Superposition of CdiA-CTEc3006 (yellow) with T0957s1TS043_4 (green). E,
Superposition of CdiA-CTKp342 (red) with T0968s1TS043_4-D1 (green). F, Superposition of CdiIEc3006 (gray) with T0957s2TS043_5-D1 (blue). G,
Superposition of CdiIKp342 (gray) with T0968s2TS043_1-D1 (blue) and T0968s2TS214_2-D1 (purple)
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generated. This is perhaps because the best monomer predictions were

not used to predict the complex structure. For example, CdiA-CTKp342

from the highest scoring CdiA-CT•CdiIKp342 model (H0968TS208_4)

ranked 114th in the individual subunit calculations, with a GDT-

TS = 55.09. Another model of a complex, H0968TS163_2, features rea-

sonably good CdiA-CT (T0968s1TS163_1-D1, GDT-TS = 69.28), and

wrongly predicted CdiI (T0968s2TS163_2-D1, GDT-TS 42.39), even

though the same group had a much better model in their repertoire

(T0968s2TS163_4-D1, GDT-TS = 61.74). Generally, oligomeric predic-

tions vary enormously and the algorithms struggle to identify the proper

interacting surfaces. Analysis of any structural details and their func-

tional implications appears to be beyond the reach of current computa-

tional approaches, at least for these particular targets.

2.6 | A putative ACAD from B. bacteriovorus (CASP:
T0961, PDB: 6SD8 (Apo form), PDB: 6SDA (Holo
form)). Provided by Christopher J. Harding and
Andrew L. Lovering

Acyl-CoA dehydrogenases (ACADs) are a large and important class of

metabolic enzymes with diverse functions. ACADs typically catalyze

the α,β-dehydrogenation of various CoA-fused substrates, linked to

the β-oxidation cycle and amino acid metabolism.46 In contrast to tra-

ditional roles, recent studies have highlighted a number of ACAD

homologs that have important physiological functions beyond β-oxi-

dation, such as responses to environmental stresses, DNA repair, and

adaptation to heat.47-50

Here we investigated a putative ACAD, Bd2924, from the obligate

predatory bacterium, B. bacteriovorus. Our initial interest arose in

Bd2924 when it was first identified as a potential novel cyclic di-GMP

(cdG) interacting protein.51 CdG is an almost universally important

bacterial secondary messenger molecule influencing growth and a

range of behaviors such as motility, virulence, biofilm formation, cell

cycle progression and (in Bdellovibrio) control of predation.52

We determined the structure of Bd2924 (residues 3 to 505) in

complex with the cofactor FAD, with and without a C10 length acyl-

CoA thioester ligand (C10-CoA) bound, to 1.51 and 1.87 Å respec-

tively (Table 1, Target: T0961). The tertiary structure of Bd2924 forms

a biologically relevant homo-tetramer, composed of a dimer of dimers,

which was later confirmed to be the predominant species in solution

by size exclusion chromatography experiments. Bd2924 shares the

common ACAD fold,53 and is most closely related to the divergent

ACADs, AidB, and ACDH-11.49-53 Bd2924 can be divided into four

distinct domains: an N-terminal α-helical domain that is interrupted by

a single β-sheet projection (residues 3-168), a central β-sheet domain

formed by two orthogonal four-stranded antiparallel β-sheets (resi-

dues 169-285), a central α-helical domain (residues 286-449) and a

short C-terminal α-helical domain (residues 450-505) (Figure 6A). A

single FAD molecule binds per monomer in a crevice located at the

dimer interface. The Bd2924:C10-CoA complex provided structural

insights into the interactions Bd2924 makes with its substrate. The

C10-CoA ligand bound into a long narrow tunnel that runs deep into

the protein beneath the bound FAD molecule, similarly to that

described for other ACAD structures.46-53 Interestingly, only one mol-

ecule of C10-CoA per dimer could be confidently placed into the elec-

tron density maps, which corresponded to the conformation of

Trp428 beneath the re-face of the FAD molecule. In our structures,

Trp428 appears to gate accessibility for the acyl moiety (Figure 6C).

Analysis of Bd2924 did not reveal any conventional cdG binding sites

in the structure, nor was a cdG complex obtainable. Further biophysi-

cal binding experiments were conducted, which suggested weak non-

specific binding between cdG and Bd2924 (data not shown).

The tetrameric assembly of divergent ACADs appears to block the

proposed docking site of electron transferring flavoprotein (ETF).54,55

Interestingly, we were unable to detect any dehydrogenation activity;

likewise no significant dehydrogenase activity has been reported for

other divergent ACADs.49,51-56 Moreover, the structure of Bd2924

reveals that the chemistry of the conserved active site residue Glu429

may be altered by participating in a hydrogen bond with Asn171. Typ-

ically a hydrophobic residue such as phenylalanine is found at the

position of Asn171 in “conventional” catalytically active ACADs.

