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Quantification of Tomographic Incompleteness
in Cone-Beam Reconstruction

Rolf Clackdoyle and Frédéric Noo

Abstract—For situations of cone-beam scanning where the
measurements are incomplete, we propose a method to quantify
the severity of the missing information at each voxel. This
incompleteness metric is geometric; it uses only the relative
locations of all cone-beam vertices with respect to the voxel in
question, and does not apply global information such as the object
extent or the pattern of incompleteness of other voxels. The values
are non-negative, with zero indicating “least incompleteness,” i.e.
minimal danger of incompleteness artifacts. The incompleteness
value can be related to the severity of the potential reconstruction
artifact at the voxel location, independent of reconstruction
algorithm. We performed a computer simulation of x-ray sources
along a circular trajectory, and used small multi-disk test-objects
to examine the local effects of data incompleteness. The observed
behavior of the reconstructed test-objects quantitatively matched
the precalculated incompleteness values. A second simulation
of a hypothetical SPECT breast imaging system used only 12
pinholes. Reconstructions were performed using analytic and
iterative methods, and five reconstructed test-objects matched
the behavior predicted by the incompleteness model. The model
is based on known sufficiency conditions for data incompleteness,
and provides strong predictive guidance for what can go wrong
with incomplete cone-beam data.

I. INTRODUCTION

Cone-beam tomography is the basis for image reconstruc-
tion theory and algorithms in the fields of X-ray Computed
Tomography (CT) using area detectors and Single Photon
Emission Computed Tomography (SPECT) with pinhole col-
limators. In X-ray CT and in pinhole SPECT, a good first-
order mathematical model is to treat the measurements as
cone-beam (CB) projections. The vertex of the cone corre-
sponds physically to the x-ray source in CT applications, and
corresponds to the pinhole for SPECT applications. Cone-
beam theory and algorithms have been extensively studied for
conventional circular and helical scanning, as well as more
exotic vertex trajectories such as the saddle, or circle-and-line
and variants [1], [2], [3], [4], [5], [6]. If the CB projections
are not truncated, then much more general trajectories can be
handled, with reliable reconstruction possible [7], [8] in the
region satisfying Tuy’s condition [1] and stable reconstruction
impossible elsewhere [2]. However, if the CB vertices do not
follow a piecewise smooth trajectory or if the CB projections
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are truncated, then much of current CB theory does not
apply. Methods using Hilbert transforms and derivatives of
the projections can avoid the truncation issues [5], [6] but they
have complicated non-local requirements involving the object
support and line segments of Hilbert values (see, for example,
the case of helical cone-beam tomography with transaxial
truncation [9]). There remain many potential CB scanning
geometries which lie outside current CB reconstruction theory.

In practice, all scanners supply only a finite number of
projections so the vertex trajectory is replaced by a finite set
of vertex locations which, strictly-speaking, can never satisfy
Tuy’s condition. Stationary pinhole SPECT scanners provide
a more extreme case where a dozen or so pinholes might
be positioned in space with no suggestion of an underlying
trajectory. Very little literature exists on the problem of CB
tomography from a finite number of vertices. Barrett and
Gifford [10] used the concept of a Fourier cross-talk matrix
to analyze vertex configurations along a helical path. Their
approach could be extended to general vertex configurations
but it treats recovery in a global way, and does not appear to be
easily modified to handle the variable recoverability of Fourier
coefficients throughout an extended field-of-view. There is a
body of mathematics literature dealing with recovery of object
singularities (such as sharp changes or boundaries) from a
finite number of vertices. For example, Quinto [11] identifies
visible and invisible singularities in a single cone-beam projec-
tion. However, in the limiting case of an infinite collection of
vertices satisfying Tuy’s condition, these theories only predict
that all singularities of the object can be recovered, and we
are interested in full tomographic recovery of the density
function. Broadening our perspective to include parallel-beam
projections but restricting to the two-dimensional (2D) case,
the work of Rattey and Lindgren [12] identifies minimal an-
gular sampling of the projections (interwoven with a minimal
detector sampling) in order to recover objects of a given size
and essential bandwidth. Natterer has similar results for the
fan-beam geometry [13], and Desbat has extended these ideas
to the case of cone-beam tomography for vertices along a
circle [14]. These results can be readily inverted to define a
maximum bandwidth which can be recovered from a finite
number of vertices but they rely heavily on uniform angular
sampling and are not powerful enough to address our problem.
The idea of linking up vertices to create a Tuy complete
trajectory was discussed in [15] and [16], and these ideas
led also to direct (analytic) algorithms for reconstruction from
arbitrary vertex configurations. Unfortunately, no quantitative
link was made between the value of required to convert
a finite number of vertices into a Tuy complete set and
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the reconstruction quality obtained or obtainable using this
approach. Other works on reconstruction from a finite number
of projections can be found, but they generally address parallel
geometries and are not suitable for CB problems.

For completely general vertex trajectories/sets and arbitrary
projection truncation, current CB reconstruction theory is not
sufficiently advanced to answer simple questions on which
voxels can be reliably reconstructed and which regions of
the object have been insufficiently sampled by the 3D Radon
transform and therefore cannot be reliably reconstructed. In
this context, regions of reliable reconstruction means that
the reconstruction will be correct in a certain region for all
possible objects that are being scanned. (The point is, even in
cases of severe data incompleteness, there can still be certain
objects that reconstruct correctly. An extreme example is just
one parallel projection; if the object density is constant in the
integration direction, then it can be perfectly reconstructed.)

