, Synergetic Effects of Combined Nanomaterials for Biosensing Applications, Sensors, vol.17, issue.5, p.1010, 2017.

P. Mehrotra, Biosensors and their applications ? A review, Journal of Oral Biology and Craniofacial Research, vol.6, issue.2, pp.153-159, 2016.

X. Jia, S. Dong, and E. Wang, Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors, Biosensors and Bioelectronics, vol.76, pp.80-90, 2016.

N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang, Carbon nanotube based biosensors, Sensors and Actuators B: Chemical, vol.207, pp.690-715, 2015.

C. Tîlmaciu and M. C. Morris, Carbon nanotube biosensors, Frontiers in Chemistry, vol.3, p.59, 2015.

E. Morales-narváez, L. Baptista-pires, A. Zamora-gálvez, and A. Merkoçi, Graphene-Based Biosensors: Going Simple, Advanced Materials, vol.29, issue.7, p.1604905, 2016.

Y. Song, Y. Luo, C. Zhu, H. Li, D. Du et al., Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials, Biosensors and Bioelectronics, vol.76, pp.195-212, 2016.

M. Pumera and A. H. Loo, Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing, TrAC Trends in Analytical Chemistry, vol.61, pp.49-53, 2014.

X. Sun, J. Fan, C. Fu, L. Yao, S. Zhao et al., WS2 and MoS2 biosensing platforms using peptides as probe biomolecules, Scientific Reports, vol.7, issue.1, 2017.

D. Sarkar, W. Liu, X. Xie, A. C. Anselmo, S. Mitragotri et al., MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors, ACS Nano, vol.8, issue.4, pp.3992-4003, 2014.

N. Rohaizad, C. C. Mayorga-martinez, Z. Sofer, and M. Pumera, 1T-Phase Transition Metal Dichalcogenides (MoS2, MoSe2, WS2, and WSe2) with Fast Heterogeneous Electron Transfer: Application on Second-Generation Enzyme-Based Biosensor, ACS Applied Materials & Interfaces, vol.9, issue.46, pp.40697-40706, 2017.

Y. Q. Zhu, W. K. Hsu, N. Grobert, B. H. Chang, M. Terrones et al., Production of WS2Nanotubes, Chemistry of Materials, vol.12, issue.5, pp.1190-1194, 2000.

N. M. , G. A. , and R. C. , Announcement, Advanced Composite Materials, vol.10, issue.2-3, pp.286-286, 2001.

S. Barua, H. S. Dutta, S. Gogoi, R. Devi, and R. Khan, Nanostructured MoS2-Based Advanced Biosensors: A Review, ACS Applied Nano Materials, vol.1, issue.1, pp.2-25, 2017.

D. Raichman, D. A. Strawser, and J. Lellouche, Covalent functionalization/polycarboxylation of tungsten disulfide inorganic nanotubes (INTs-WS2), Nano Research, vol.8, issue.5, pp.1454-1463, 2014.

D. Raichman, D. Strawser, and J. Lellouche, Design of Experiments: Optimizing the Polycarboxylation/Functionalization of Tungsten Disulfide Nanotubes, Inorganics, vol.2, issue.3, pp.455-467, 2014.

W. Z. Teo, E. L. Chng, Z. Sofer, and M. Pumera, Cytotoxicity of Exfoliated Transition-Metal Dichalcogenides (MoS2, WS2, and WSe2) is Lower Than That of Graphene and its Analogues, Chemistry - A European Journal, vol.20, issue.31, pp.9627-9632, 2014.

J. Laloy, H. Haguet, L. Alpan, D. Raichman, J. Dogné et al., Impact of functional inorganic nanotubes f-INTs-WS2 on hemolysis, platelet function and coagulation, Nano Convergence, vol.5, issue.1, pp.81-91, 2018.

H. Fiege, H. Voges, T. Hamamoto, S. Umemura, T. Iwata et al., Phenol Derivatives, Ullmann's Encyclopedia of Industrial Chemistry, 2000.

G. Lunardi, S. Galati, D. Tropepi, V. Moschella, L. Brusa et al., Correlation between changes in CSF dopamine turnover and development of dyskinesia in Parkinson's disease, Parkinsonism & Related Disorders, vol.15, issue.5, pp.383-389, 2009.

Y. Tao, Y. Lin, J. Ren, and X. Qu, A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Aunanoclusters, Biosensors and Bioelectronics, vol.42, pp.41-46, 2013.