Bd2924 was included in CASP13 as target T0961 and also selected

for CAPRI experiments. In general, models predicted the overall fold of

Bd2924 to a high standard and included most of the main features iden-

tified from our crystal structure (Figure 6B). This may not be entirely

surprising, considering the highly conserved fold within the ACAD

superfamily and the presence of highly similar homologs (AidB and

ACDH-11) in the PDB that could act as templates. Notably, the models

were able to correctly predict the structural features of divergent

ACADs and the tetrameric assembly. The models also predicted the

large groove in the C-terminal domain, which was a noteworthy feature

of Bd2924s structure. A loop region (residues 191-202) contained the

least similarity to our experimental structure and had the most variabil-

ity in the top models. This is likely due to the loop being a relative inser-

tion in the primary sequence of Bd2924 in comparison to templates

AidB and ACDH-11. Specifically, models deviated around the ligand

binding and active site regions (Figure 6D). For instance, the modeled

conformation of Trp428 obstructs the depth of the substrate-binding

tunnel, which would lead to incorrect predictions about the length of

fatty acyl chains that can be accommodated. Furthermore, the strictly

conserved catalytic glutamate residue, Glu429, is also modeled in vari-

ous conformations. Our crystal structure highlighted a potentially

important hydrogen bond between Glu429 and Asn171, which may

explain the lack of observable catalytic activity. However, none of the

top models successfully model the same hydrogen-bonding interaction

captured in the crystal structure. A major drawback to the models is the

lack of precision regarding Bd2924 interaction with its cofactor FAD,

which is an integral part of the structure of ACADs.53

2.7 | The receptor-binding tip (gp373-gp38) from the
Salmonella phage S16 long tail fiber (H0953, PDB ID:
6F45). Provided by Matthew Dunne and Petr
G. Leiman

Bacteriophages (phages), viruses that infect bacteria, have served as

indispensable tools for many generations of scientists, in particular for
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discovering the nature and structure of genetic material57,58 and more

recently for the discovery of the CRISPR system.59,60 Phages and their

component parts are also used as diagnostic tools and remediative

agents in food processing, biotechnology, and medicine (ie, phage

therapy).61-63 The majority of phages consist of an icosahedral “head”

(or capsid) containing a dsDNA genome, connected to a specialized

delivery organelle called the “tail” (Figure 7A). The tail provides selec-

tive recognition and attachment to suitable host cells, generating a

conduit between the capsid and the bacterial cytoplasm through

which the phage genome is delivered. The initial binding of phage to a

bacterial cell is mediated by fibers or stockier “tailspikes” proteins

emanating from a baseplate structure at the end of the tail. While

internal host defense systems (eg, CRISPR systems) can inhibit phage

infectivity, the spectrum of cell surface receptors to which fibers and

tail spikes recognize remains the primary determinant of host range

for phages. To this end, phage S16 is special as it can infect many Sal-

monella strains, suggesting that either S16 recognizes a wide assort-

ment of cell surface substrates, or S16 targets a highly conserved

receptor of Salmonella. S16 is a relative of the well-studied phage T4.

Both phages are equipped with baseplate-attached long tail fibers

(LTFs) that mediate receptor-binding through their distal tips.64-68 We

recently exploited the Salmonella-specific binding of the S16 LTF as a

tool for rapid, ELISA-like detection of Salmonella contaminants in

food.69

The T4 and S16 LTFs are similar to each except for the structure

of their distal tip that interacts with the host cell surface during host

recognition. The distal tip of the T4 LTF is formed by the C-terminal

domain of gene product 37 (gp37), whereas the S16 LTF carries an

additional protein––gp38 that caps gp37. Gene 38 is present in the

T4 genome, but the amino acid sequence of T4 gp38 is very different

from that of S16 gp38 and its function is to assist folding and assem-

bly of the T4 LTF. Ironically, the prototypical and better studied T4

phage in which gp38 does not participate in host recognition is a less

common representative of T-even phages most of which appear to

carry S16-like LTFs. Unsurprisingly, the structure and function of

gp38 and its homologs (commonly named “adhesins”70) have been of

great interest ever since they were discovered as the determinants of

phage host range.71 Thus, by solving the crystal structure of a distal

part of gp37 connected to gp38 from phage S16 we aimed to advance

our understanding of this important family of adhesins (Figure 7B).68

Gp37 is a homotrimeric β-helix. Five β-strands (β1 to β5) of each

chain form a concave, antiparallel β-sheet arranged into a three-sided

β-prism called a “triangular domain.” The following β6 to β9 maintain

the β-helix topology, however, successive strands alternate between

the three sides and form an “interdigitated domain.” The N-terminal

helical bundle (α1-α3) of gp38 attaches to the base of the interdigi-

tated domain through strong hydrophobic interactions. At the apex of

α1 to α3 are exposed tryptophan residues that insert every 120�

F IGURE 6 A, Crystal structure of Bd2924 showing 4 distinct domains: a N-terminal domain α-helical domain (green, residues 3-168); a
central β-sheet domain (red, 169-283); a C-terminal α-helical domain (blue, 286-449) and a C-terminal extension domain (yellow, 450-505). FAD
cofactor (magenta) and C10-CoA ligand (cyan) are shown in spacefill. B, Superposition of Bd2924 crystal structure (blue) and the three best