In this work, we describe a simple measure of local incom-
pleteness, with the property that it quantitatively describes how
poorly a certain test object is expected to be reconstructed
in principle (independent of reconstruction algorithm). This
measure was previously presented in a different context in
conference proceedings papers [17], [18], [19]. The scope is
broader here, to include truncated CB projections, and more
detailed studies are provided.

The incompleteness metric that we propose here has the
noteworthy feature that for each voxel, an incompleteness
value is assigned to each direction. We use the symbol I(x, θ)
to represent the incompleteness value at 3D location x, in the
direction θ ∈ S2. Different directions have different degrees
of incompleteness as we will discuss in the theory section and
illustrate in the simulations section. Two features we stress
here are the incompleteness notion, rather than completeness,
and the directional aspect at the voxel level.

There have been various descriptions of local completeness
metrics in the literature, based on known necessary conditions
for CB reconstruction. Our incompleteness metric is based
on those same conditions, which become sufficient conditions
for incompleteness. This distinction is essentially semantics,
but we feel that a value of “zero incompleteness” is less
likely to be mis-interpreted than “100% completeness” when,
in both cases, the local conditions do not necessarily ensure
reliable reconstruction (as will be discussed below). We will
consistently emphasize that our metric, I(x, θ), provides a
lower bound (i.e. a minimal level) of incompleteness. The
various existing completeness metrics are discussed in the
following section.

II. BACKGROUND

As discussed below, various completeness conditions as well
as one incompleteness condition appear in the literature. The
completeness conditions are all based on (a) Tuy’s condition
[1], or on (b) 3D Radon inversion formulas [20] or on (c) a
local version of Orlov’s condition [21]. Tuy’s sufficiency con-
ditions for CB reconstruction are that every plane intersecting
the object must contain at least one vertex point. Furthermore,
none of the CB projections can be truncated, and it is assumed

that the support (the extent) of the object is known. This
condition is essentially the same as the 3D Radon condition
that all plane integrals intersecting the object must be known
[3]. Finally, in the limiting case where the vertex trajectory
lies at infinity, the CB projections become parallel, and Tuy’s
condition becomes Orlov’s sufficiency condition: the set of
projection directions, when traced on the unit sphere, must
intersect every great circle [22].

In 2001, we presented a completeness condition for a finite
collection of non-truncated CB projections in the context of
pinhole SPECT, and defined a directional condition at each
point x, denoted R(x, θ) [19]. Following Tuy’s condition,
for each point x, we consider all planes through x. For the
plane with normal vector θ we look for the CB vertex which
comes closest to the plane. If a vertex lies on the plane, then
R(x, θ) = 0, and if not, we look for the closest vertex vi to
the plane, not in the sense of distance to the plane, but in
the sense of the (positive) angle made between the plane and
the line connecting x to vi. We called this angle ψi and we
assigned R(x, θ) = tanψi. Note that for a finite set of vertices,
R(x, θ) will be non-zero for almost all planes (almost all θ).
We discuss this definition further in the Section III.

In 2003, Metzler published a “sampling completeness”
condition SC for helical pinhole SPECT [23], but it can
clearly be applied to any CB vertex trajectory. In this work,
each voxel was considered as the center of its own “Orlov
sphere” and the projection of the vertex trajectory onto this
sphere was called a vantage curve. Orlov’s condition requires
that all great circles intersect this vantage curve, although true
data completeness is only ensured if all projections are parallel
and non-truncated. Nevertheless, the percentage of all possible
great circles intersecting the vantage curve was used for the
SC value at each voxel. This completeness measure is not
applicable to finite sets of vertices, so the CB trajectory is
always considered to be “continuous.” In a related publication
[22], the Orlov sphere description is linked to a local form
of Tuy’s condition, and an algorithm for evaluating the SC
measure in practice is described in detail.

Other completeness measures in the literature follow the
spirit of these two early contributions. There has been in-
creased interest in this topic, particularly in recent years with
half a dozen papers appearing since 2010.

In 2010, Stopp et al proposed an “image recording quality
measure” q(x) for applications in limited-angle X-ray scan-
ning [24]. The quality measure q(x) was similar in spirit to
an averaged version of R(x, θ) described above. Again using
ψi to denote the minimum angle made by the ith vertex with
respect to the plane through x with normal θ, the quantity q(x)
was defined by averaging | cosψi| over all normal directions
θ. The maximum possible value of 1.0 would mean that Tuy’s
condition is satisfied at x, and smaller values represent poorer
quality measures. The results were compared with RMS errors
from SART reconstructions of the Shepp-Logan phantom.

Also in 2010, Lin and Meikle explored 3D sampling re-
quirements in the context of pinhole SPECT with circular
and helical trajectories, including projection truncation [25],
[26]. They used the SC measure in the context of local Orlov
spheres, and were primarily investigating situations of 100%
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SC in all voxels. Their simulations showed artifacts in regions
where SC was less than 100%.

In 2011, Dai et al also use a “sampling completeness”
criterion to compare scanning orbits in pinhole SPECT [27].
Their criterion, called SCP , is the SC measure for each
voxel expressed as a percent. They suggested that an SCP
threshold value of 95 would be suitable for reconstructions in
practice, and they compared the number of voxels attaining
this threshold for circular and helical scanning orbits.