Q. Palomar, C. Gondran, R. Marks, S. Cosnier, and M. Holzinger, Impedimetric quantification of anti-dengue antibodies using functional carbon nanotube deposits validated with blood plasma assays, Electrochimica Acta, vol.274, pp.84-90, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847114

. Cosnier, Journal of Biosensors & Bioelectronics, Biosens. Bioelectron, vol.97, pp.177-183

J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Nørskov, and I. Chorkendorff, Hydrogen evolution on nano-particulate transition metal sulfides, Faraday Discuss., vol.140, pp.219-231, 2009.

L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu et al., Ultrathin WS2Nanoflakes as a High-Performance Electrocatalyst for the Hydrogen Evolution Reaction, Angewandte Chemie International Edition, vol.53, issue.30, pp.7860-7863, 2014.

S. Cosnier, J. J. Fombon, P. Labbé, and D. Limosin, Development of a PPO-poly(amphiphilic pyrrole) electrode for on site monitoring of phenol in aqueous effluents, Sensors and Actuators B: Chemical, vol.59, issue.2-3, pp.134-139, 1999.

S. Cosnier and I. C. Popescu, Poly(amphiphilic pyrrole)-tyrosinase-peroxidase electrode for amplified flow injection-amperometric detection of phenol, Analytica Chimica Acta, vol.319, issue.1-2, pp.145-151, 1996.

J. C. Espín, R. Varón, L. G. Fenoll, M. A. Gilabert, P. A. García-ruíz et al., Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase, European Journal of Biochemistry, vol.267, issue.5, pp.1270-1279, 2000.

D. Shan, M. Zhu, E. Han, H. Xue, and S. Cosnier, Calcium carbonate nanoparticles: A host matrix for the construction of highly sensitive amperometric phenol biosensor, Biosensors and Bioelectronics, vol.23, issue.5, pp.648-654, 2007.

V. Sanz, M. L. Mena, A. González-cortés, P. Yáñez-sedeño, and J. M. Pingarrón, Anal. Chim. Acta, vol.528, pp.1-8, 2005.

M. N. Karim, J. E. Lee, and H. J. Lee, Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes, Biosensors and Bioelectronics, vol.61, pp.147-151, 2014.

S. Jung and W. Sohn, Response to: Foot gangrene: An unusual cause [Burns 00 (0) (20XX) 00-00], Burns, vol.36, issue.5, p.737, 2010.

V. Sethuraman, P. Muthuraja, J. Anandha-raj, and P. Manisankar, A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide?metal oxide enzyme modified electrode, Biosensors and Bioelectronics, vol.84, pp.112-119, 2016.

Y. Zhou, L. Tang, G. Zeng, J. Chen, Y. Cai et al., Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation, Biosensors and Bioelectronics, vol.61, pp.519-525, 2014.

M. Bujduveanu, W. Yao, A. Le?goff, K. Gorgy, D. Shan et al., Multiwalled Carbon Nanotube-CaCO3Nanoparticle Composites for the Construction of a Tyrosinase-Based Amperometric Dopamine Biosensor, Electroanalysis, vol.25, issue.3, pp.613-619, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01652837

L. Mei, J. Feng, L. Wu, J. Zhou, J. Chen et al.,

. Wang, Editorial Board, Biosensors and Bioelectronics, vol.74, p.IFC, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02749487

Z. Zhuang, J. Li, R. Xu, and D. Xiao, Int. J. Electrochem. Sci, vol.6, pp.2149-2161, 2011.

X. Liu, Y. Peng, X. Qu, S. Ai, R. Han et al., Multi-walled carbon nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid, Journal of Electroanalytical Chemistry, vol.654, issue.1-2, pp.72-78, 2011.

B. Rezaei, E. Havakeshian, and A. A. Ensafi, Decoration of nanoporous stainless steel with nanostructured gold via galvanic replacement reaction and its application for electrochemical determination of dopamine, Sensors and Actuators B: Chemical, vol.213, pp.484-492, 2015.

K. Wang, P. Liu, Y. Ye, J. Li, W. Zhao et al., Fabrication of a novel laccase biosensor based on silica nanoparticles modified with phytic acid for sensitive detection of dopamine, Sensors and Actuators B: Chemical, vol.197, pp.292-299, 2014.

C. Lete, S. Lupu, B. Lakard, J. Hihn, and F. J. Del-campo, Multi-analyte determination of dopamine and catechol at single-walled carbon nanotubes ? Conducting polymer ? Tyrosinase based electrochemical biosensors, Journal of Electroanalytical Chemistry, vol.744, pp.53-61, 2015.

E. Kaiser, R. L. Colescott, C. D. Bossinger, and P. I. Cook, Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides, Analytical Biochemistry, vol.34, issue.2, pp.595-598, 1970.