models: T0961TS086_1 (yellow), T0961TS460_1 (green), T0961TS241_1 (red). C, A close-up view of the C10-CoA ligand binding site (cyan). The
CoA moiety makes 8 hydrogen bonds (black dashed lines) and other non-bonding interactions, while the fatty acyl chain inserts into a narrow
tunnel (gray surface). Access to the binding tunnel appears to be gated by the conformation of W428 (orange), which adopts two conformations;
one that allows access (C10-CoA present) and one that blocks access (C10-CoA absent). D, Comparison of the active site between Bd2924
crystal structure and the three best models (same coloring scheme as in Figure 6B)
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around the fiber axis into similar hydrophobic pockets on the sides of

the gp37 β-helix. These tryptophans and other hydrophobic interface

residues are conserved in the adhesins of phages targeting different

hosts, suggesting a preference for this mode of attachment in other

fibers. A short linker connects the N-terminal domain to a central five-

ringed β-helix. Here, all β-strands and turns align perpendicularly to

the fiber axis. Strikingly, the two turns connecting β5 to β6 and β8 to

β11 of the β-helix (18 and 77 residues, respectively) extend along the

fiber axis and form the distinct, three-layered “polyglycine sandwich”

domain. Over 50% of residues within this domain are glycines (37 out

of 73 residues) distributed between 10 glycine-rich motifs (GRMs)

separated by short hypervariable segments (HVSs). The GRMs all form

left-handed, elongated helices of a rare polyglycine type II (PGII) dispo-

sition (Figure 7C) with similar properties to polyproline type II (PPII)

helices, as found in collagen.72 The shorter β5 to β6 extension forms

the first two helices (1-2) and the longer β8 to β11 extension gener-

ates the last eight helices (3-10). Connecting the helices are the HVSs

that form short β-turn loops at both ends of the domain. Interestingly,

sequence variability within the five distal HVS loops (Figure 7C)

directly relates to host range adaptation, and is therefore where we

propose receptor binding occurs.

To the best of our knowledge, only four other structures in the

PDB contain similar PGII motifs; however, none of them feature long

GRMs (eg, helix 3; 151-GGGGGGGG-158) or form similar lattices as

the polyglycine sandwich. The absence of similar structures within the

PDB makes the polyglycine sandwich an especially difficult domain to

predict. As expected, the combination of this structurally unique

domain and the unusual composition of the (gp37)3-gp38 complex,

particularly the trimer-monomer interface, proved an especially chal-

lenging target in CASP (Table 1, Target: H0953). For instance, gp38

alone was modeled poorly and only the top prediction,

T0953sTS498_1 by the RaptorX-contact group, produced a GDT-TS

score > 40. Nevertheless, upon visual inspection the top three predic-

tions all roughly determined the correct gp38 topology and its three

distinct domains. As shown for the top model (Figure 7E), the central

β-helix is predicted quite well and includes the capping α-helix (α4) as

well as the important two loop extensions that form the polyglycine

sandwich in the crystal structure. Interestingly, in this model the loops

generate a similar sandwich-like structure, which correctly features

connecting β-turn loops at either end; however, the intricate lattice

composition of the polyglycine sandwich is missing. As seen with this

model, the gp38 central β-helix as a single target (T0953s2-D2) was

also generally predicted well, with 37 out of 90 predictions generating

GDT-TS scores >40.

The highest ranked model for the whole gp37-gp38 multimer was

TS086_1 by the BAKER group (Figure 7F) with a QS-score of 0.37.

Despite failing to predict gp38 and its attachment to gp37 correctly,

this model very accurately determined the composition of the gp37

β-helix, including the N-terminal triangular and C-terminal interdigi-

tated domains. As a single target, gp37 (T0953s1-D1) was similarly

predicted well, with the top two models by groups A7D and BAKER

(GDT-TS of 54.48 and 48.88, respectively) shown in Figure 7D. Visual

F IGURE 7 The adhesin tip of the Salmonella phage S16 long tail fiber. A, Transmission electron micrograph of phage S16 with arrows
(1) pointing to the approximate location of gp38 at the tip of the LTF and (2) pointing to the baseplate. B, Cartoon representation of the LTF distal
tip complex of homotrimeric gp37 β-helix (cyan, magenta, pink) attached to a single gp38 adhesin (gray) with the structurally unique “polyglycine
sandwich” domain rainbow colored (blue to red). Gp38 connects to gp37 through hydrophobic interactions, involving three highly conserved
tryptophan residues on the apex of each α-helix of the gp38 attachment domain (yellow sticks) that occupy three symmetry-equivalent
hydrophobic pockets on the gp37 base. C, Head-on view of the polyglycine sandwich domain formed by the 10 glycine-rich motifs (GRMs) of
gp38 folded into a three-layered lattice of PGII helices. Labeled are the five distal loops formed by HVSs that form the (yet unknown) receptor-
binding site(s) of gp38. Highlighted by the dashed box is a cartoon representation of the saturating hydrogen-bonding network of the central
GRM 3 with main-chain carbonyl (CO) and amide (NH) moieties of neighboring helices. D, Superposition of the two best model predictions of
monomeric gp37 (T0953s1-D1) by groups A7D (GST_TS: 54.48) and BAKER (GST_TS: 48.88). E, Cartoon view of the best prediction for
monomeric gp38 with residues expected to form the distal polyglycine sandwich rainbow colored (GST_TS: 40.12). F) The overall best prediction
for the whole gp37-gp38 multimer (QSglobal: 0.368, BAKER group). Panel A is reproduced with permission from Dunne M, Denyes JM, Arndt H,
Loessner MJ, Leiman PG, Klumpp J. Salmonella phage S16 tail fiber adhesin features a rare polyglycine rich domain for host recognition. Structure.
2018;26(12):1573-1582 e1574
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inspection showed correct prediction of the triangular domain; how-