In 2012, Liu et al used their “completeness map” concept
to evaluate various cardiac CT scanning modes, including
circular and helical scanning. They justified their data com-
pleteness number in terms of 3D Radon transform theory, and
arrived at the percentage of planes passing through the point x
that are measured from CB vertices along the trajectory. This
criterion turns out to be mathematically equivalent to SC. In
addition, the authors are careful to point out that “a 100%
completeness number is a necessary condition to reconstruct
the corresponding point ... not a sufficient condition” [28] and
they point to the 3D interior problem [20] as an example where
unique reconstruction is not possible even though a 100%
completeness map exists. The authors also make the following
statement, which is relevant to our work presented below: “it
is difficult to establish the image quality that corresponds to a
completeness level that is less than 100%”.

In 2015, a paper addressing data completeness in multiplex-
ing multi-pinhole SPECT appeared [29]. The completeness
criterion was the Metzler model using Orlov sphere and a
cleverly chosen set of vantage directions that were identified as
the effectively non-multiplexed directions. Five pinhole scan-
ning configurations were examined and data completeness was
identified as either 100”% or incomplete. For data complete
situations where the authors “do not expect any artifacts,”
subsequent simulation studies verified that image quality was
consistent with the data completeness criterion.

A weakness common to all these works [19], [23], [24],
[26], [27], [28], [29] is that they can not be used as a general
data-completeness measure. This fact has been explicitly men-
tioned in several of these works. In the case where none of the
CB projections are truncated (a rare situation, in practice) these
completeness measures are reliable. However, if some projec-
tions are truncated then a calculated completeness of 100%
can be misleading. The difficulty is that general completeness
conditions are not determined only by the local (voxel-level)
behavior of measured line integrals in two-dimensions (fan-
beam) or three-dimensions (cone-beam). Some global informa-
tion of the measured data configuration is also required, such
as knowledge of the object extent (the “object support”) and
the pattern of measurement lines through a neighboring region
of voxels that includes the object boundary. A well-known
specific example is described by the interior problem [20]
where all CB projections are measured but are all completely
truncated (no part of the object boundary is visible in any
CB projection view). In this case all seven listed works would
indicate 100% completeness for the “interior” points that are
visible in the CB projections, but reconstruction theory states
that unique image reconstruction is not possible for these
points (unless strong a priori information is available). Further

discussion of general CB data-completeness theory can be
found in [30], [6].

On the other hand, an effective incompleteness condition can
be achieved at the voxel level, based on a converse of Tuy’s
condition, due to Finch: stable image reconstruction is not
possible (irrespective of reconstruction algorithm) at a voxel
location if there exists a plane through that contains no CB
vertex [2].

This approach to defining an incompleteness condition was
recently adopted in [31]. A non-directional “local Tuy condi-
tion” was defined at each voxel as the worst (largest) value of
| sinψi| taken over all directions θ ∈ S2 with ψi defined earlier
as the smallest angle with respect to the plane normal to θ
subtended at the voxel by all CB vertices. The local Tuy value
was convincingly validated using simulations with a phantom
consisting of a grid of small concentric spheres.

Here, we propose an incompleteness value I(x, θ) at each
voxel, which indicates the degree of incompleteness. The key
point made by Finch was that a function which varies quickly
between two parallel planes passing through a neighborhood
of x cannot be reconstructed if all measured lines pass
through both planes. What is missing is a CB vertex on the
plane passing through x and generates lines to separate (pass
between) the two planes. We suggest a measure that quantifies
this incompleteness by identifying the closest CB vertex to
the plane in question. A novel feature of this work is that
we provide concrete examples of “what can go wrong?” and
“how badly?” in terms of the magnitude of the incompleteness
parameter. We illustrate the efficacy of our definition using
computer simulations.

III. THEORY

Cone-beam projections g(ai, ·) are defined as collections of
ideal line-integrals

g(ai, α) =

∫ ∞
0

f(ai + tα) dt (1)

where ai represents the location of the ith CB vertex, f(x) is
the intensity at x of the physical parameter being scanned (“the
object function”), and α ∈ S2 is a unit vector specifying the
direction of the ray leaving the vertex ai and passing through
the object. Figure 1 illustrates the geometry of a single CB
projection. The two independent parameters of the vector α
are determined by the intersection point of the ray on the
detector. By removing considerations of detector resolution
and sampling, we have reduced the problem to considering
only the geometric configuration of the cone vertices with
respect to the 3D locations x of interest.

Given a collection of (unordered) CB vertices
{a1, a2, . . . an}, we define the local directional incompleteness
metric I(x, θ) by

I(x, θ) = min{tanψi : i = 1, 2, . . . n} (2)

where x represents the location in the imaging field, θ ∈ S2

is a unit vector indicating the diretion being sampled, and

sinψi = |(ai − x) · θ| / ||ai − x|| (3)
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defines the angle ψi made by the line-of-view from the vertex
ai to location x and the plane perpendicular to θ and passing
through x. See fig 2.

We extend this definition in the obvious way when con-
sidering a path or trajectory of vertices. If aλ is the vetex
position on a smooth and bounded trajectory parametrized by
λ ∈ [λ1, λ2], we define

I(x, θ) = min{tanψλ : λ ∈ [λ1, λ2]} (4)

where
sinψλ = |(aλ − x) · θ| / ||aλ − x||. (5)

Note that for both definitions, the angles ψi or ψλ lie
in the range [0, π/2], so I(x, θ) ∈ [0,∞]. Also, for both
definitions, we are only considering the effective vertex set
or vertex trajectory corresponding to the point x. That is, we
only consider those CB vertices for which a measurement line
is present from the vertex through the point x. In the case of
non-truncated projections, the effective vertices are the same
for all points x, but for truncated projections, each point x
can have its own characteristic (“effective”) sub-collection of
vertices.

In the following two subsections, we discuss the definition
of I(x, θ) in the context of existing CB reconstruction theory.
We assume no a priori information about the unknown object
density.

A. Non-truncated CB projections; vertex trajectories

For the case of non-truncated CB projections taken from a
vertex trajectory, existing theory tells us precisely where stable
reconstruction is possible. It is important to note that part of
the object may be reconstructible even though other regions
of the object are not. From the local form of Tuy’s condition
[1], reconstruction is possible at a (small neighborhood of a)
point x if every plane passing through (the neighborhood of) x
intersects the vertex path. (From now on, “x” implicitly refers
to a small neighborhood about the point x.) Conversely, if
there are planes passing through x which do not intersect the
vertex path, then stable reconstruction at x is not possible in
principle, independent of reconstruction algorithm [2].

From the definition of I(x, θ) we see that if every
plane passing through x intersects the source trajectory, then

Fig. 1. A cone-beam projection. The cone-beam projection g(ai, ·) is the
collection of all line-integrals for rays diverging from the vertex point ai.
If some non-zero line-integrals miss the physical detector, the projection is
called truncated.

Fig. 2. Example calculation of I(x, θ). This example involves just two
verticies a1 and a2 as shown. For the location x and direction θ indicated,
ψi is angle between the line-of-sight from vertex ai to x and the plane
perpendicular to θ. Here, I(x, θ) = tanψ1.

I(x, θ) = 0 for all θ, which is interpreted as “no incomplete-
ness in any direction” and is in agreement with known theory
stating that stable reconstruction is possible at x [1]. Finch’s
result [2] is a necessary CB completeness condition, and Tuy’s
result [1] is a sufficient completeness condition (provided no
CB truncation occurs). They are respectively sufficient and
necessary conditions for incompleteness, so stable CB recon-
struction is possible at x if and only if I(x, θ) = 0 ∀θ ∈ S2.
Other published completeness / incompleteness measures also
demonstrate compatibility with the Tuy-Finch conditions (for
non-truncated CB projections). A fast method of determining
all reconstructible points is available if the vertex trajectory
consists of a single connected (and bounded) component: in
this case, the convex hull of the trajectory is exactly the region
of reconstructible points [2], [32].

Conversely, if some plane Px(θ) passing through x does
not contain a CB vertex, then I(x, θ) 6= 0 where θ is the
normal vector of the plane in question. Thus any non-zero
value of I(x, θ) indicates a point x for which accurate image
reconstruction is not possible. However, this incompleteness
measure is more than just a binary indicator of data in-
completeness at x because (a) it indicates the direction(s)
of the offending plane(s) at x by associating incompleteness
to specific planes (on which there is no CB vertex), and
(b) it provides a positive value indicating the degree to which
the condition is not satisfied in terms of the nearest suitable
approximating plane.

For property (a) above, we justify the notion that there is no
incompleteness (i.e. I(x, θ) = 0) for all directions θ for which
a plane does pass through x, even though other directions
might fail. Here we appeal to the notion that any object can be
represented in the domain of the derivative of the 3D Radon
transform. Elements of the domain are conceptually related
to planes intersecting the object, and the domain acts locally,
meaning that only those elements of the domain corresponding
to planes passing through x are needed to recover the object
at x [16]. The relevant transform has been called the B-
transform [33] or the dipole-sheet transform [34], defined by

Bf(γ, s) = p(γ, s) =
1

2π

∫
R3

f(x) δ′(x · γ − s) dx (6)

where γ ∈ S2, s ∈ R, and δ′ is the derivative of the Dirac
delta function defined by

∫
h(s) δ′(s0 − x) ds = h′(s0). The

inverse B-transform is

B−1p(x) = f(x) =
1

4π

∫
S2

∫
R
p(γ, s) δ′(s−x ·γ) ds dγ. (7)
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Grangeat’s result [3] links CB projections to elements of
the B-domain, and more specifically, if a plane intersects the
vertex path then the corresponding element of the B-domain
can be obtained using Grangeat’s formula:

1

4π

∫
S2

g(a, θ) δ′(θ · γ) dθ = p(γ, s)|s=a·γ (8)

where g is related to f via equation (1), and p is related to f
via equation (6). In this sense, planes passing through x which
do intersect the vertex path are furnishing elements of the B-
domain of the object so I(x, θ) = 0 (no incompleteness) for
those corresponding planes. In particular, if the object decom-
position in the B-domain is zero for those planes violating
Tuy’s condition (I(x, θ) 6= 0 at x) then stable reconstruction
can be achieved at x. This situation is in analogy with the
familiar concept of limited angle tomography where object
reconstruction is possible if the unmeasured frequencies were
not present (had zero amplitude) in the object.