ever, only the BAKER group correctly determined the continuation of

the gp37 chain to form the interdigitated domain. Interestingly, the

next eight best predictions also correctly modeled the triangular

domain, but similar to A7D, incorrectly assumed that the C-terminal

part folds back on itself. Possibly, the trimeric nature of the protein

was not taken into account for many of these predictions.

To assist the predictions, SAXS and SANS envelopes as well as

protein cross-linking data of the complex were provided to the com-

petition (S/A/X0953). The molecular envelopes generated by SAXS

and SANS reproduced the shape of the gp37-gp38 crystal structure

very well; however, it is unclear whether and how these data were

used by the CASP participants as the composition of predicted models

did not made biological sense or present folds similar to the crystal

structure. In fact, models obtained during the regular prediction round

without using these envelopes better represented the crystal struc-

ture. Due to a lack of potential cross-linking reactive residues (Lys,

Asp, and Glu) within the gp37-gp38 interface, protein cross-linking

was unfortunately not of assistance with oligomeric predictions.

2.8 | Pentafunctional AROM Complex from
Chaetomium thermophilum (CASP: T0999, PDB: NA).
Provided by Harshul Arora Veraszto and Marcus
D. Hartmann

The AROM complex is a homodimeric pentafunctional fusion enzyme

in the shikimate pathway in fungi and protists.73 This pathway is a

seven-step biosynthetic route to chorismate, the central precursor for

aromatic amino acids and other aromatic compounds,74 and a textbook

drug target for being essential in prokaryotes and lower eukaryotes, but

absent from metazoa. Most prominently, it is the target of glyphosate,

the active ingredient of Monsanto's ubiquitous blockbuster weed-killer

Roundup.75 While most organisms have the seven steps of the pathway

encoded as individual, monofunctional enzymes, fungi, and protists

have the five central steps fused in the pentafunctional AROM poly-

peptide. These five steps comprise the 3-dehydroquinate synthase

(DHQS),76 3-dehydroquinate dehydratase (DHQD),77 shikimate dehy-

drogenase (SD),78 shikimate kinase (SK),79 and 5-enoyl-pyrovyl-

shikimate-3-phosphate synthase (EPSPS)80; in AROM, they are fused in

the order N-DHQS-EPSPS-SK-DHQD-SD-C. Homodimerization of

AROM was expected to be mediated by its DHQS domain, which is an

obligate homodimeric enzyme, and possibly by its type I DHQD

domain, which typically forms homodimers as well. Although the struc-

tures of the monofunctional homologs of the constituent domains are

studied in great detail in prokaryotes and plants, the fungal AROM com-

plex has so far withstood structural analysis at molecular detail.

We had recently set out for a new approach to study AROM's

structure and function, making use of the thermophilic eukaryotic

model organism Chaetomium thermophilum (Ct). CtAROM (UniProt:

G0S061) turned out to be a well-behaved and stable homodimer of

about 340 kDa (Table 1, Target: T0999). As we did not expect a fast

breakthrough in crystallization experiments, we started to equip our-

selves with experimental restraints for an in silico structure modeling.

To this aim, we collected small angle X-ray scattering (SAXS) data and,

in collaboration with Alexander Leitner from ETH Zürich, cross-linking

mass-spectrometry (XL-MS) data, which we aimed to combine for a

rigid-body modeling and refinement approach based on the known

structures of the individual enzymatic domains (see also81). However,

we indeed obtained well-diffracting crystals quite early on and thus

focused on crystallographic structure solution. Finally, the crystal struc-

ture revealed a very compact assembly of the 10 domains, with the

expected homodimeric DHQS and DHQD domains at the center

(Figure 8). All individual domains exhibit the structure expected for their

monofunctional counterparts, and the enzymatic domains catalyzing

consecutive steps of the pathway are found in close proximity to each

other.