For property (b) above, we explain our heuristic approach
of using the tangent of the sallest available subtending angle
as a measure of the degree of incompleteness in the missing
direction (direction θ normal to the plane containing x but
not intersecting the vertex path). For a fixed point x and a
plane Px(θ) not intersecting the vertex path, a nearest plane
is defined as a plane passing through x whose normal vector
makes the smallest possible angle with θ, amongst those planes
which do intersect the vertex path. From the definition of
equation (5) it can be seen that ψλ is this minimum angle.
So the degree of incompleteness should be some monotonic
(order-preserving) function of ψλ. We choose tanψλ, based
heuristically on the following argument. In considering how
the incompleteness would be manifest in image reconstruction
at x, we recall that Finch proposed a smooth object function f
with a discontinuity along Px(θ) [2]. We follow a similar line
of thought by considering two small parallel disks separated
by a small gap, centered at x and parallel to the plane Px(θ).
Since I(x, θ) 6= 0, there is no measurement line passing
through x and parallel to the disks. Furthermore, there is no
measurement line passing through x making an angle of less
than ψλ with Px(θ). If the two disks had unit diameter and
were separated by less than tanψλ, then any measurement
line passing through x would have to traverse both disks, and
the gap between them would not be detectable. If the disks
were separated by more than tanψλ, then there would be
measurement lines through x that pass directly between the
disks, and would allow the possibility for the center of the
disks to be separated in a reconstructed image. The heuristic
meaning of I(x, θ) is the smallest distance that two unit-
diameter disks at x with orientation θ can be tomographically
separated. We examine this quantitative interpretation in the
simulations, sections IV and V below.

B. Non-truncated CB projections; finite vertex sets

We now consider this case of a finite number of vertices,
from which all CB projections are nontruncated. In practice,
any vertex trajectory must be approximated using a finite col-
lection of vertices and the tacit assumption is that the sampling
along the trajectory is sufficiently fine that the “continuous”

CB reconstruction theory applies. For the incompleteness
measure I(x, θ), the same assumption can be applied. For a
fine sampling of vertices along the trajectory, the definition
of equations (2) and (3) will give almost identical values
of I(x, θ) as the definitions (4) and (5). Strictly speaking,
there will be many small non-zero values of I(x, θ) that
would have been zero for a true vertex trajectory. However,
from knowledge of the sample spacing along the trajectory, a
maximum non-zero value due to the sampling effect can be
calculated (by examining values of I(x, θ) for planes that pass
between consecutive samples on the trajectory) and used as a
threshold to define an “effectively zero” value for I(x, θ). We
do not discuss this point further.

For an arbitrary finite collection of (non-truncated) CB
vertices, the situation for a local incompleteness measure
remains similar to the case of a vertex trajectory. Suppose there
are n CB vertices (and in practice, n can be as small as 20
for modern dedicated cardiac-SPECT cameras). Each point x
will have n planes which satisfy Tuy’s condition for which the
corresponding element of the B-domain will be available using
Grangeat’s formula. For these planes, equations (2) and (3)
will give I(x, θ) = 0, and we expect that rapid changes in
density at x in the direction θ will be discernible by the
CB system. Conversely, where nonzero values, particularly
large non-zero values, of I(x, θ) occur, the system will have
difficulty in resolving two small unit disks at x oriented
perpendicular to θ, spaced closer than the value of I(x, θ).
Reconstruction methods for arbitrary vertex collections are
much less developed than for the standard situation of a vertex
trajectory, however, a method called the “Radon Algorithm”
takes the approach of building the B-domain and performing
the inverse transform to reconstruct the object [15]. This
method is analogous method to the Fourier Reconstruction
approach in parallel-beam reconstruction theory.

For arbitrary discrete vertex sets, it is useful to consider the
convex hull of the vertex locations. Points x inside this convex
hull could be considered to lie in a useful reconstruction region
because the magnitude of I(x, θ) will be (conservatively)
bounded by a constant multiple of the largest distance between
two neighboring vertex points (neighboring in the sense that
the separating distance is minimal). Outside the convex hull
however, for certain directions θ, the value of I(x, θ) will grow
with increasing distance causing larger and larger holes in the
B-domain. However, even at these locations x, well outside
the convex hull, some structures of the object will still be
reconstructible because there will always be n directions {θi}
such that I(x, θ) = 0 corresponding to the planes that pass
through the vertices.

C. Truncated CB projections

For truncated CB projections, general CB reconstruction
theory is much less developed. Tuy’s condition cannot be
applied to truncated projections so theoretically reconstructible
regions are not readily identified. On the other hand, Finch
still tells us where stable reconstruction is impossible: if a
plane intersecting the object doesn’t contain a CB vertex,
then stable reconstruction will not be possible at object points
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in that plane. However, there are now regions of unknown
reconstructibility where, for example, each plane through
the point contains some CB vertex, but some of these CB
projections are truncated. In general, for such locations it is
not known if stable reconstruction is possible. (In some special
cases, reconstructibility can be established using the tools of
differentiated backprojection and Hilbert inversion, but the
conditions are complicated and highly specific to the vertex
trajectory geometry and the object support [6].) Furthermore,
the three-dimensional interior problem tells us that a collection
of points {x} can have all planes containing CB vertices and
yet these points are known to not be uniquely reconstructible;
the situation arises when all the corresponding CB projections
are truncated in all directions on the detectors.

Translating these facts to the definition of I(x, θ), for either
vertex trajectories or a finite collection of vertices, if there
are truncated projections, reconstruction at x is not ensured
even if I(x, θ) = 0 for all θ. On the other hand, a non-zero
value of I(x, θ) still means that there are insufficient data to
reconstruct density features at x that change rapidly in the θ
direction. Furthermore, the value of I(x, θ) still indicates the
closest possible separation of small unit-diameter disks that
might be resolved from the data (no matter what reconstruction
algorithm is used, barring a priori information). However, for
the vertex of minimal ψλ that provided the value of I(x, θ),
the CB projection may be truncated so the corresponding
point in the B-domain might not be available. In this sense,
without further information, non-zero I(x, θ) indicates a “best
possible” case for reconstructibility at x in the θ direction, or
equivalently, I(x, θ) provides a lower bound on the level of
incompleteness.

If more information is available concerning the pattern of
truncation, then more is known about reconstructibility at
points x inside the object. If, for example, a subset of the
vertex set (trajectory or discrete vertices) corresponds to non-
truncated CB projections, then the meaning of I(x, θ) becomes
more specific if those vertices alone are involved in the
calculation. However, the calculated value for I(x, θ) remains
unchanged. For example, if I(x, θ) = 0 at x for all θ, then
the fact that (from the vertex subset) no truncated projections
were involved tightens the meaning to“stable reconstruction
is possible at x” from (in the case of truncated projections)
“reconstructibility at x might be possible.”

In a substantial extension of the idea of additional informa-
tion on the pattern of truncation, we introduce the terminology
effectively non-truncated for the situation where the truncation
does not inhibit access to the B-domain. Using Grangeats
formula [3] to calculate the B-transform for a plane Px(θ),
a cone-beam vertex is required for which the corresponding
projection values are available at (and in a small neighborhood
of) the intersection of Px(θ) with the detector. (See figure 3
of [35] where this point is discussed in more detail.) This
requirement still allows cone-beam truncation elsewhere in
the projection. If all values of I(x, θ) can be calculated with
effectively non-truncated projections, then the same predictive
behavior of I(x, θ) is available as for non-truncated projec-
tions.

D. Summary

For non-truncated projections, or for a suitable subset of ef-
fectively non-truncated projections, the sign of I(x, θ) merely
encodes the results of the known image reconstruction theory
of Tuy, Finch, and Grangeat. (By the sign of a nonnegative
function we mean zero if the function is zero, and one if the
function is non-zero.) In particular, at position x, I(x, θ) = 0
for all θ means that all the required information in the B-
domain is available for reliable reconstruction at x. On the
other hand, a positive value of I(x, θ) indicates missing
information in the B-domain and that rapid density changes in
the θ direction will be poorly reconstructed, independent of the
choice of reconstruction algorithm. The magnitude of I(x, θ)
has been put on an heuristic scale to quantify the degree of
incompleteness in terms of the expected reconstructibility of
two small parallel disks. Since the object under study might
not actually contain rapidly changing density in the directions
of missing information (the object may have low magnitude
components in certain regions of its B-transform), we can
regard I(x, θ) = 0 as describing the “worst-case scenario” for
the reconstruction of a particular object. On the other hand,
this “worst case” can always be realized by considering objects
with rapidly changing density at x in the θ direction, such as
the disks phantom.

For the general situation of truncated projections, even if
the exact pattern of truncation were known, current image
reconstruction theory is not generally able to resolve the ques-
tion of local reconstructibility. The I(x, θ) value is computed
for each vertex for which an integration line to the voxel
exists, without regard for truncation of other integration lines
in the Px(θ) plane. Therefore, a value of zero at x indicates
measurements of the corresponding elements of the B-domain
which would only be ensured if there was effectively no
truncation. The same argument applies for non-zero values
where the magnitude of I(x, θ) is assuming the nearest plane
(nearest element of the B-domain) is effectively not truncated.
In both cases, the value of I(x, θ) is optimistic, and should be
regarded as a minimal degree of incompleteness at x. On the
other hand, the incompleteness value itself is a “worst-case
scenario” for image reconstruction of a particular object, so
for general truncated CB projections the definition of I(x, θ)
gives a quantitative description of the minimum degree of
incompleteness that would be manifest in the most unfortunate
object to be reconstructed (the object whose features align
most unfortunately with the pattern of incomplete measure-
ments).

We again emphasize that the calculation of I(x, θ) involves
only the geometry of the CB vertices with respect to the re-
construction point x. All physical effects are assumed to have
been corrected perfectly and the detector is assumed to have
arbitrarily fine spatial resolution. (This detector assumption is
valid on many CB systems where sub-mm sampling exists on
the detector whereas the CB vertex spacing is generally much
larger than 1 mm.) The values obtained for I(x, θ) indicate
the degree of incompleteness; they are independent of any
particular (analytic or iterative) reconstruction algorithm, and
assume no a priori information on the object density function.
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Fig. 3. The test object. The test object consists of three parallel disks of
diameter 7 mm, thickness 1 mm, and separated by 2 mm. The axis of the
disks indicates the incompleteness direction being tested, θ. The idea is to
try to resolve the gap between the disks in the reconstructed images. For the
selected dimensions of the disks, the gaps should not be resolvable along the
central axis unless I(x, θ) is less than 0.29.

IV. SIMULATIONS

We report here on our simulations studies, whose purpose
was to validate the incompleteness model defined by (2)-
(3). In our first simulation study, we consider the familiar
circular CB geometry for which data incompleteness in planes
parallel to the trajectory plane have been known for several
decades. (See [36] for a relatively recent study). We use the
standard Feldkamp (FDK) reconstruction algorithm [37] for
the experimental component of the study. For the second
simulation study, we chose an imaging geometry of only
12 CB vertices, for a hypothetical pinhole SPECT imaging
system. We study the predicted incompleteness at a handful
of locations, and we examine those locations in reconstructed
images obtained with both analytic and iterative algorithms.