Although not used for initial structure determination, the SAXS and

XL-MS data turned out to be very insightful in investigating the confor-

mational landscape of the AROM complex (to be published), which

motivated us to provide both our SAXS and XL-MS data to CASP par-

ticipants. Obviously, the prediction of the individual domains was a triv-

ial task, and was mastered very well by most of the participating groups

(average best GDT-TS over D2-D5 domains = 80.39). When it came to

the prediction of the whole assembly, however, the situation was quite

F IGURE 8 Crystal structure of the dimeric AROM complex in top,
side (enlarged), and bottom view, with the five constituent enzymatic
domains colored individually. In the side view, the domains are labeled
on the left half of the dimer, on the right half the succession of
metabolic steps is illustrated by an arrow, indicating the path DHQS-
DHQD-SD-SK-EPSPS
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different. Although a number of predicted interdomain interfaces come

close-to what is observed in the crystal structure, it is hard to score the

outcome in a quantitative fashion. For many predictions, individual pairs

of domains that are consecutive in sequence are docked in a roughly

correct orientation, but the transition from these roughly correct to

clearly wrong orientations is smooth, and there is barely a prediction

having three domains docked correctly per monomer. Notably, while

the majority of the groups correctly constrained the DHQS domain to

form the obligate homodimer, almost none of the participants put the

respective constraint on the DHQD domain. We expect that this addi-

tional constraint would have helped in most cases to guide the assem-

bly into the direction of the crystal structure. Overall, as no group could

predict the AROM complex to an accuracy that reasonably reflects

close-to-correct relative orientations of its constituent domains, we

cannot clearly nominate the better predictions. It is noticeable, how-

ever, that the SAXS-assisted predictions yielded the optically overall

most-native-looking model, TS008_1 from the Pierce group, which also

yielded the seventh best GDT-TS score (22.9) and the third best global

RMSD to the crystal structure: 27.9 Å. A detailed description of data

assisted modeling results is provided in a dedicated chapter of this spe-

cial issue.

2.9 | Apical end cap and needle of the antifeeding
prophage (AFP) from S. entomophila and its threefold
symmetric needle (CASP: H1021, PDB: 6RAP; CASP:
H1022, PDB: 6RBK). Provided by Ambroise Desfosses,
AK Mitra, and Irina Gutsche

Contractile injection systems (CISs) such as contractile bacteriophage

tails, the Type VI secretion system (T6SS), R-pyocins, and tailocins are

multiprotein injection devices sharing a seringe-like architecture.82-84

They are assembled of three major building blocks: a long rigid inner

tube sharpened by a needle-like tip, a contractile helical sheath sur-

rounding the tube, and a baseplate that anchors the system to the tar-

get cell membrane, rearranges and triggers sheath contraction to

expel the tube out of the sheath and puncture the target membrane.

The two targets provided to CASP were derived from the high-

resolution cryo-electron microscopy (cryo-EM) structures of the anti-

feeding prophage AFP from the soil bacterium S. entomophila whose

pathogenicity to the New Zealand pasture pest Costelytra giveni, is

largely due to AFP which injects its insecticidal toxin into the C. giveni

larvae.85 The targets represent the two opposite extremities of the

AFP tailocin in its metastable extended state: the cap (Table 1, Target

H1021) and the needle (Table 1, Target H1022).

F IGURE 9 The apical cap of
the AFP particle in extended
state. A,B, Experimental structure
of the H1021 target and the five
best CASP prediction models
according to QS score. This
hexameric complex is composed
of one layer of the sheath protein
Afp2 (blue) surrounding the tube
protein Afp1 (dark green) and
capped by Afp16 (shades of
magenta). The N- and C-terminal
arms of Afp2 are shown in light
green and red, respectively. The
α-helix of Afp2 interacting with
the tube is shown in orange. The
ring-forming α-helix 148 to 156 is
shown in black. C, Afp1-Afp2
dimeric models are aligned to the
target (black). D, Monomer
predictions for Afp16, both for
domain 2 only (up) and for the
whole protein (bottom). EF,
Monomer predictions for Afp2
and Afp1, respectively
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The cryo-EM map of the first target (H1021), determined at an

average resolution of 3.3 Å, corresponds to the sixfold symmetric api-

cal end cap. This structure shows how the cap protein Afp16 (subunit

3 of H1021) binds to the inner tube protein Afp1 (subunit 1) and the

sheath protein Afp2 (subunit 2) to tightly stabilize the tube and pre-

vent toxin egress through the wrong extremity. Although homologous

structures of the tube and sheath proteins in related injection systems

such as the bacteriophage T486 and the R-pyocin87 had been solved,

at the time of the CASP competition the cap protein Afp16 had no

known structural homolog for the entire sequence length, and there-

fore represented a potentially difficult target for ab initio modeling.

Accordingly, the predicted models of the Afp1-Afp2-Afp16 complex

show a good accuracy for the Afp1-Afp2 sub-complex (Figure 9A,B).

The conserved interface formed between the sheath and the tube

(Afp2 α-helix-Afp1 ß-sheets) was correctly modeled by the top predic-

tions sorted by QS score (Figure 9C). The conserved bilobe fold of

Afp2, described for other CIS sheath proteins, was accurately

modeled in the monomer predictions (Figure 9E). In the complex,

intra-Afp2 interactions via the extended N- and C-terminal arms are

present in three out of five top models, although the monomer predic-

tions for Afp2 showed a C-terminal extension folded back onto the

upper lobe of Afp2 (Figure 9E).

The tube proteins Afp1 has a similar fold as the T4 (gp19,67) the

T6SS Hcp,88 and the R-pyocin tube protein,87 predicted with high

accuracy at the monomer level with GDT-TS > 70 (Figure 9F). At the

apical end, in the cap-bound state, the N-terminal Afp1 α-helix

unfolds to accommodate the interaction with Afp16 and to follow the

Afp16 interdomain linker (Figure 9F). Interestingly, although the

predicted models of the Afp1 monomer show an N-terminal α-helix as

observed in related tube proteins and in the tube conformation of

Afp1, several models of the whole complex presented a partially

unfolded helix as in the cap conformation (Figure 9F, TS068).