Following the spirit of the explanations in section III.A,
we experimentally examined ideal reconstructed images at
various locations x by centering a small test phantom of
parallel disks at x and orienting the axis of the disks in some
direction θ. By visual inspection of the reconstructed images,
we assessed whether the disks were clearly separated, and
we compared these results with the predictions given by the
formula for I(x, θ), equations (2)-(3). The disk phantom we
used is illustrated in Fig. 3; the radius of the three disks was
3.5 mm, the separation of adjacent disks was 2.0 mm and each
disk was 1.0 mm thick. For some studies, the geometry of the
disk phantoms was adjusted.

A. Circular vertex trajectory

For the first simulation study, 60 vertices were spaced
uniformly along a circle of radius 100 mm. The z-axis
corresponded to the axis of rotation, and z = 0 was the
plane containing the circle of vertices. The detector size was
256 x 256 square pixels each of side 0.33 mm. The detector
was positioned at 200 mm from the corresponding vertex, and
oriented conventionally, i.e. such that the shortest line segment
from the vertex to the detector passed through the center of
the vertex circle, and intersected the center of the detector.

To experimentally verify the predictions of our incomplete-
ness model, we placed the small test-objects in three locations
along the axis of rotation of the simulated scanner, oriented so
that the θ direction was aligned with the rotation axis. The test-
objects were considered to be recovered if the reconstructed
images completely separated the three disks. For rays to pass

between the disks along the central axis of the test-object
they would have to be inclined by no more than tan−1(2/7)
from the plane parallel to the disks, so we anticipate that the
test objects should not be recoverable unless I(x, θ) is less
than 0.29. The three test-objects were centered respectively at
z = 10 mm, z = 29 mm, and z = 40 mm, as illustrated in
fig. 4.

Projection data for the 60 vertices were simulated by
calculating the intersection length of the line from the vertex
to each detector pixel with the phantom, using the mathe-
matical description of the 9 disks comprising the phantom
(rather than computing intersections with a voxelized model
of the phantom). Note that the detector was large enough to
ensure no truncation of the CB projection of the simulated
phantom. The reconstructed image was obtained by applying
the FDK algorithm [37] to these ideal projection data. The
reconstruction array consisted of 200 x 200 x 200 cubic voxels
of side 0.2 mm.

The three reconstructed test-objects were examined visually
and using plots of the reconstructed intensity values to deter-
mine if clean separation of the disks had been achieved in
the images. At the three locations x1 = (0, 0, 10), x2 = (0,
0, 29), x3 = (0, 0, 40), the maximum incompleteness value
I(x, θ) is in the direction θz = (0, 0, 1) in all cases. For
this direction, the incompleteness values are easily calculated
from equations (2)-(3): I(x1, θz) = 0.10, I(x2, θz) = 0.29,
and I(x3, θz) = 0.40.

Our standard test object (fig. 3) responds to the situation of
I(x, θ) > 0.29. For different incompleteness thresholds, the
separation and/or diameter of the disks can be varied. We used
the same simulated scanner geometry but placed three new
test-objects at locations x1, x2, x3 with respective diameters
of 12 mm, 10 mm, 7 mm and separations of 1 mm, 2 mm,
4 mm. For the second new test-object centred at x2, the disk
thickness was doubled to 2 mm; all other disks were 1 mm
thick. The corresponding incompleteness thresholds for the
three new test-objects were 0.083, 0.20, 0.57 respectively.

For general CB geometries, where truncated projections can
occur, I(x, θ) provides a minimum incompleteness metric. To
illustrate this point we used the same circular geometry of 60
projections, with the standard test object at position x1, but
included a very dense cylinder of height 10 mm and radius
5 mm located at (50, 10, 15) which is outside the field-of-
view. This object was completely truncated for 40 of the 60

Fig. 4. Details of the circle simulations geometry. Sixty vertices were placed
uniformly on a 100 mm radius circle in the x-y plane (only 20 shown). Three
test objeects (see fig. 3) were centered on the z-axis at heights of 10 mm,
29 mm, and 40 mm respectively. These locations correspond to I(x, θ) =
0.10, 0.29, and 0.40 respectively when θ is in the z-direction.
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projections; for the other 20 projections, it was “in front” of the
test-object for 6 projections, and behind for 14 projections. The
density of this cylinder was 9 times that of the disks of the test-
object. The standard test-object responds to incompleteness
values greater than 0.29 but at location x1 we have I(x1, θz) =
0.10, so if none of the CB projections were truncated, the
disks of the test-object would be resolved. The FDK algorithm
was used for reconstruction, even though this algorithm is not
suited for transaxially-truncated projections.

Historically, disk phantoms became the standard test object
for the circular CB trajectory in 1989 when it was originally
suggested by Defrise [38]. The blurring that occurs off the
trajectory plane and obscures the separation of the disks is
well known. To provide a different (and new) illustration of
cone-beam incompleteness artifacts, we also simulated a “shell
and bubble” phantom. This phantom consists of the shell
component of the standard 3D Shepp-Logan phantom with
a small bubble feature placed at the top of the phantom. The
defining ellipsoids are given in table 1.