In the complex, the position and interaction surfaces of the cap

protein Afp16 were not precisely determined by the CASP prediction

models (Figure 9A), likely due to the modular organization of this pro-

tein. Afp16 is composed of two distinct domains linked by a long loop,

and forms a hexameric ring at the apex of the CIS trunk. The N-

terminal domain constitutes an extra layer of the tube while the C-

terminal domain caps the sheath (Figure 9A). CASP prediction models

for Afp16 monomers show good accuracy for the N- and C-terminal

domains individually, but failed to predict their relative position

(Figure 9D). The N-terminal domain of Afp16 possesses a short

α-helix (148-156), which organizes in a tight ring of 9 Å in diameter

that constricts the extremity of the particle upon Afp16

hexamerisation (Figure 9B). While several models correctly placed this

helix toward the middle of the complex, the predicted interaction was

less tight than observed in the target (Figure 9B).

The second target (H1022) corresponds to the threefold symmet-

ric structure of the AFP needle. The original cryo-EM map

encompassing three copies of the needle protein Afp8 (Figure 10, sha-

des of orange) and six copies of the tube initiator Afp7 (Figure 10, sha-

des of blue), was solved to an average resolution of 3.4 Å.

F IGURE 10 The needle of the
AFP particle. Experimental structure
of the target H1022 and the five best
CASP prediction models according to
QS score are shown in side view (top
left), top view (top right), and as a
slice through the region indicated by
dashed lines in upper panel,
corresponding to the threefold to
sixfold adaptor domain of Afp8
(bottom, dashed circle). The six copies
of Afp7 are shown as shades of blue,
while the three copies of Afp8
forming the needle are shown in
shades of orange. Orange arrows
indicate the disruption of the ß-helical
wall observed in several CASP
prediction models
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Reminiscent of T4 and T6SS, an important feature of the needle hub

are the twin ß-barrel domains of Afp8 which have a fold similar to the

core domain of the tube proteins (Afp1, Afp7 N-terminal domain).

Their arrangement creates a pseudohexameric layout67,89 which,

accommodates the transition from the hexameric ring formed by the

tube initiator Afp7 to the C3-symmetry of the rest of the Afp8 needle

trimer (Figure 10, dashed circles). In the predicted models, the

hexameric nature of this transition is not well respected, showing

rather a triangular organization. Another important feature of this tar-

get is the tapered needle at the bottom of Afp8 with an intercalated

ß-helical wall analogous to the T4 gp589 and T6SS VgrG/VgrG1,82 but

notably shorter. This feature was well reproduced by the CASP predic-

tion models, although most of them showed a disruption of the ß-

helical wall toward the bottom of the needle (Figure 10, orange

arrows). Globally, the conserved fold of Afp8 was accurately modeled

in the predictions. The structure of Afp7 was well predicted for the

core N-terminal domain at the interface with Afp8, whereas the posi-

tion and the fold of the C-terminal domain could not be modeled

correctly.

2.10 | Structure of a glycoside hydrolase family 31
α-xylosidase in complex with a cleaved xyloglucan
oligosaccharide (CASP: T1009; PDB: 6DRU). Provided
by Hongnan Cao, Jonathan D. Walton, and George
N. Phillips, Jr

Xyloglucan is a major hemicellulose of plant cell walls.90,91 Cellulose

and hemicellulose represent valuable biomass resources for renewable

lignocellulosic biofuel production.92 A bottleneck to this process, that

is, biomass recalcitrance, is the natural resistance of plant cell walls to

microbial and enzymatic deconstruction.92 To overcome this, various

enzymatic cocktails have been developed by DOE funded Bioenergy

Research Centers and others for efficient and eco-friendly conversion

of these naturally abundant polysaccharides into readily fermentable

sugar units. Walton's group at the DOE Great Lakes Bioenergy

Research Center (GLBRC) have previously demonstrated that

α-xylosidase from Aspergillus niger (AxlA) enhances yields of mono-

meric sugars glucose and xylose from xyloglucan and hold promise in

industrial lignocellulose conversion.90,91 In order to elucidate the

molecular basis of its catalytic function and substrate specificity, we

determined the crystal structure of recombinant AxlA in complex with

its catalytic product (Table 1, Target T1009; PDB: 6DRU), a xyloglucan

fragment at 2.7 Å resolution via molecular replacement using a struc-

ture of an α-glucosidase (PDB: 4B9Y)93 in the same glycoside hydro-

lase family 31 (GH31, www.cazy.org94) as AxlA.

The structure shows an overall typical GH31 enzyme fold with

two structurally conserved putative catalytic residues residing in a

central (β/α)8 barrel catalytic domain flanked by two β sandwich

domains at N- and C-termini (Figure 11A). The putative nucleophile

and general acid residues Asp395 and Asp487 locate on the opposite

sides of the catalytic labile C1 position of the xylose at −1 site cleaved

from the branched xyloglucan fragment. The averaged distances

between the carboxylic oxygen atoms are 6.38 and 6.55 Å for the two

structurally similar copies of the molecules in the asymmetric unit,

respectively. These values are consistent with a retaining catalytic

mechanism involving double displacement steps.95

The amino acid sequence of AxlA (UniProt ID: G3XMN9), without

the N-terminal peptide 50-MYFSSFLALGALVQAAAA-30, was submitted

to CASP13 for both regular target and oligomeric structural predictions.

The highest sequence identity of existing homologs to AxlA in PDB is

~28%. The top 4 ranked predicted models of AxlA as a regular target are

from prediction participants MUFold (GDT-TS = 71.24), Jones-UCL

(GDT-TS = 71.20), wfAll-Cheng (GDT-TS = 69.08), and Zhang (GDT-

TS = 68.38). To our surprise, most overall top-ranked teams like

AlphaFold A7D (GDT-TS = 60.97), QUARK (GDT-TS = 64.10), and MUL-

TICOM (GDT-TS = 67.13) are out of top 10 in this particular case, except

Zhang. We also noticed that the overall fold and locations of the two pro-

posed catalytic residues of AxlA is successfully predicted by most top

ranked models. However, not a single predicted model is able to repro-

duce the experimentally determined loop-helix-loop motif structure (resi-

dues 398-425), which appears to be structurally essential for AxlA to

form +1 site for the backbone glucose as well as recognizing galactose

and xylose sugars on the adjacent branch of the xyloglucan fragment

being acted on (Figure 11B,C). This is possibly due to the low sequence

and structural conservation in this region in structurally characterized

GH31 enzymes, which comprise a wide variety of substrate

specificities according to www.cazy.org,94 including α-glucosidase (EC

3.2.1.20); α-galactosidase (EC 3.2.1.22); α-mannosidase (EC 3.2.1.24);

α-1,3-glucosidase (EC 3.2.1.84); sucrase-isomaltase (EC 3.2.1.48) (EC

3.2.1.10); α-xylosidase (EC 3.2.1.177); α-glucan lyase (EC 4.2.2.13); iso-

maltosyltransferase (EC 2.4.1.-); α-1,4-glucosyltransferase (EC 2.4.1.161);

sulfoquinovosidase (EC 3.2.1.-). The shape and interactions complemen-

tarity between the enzyme pocket and the xyloglucan fragment provides

further evidence on its substrate specificity and suggests its usefulness in

lignocelluloses deconstruction (Figure 11C).

A close examination on the quaternary assembly of AxlA using

EPPIC96 identified it as a possible homo-tetramer formed from two sub-

units in the asymmetric unit and two adjacent subunits related by crystal-

lographic symmetry. The above-mentioned loop region with poor

structural predictions is also involved in tetrameric assembly (Figure 11D).

This can be one of the factors that lead to the relatively poor predictions

of AxlA as oligomeric target, with the top ranked model from BAKER

team giving a QS-score of only 0.177 for the dimer interface.

2.11 | Structure of A. thaliana xylan O-
acetyltransferase 1 (CASP: T0969, PDB: 6CCI).
Provided by Markus Alahuhta, Vladimir V. Lunin, and
Yannick J. Bomble

A. thaliana xylan O-acetyltransferase 1 (AtXOAT1) is a plant-specific tri-

chome birefringence (TBL) like enzyme that catalyzes the 2-O-acetylation

of the xylan backbone.97 Structural characterization of AtXIAT1 is part of

a wider effort to elucidate the molecular basis of polysaccharide biosyn-

thesis and biomass modifications by different plant-derived enzymes,

including glycosyltransferases, acetyltransferases, and methyltransferases.
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The crystal structure of the AtXOAT1 was determined by single

wavelength anomalous dispersion method using anomalous signal

from sulfur atoms (S-SAD) at CuKα wavelength (Table 1, Target:

T0969). The structure is composed of three β-sheets consisting of

seven (β3-β6, β9, β12-β13), four (β7-β8, β10, β11), and two (β1-β2)

β-strands, respectively, nine α-helices including a “broken” one and

three α-helical turns (Figure 12A). The molecule is divided into two

lobes with a deep cleft in between: the first larger lobe contains

almost all secondary structure elements found in the protein while the

second, of smaller size, is mostly unstructured and contains four disul-

fide bridges (Cys140-Cys191, Cys162-Cys227, Cys171-Cys467,

Cys384-Cys463). The deep cleft between the two lobes contains the

substrate binding site, that is, a catalytic triad Ser216-His465-Asp462

similar to that found in serine proteases98 (Figure 12B). The walls of

the cleft are formed by two flexible loops (residues 443-448 and

273-281). Biochemical experiments with truncation mutants at the

N-terminal cytoplasmic tail, the predicted transmembrane domain and

the N-terminal variable region, identified the catalytic domain as the

region between residues 133 to 478.

The top two ranked models (T0969TS197_1-D1 and

T0969TS406_1-D1, from MESHI and Seder3mm groups, GDT-

TS = 58.19 and 57.49, respectively) correctly reproduced the overall

fold of AtXOAT1 (Figure 12A). Most deviations from the reference

structure (PDB: 6CCI) occur at the region surrounding residues 437 to

468 and at loops 262 to 284 and 312 to 334. The short β-strands

defined by residues 437 to 439 and 462 to 464 are also not reproduced

in the models. A closer inspection of the active site revealed an incor-

rect orientation of two of the three catalytic residues, namely Asp462

and His465, with a main-chain shift toward the top of the cleft and

overall RMSD of the active site residues of 3.7 Å and 4 Å, respectively.

This is accompanied by an incorrect flip of residues Trp309 and Trp466

into the active site.

The third ranked model T0969TS274_1-D1 (MUFold) showed

a slightly higher global deviation from the reference structure

F IGURE 11 A Experimental structure of the target H1022 and the five best CASP prediction models by QS score (one per participating

group) are shown in side view (top left), top view (top right), and as a slice through the region indicated by dashed lines in upper panel,
corresponding to the threefold to sixfold adaptor domain of Afp8 (bottom, dashed circle). The 6 copies of Afp7 are shown as shades of blue, while
the 3 copies of Afp8 forming the needle are shown in shades of orange.) Crystal structure of AxlA (PDB: 6DRU, chain A, color-coded by
secondary structures, helices in red, beta-strands in yellow, and loops in green) and superposition with the search model (PDB: 4B9Y, white)
shows conserved GH31 fold and putative catalytic residues (spheres). The cleaved xyloglucan oligosaccharide is shown as sticks with carbon in
green and oxygen in red. B, Structure superposition of AxlA with top CASP13 regular target predictions shows an overall agreement on fold (thin
ribbons) and conserved catalytic residues positions (spheres). A less conserved loop-helix-loop motif (cartoons) is poorly predicted and lacks
agreement. Top CASP13 models are color-coded as cyan (MUFold), pink (Jones-UCL), magenta (wfAll-Cheng), and Zhang (red) in the order ranked
by GDT-TS. Additional aligned models are in white (A7D), black (MULTICOM) and gray (QUARK), which are generated from top-ranked
prediction methods based on overall performance on all regular targets but outrun by others in AxlA predictions. C, A close-up view in surface
representation of AxlA substrate binding pocket with bound oligosaccharide product shown as sticks. Black dot surfaces indicate shape and
interaction complementarity between the enzyme and the ligand. The ligand +1 site and branched sugar units attached to the +2 site are
recognized by a pocket formed between the loop-helix-loop motif in yellow and an adjacent subunit in cyan. The catalytic labile α-glycosydic
bond is between the −1 site and + 1 site sugars. D, Tetrameric AxlA assembly predicted by EPPIC
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(GDT-TS = 52.83) but still captured the correct overall fold. Interest-

ingly, this model shows a slightly better local accuracy, with an RMSD

of the active site residues of 3.2 Å (Figure 12B). In summary, the top

three models all reproduced the overall fold and most of the second-

ary structure elements. They all had shifts in the position of the cata-

lytic residues but were close enough to be able to correctly identify

the location of the active site and identity of catalytic residues.

3 | CONCLUSIONS

This article provides insights into structural and functional details of

13 selected CASP13 targets and analyses to what extent the most

interesting features of the targets are reproduced in the models, as

illustrated by the author of the structures. The presented examples

highlight a series of recurring themes, reflecting both the success and

pitfalls of current prediction methods. On one hand, the ability of

predicting hard protein folds at the tertiary level has increased enor-

mously with the structure of many difficult targets reproduced with

impressive accuracy. On the other hand, important global and local

features of prediction models are still seldom as accurate as in the

experimental structure. This is the case of enzyme active sites and

ligand binding sites, where the predicted arrangement of the amino

acids side chains involved in ligand binding and substrate specificity

has not achieved the level of accuracy required to confidently infer

their function (i.e., T0961, T0957, T0969). Accurate prediction of

loops is still a challenging task. As they are often involved in PPIs, their

incorrect prediction can compromise the accuracy of the interacting

surface and overall structure of the complex. An example of this sce-

nario is highlighted in T1009, where a specific loop-helix-loop motif

appears to be essential for both catalytic activity and tetrameric

assembly of AxlA. A similar case is target H1021, where the incorrect

prediction of a long loop region leads to inaccurate domain orientation

of the Afp16 subunits. The latter example also points to an important,

re-emerging issue in CASP. That is, the ability of current methods in

modeling the correct quaternary structure of proteins remains rudi-

mentary and shows little progress compared to what observed at the

tertiary level. For example, while the majority of predictors success-

fully modeled the individual domains of the AROM enzyme (T0999),

no group was able to predict the correct assembly of the pen-

tafunctional complex. This represents an important drawback, as the

oligomeric state is often relevant for structural and functional integrity

of the target and may also assist predictions of the interdomain orien-

tation in multidomain proteins. As also highlighted in H0953, how-

ever, the oligomeric state of the target was possibly not taken into

account for predictions.

As assessing the functional relevance of models is difficult for

CASP assessors to address on a large scale, we hope that this study

will inspire future CASP assessors in emphasizing the relevant aspects

of models that inform our understanding of protein function.
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