TABLE I
SHELL+BUBBLE PHANTOM; COMPONENT ELLIPSOIDS (IN MM)

Density a b c x0 y0 z0

2.0 69 90 92 0 0 0

-0.98 66.24 88 87.4 0 0 -1.48

-0.98 4.6 4.6 4.6 0 0 87

Two simulations were performed with this phantom. In
both cases, there were 60 projections with corresponding CB
vertices evenly spaced along a circle of radius 350 mm lying
in the z = 0 plane. The z-axis passed through the centre of the
circle. The detector was always 700 mm from the CB vertex, in
the opposing position along the trajectory circle, but adjusted
in the z-direction to ensure no truncation of the projections.
The detector consisted of 128 x 128 square pixels of side 4
mm each. The FDK routine was used for the reconstructions,
with 200 x 200 x 200 voxels of side 1.5 mm each. The voxel
array was positioned in the same way for both reconstructions,
such that the center of the array was 50 mm above the origin
of the system.

For the first simulation the phantom was positioned 100 mm
above the origin, and for the second simulation, it was
positioned 100 mm below the origin. We are interested in
the behavior of the reconstruction at the position of the
“bubble” so for the first simulation, x = (0, 0, 187), and for
the second simulation x = (0, 0,−13). In both cases the
incompleteness value at position x was maximized in the
θ = (0, 0, 1) direction with values easily calculated to be
I = 187/350 ≈ 0.53 and 13/350 ≈ 0.037 respectively. We
thus anticipate a possible artifact at x for the first simulation
but a much smaller artifact for the second simulation.

B. 12 pinhole vertices

A 12-vertex CB geometry was simulated in order to examine
more closely the effects of the parameter θ when using
I(x, θ), and to explore an extreme geometry with richer

Fig. 5. Schematic of the simulation geometry. A gamma camera with pinhole
collimator is successively placed at 12 positions to image the right breast. The
12 vertices (pinhole locations) are irregularly-spaced on a rectangular path
(right) on the surface of a hemisphere surrounding the breast. See fig. 6 for
projected views of the vertices and breast.

incompleteness properties. Although 12 CB projections might
seem artificially low, there are currently clinically operational
SPECT cameras in hospitals that use a broadly similar geom-
etry, employing just 19 pinhole projections [39] [40].

For our 12-vertex example, we simulated a hypothetical
multi-pinhole SPECT system for breast imaging. For a phan-
tom, we defined a torso and two breasts using constant density
ellipsoids, and we focussed on the right breast with a pinhole
system as illustrated in fig. 5. Twelve pinhole projections
were considered in a rectangular arrangement located on the
surface of an imaginary hemisphere surrounding the right
breast as shown in fig. 6. With the assumption that only the
right breast was active, none of the 12 CB projections were
truncated. We also assumed an ideal detector (perfect spatial
resolution) and an arbitrarily small pinhole. We identified
5 locations (x1, x2, . . . x5) inside the breast and assigned a
direction (θ1, θ2, . . . θ5) to each location. The five pairs are
illustrated in fig. 6. Note that locations x1 and x5 lie inside
the convex hull of the vertices, but the other locations do not.
Generally, the incompleteness values will be smaller inside
this convex hull as pointed out in Sec. III-A and Sec. III-B.

For this geometry of 12 pinholes, we calculated the full
incompleteness function I(xi, ·) for each of these five loca-
tions x1, x2, . . . x5. Polar plots were used to display these
five functions of θ, as shown in fig. 7. Conceptually, each
θ corresponds to a point on the upper unit hemisphere, and
one imagines being positioned at the centre of this hemisphere.
The z-direction is the centre of the image, corresponding to
“looking directly overhead” i.e. the direction θ = (0, 0, 1).
Values along the “equator” correspond to z = 0 and are
shown along the outer boundary of the circular image, with
the x-direction pointing to the right, and the y-direction
straight ahead (upwards in the 2D plot). Dark values in the
polar plots correspond to values of I(x, θ) that are close to
zero (low incompleteness) and bright values indicate greater
incompleteness. As explained in the caption, the 12 dark bands
that appear in each polar plot of fig. 7 correspond to the 12
vertices (pinhole locations). The polar plots for x2, x3, and
x4 show similar behavior because these locations are quite
close to each other, relative to the positions of the vertices. In
table 2, we list the values of I(xi, θi) obtained for the selected
directions θ1, θ2, . . . θ5. The positions of these particular values
for θ are indicated on the polar plots of fig. 7.

Our model suggests (in agreement with standard theory)
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TABLE II
CALCULATED VALUES OF I(xi, θi)

i = 1 i = 2 i = 3 i = 4 i = 5

0.0 0.101 0.075 0.400 0.078

that locations x1 and x5 exhibit low data incompleteness
which depends slightly on their orientation with respect to
the available vertices. Locations x2, x3, and x4 (which lie
outside the convex hull of the vertices) indicate varying
degrees of data incompleteness, that depend on the orientation
θ under consideration. In particular, the values of I(x2, θ2)
and especially I(x3, θ3) are similar to that of I(x5, θ5), so we
predict similar levels of image artifact for these situations. On
the other hand, I(x4, θ4) is much larger, indicating much more
incompleteness, and suggesting noticeable image artifacts in
reconstructed images at that location and (unfavorable) orien-
tation.

To experimentally verify the predictions of our incomplete-
ness function, we included in the breast phantom, five small
test-objects at the locations x1 to x5. The test objects each
consisted of 3 parallel disks: thickness 1 mm; diameter 7 mm;
separation 2 mm, the same as used for the previous study, see
fig. 3. They were oriented so that the axis of the disks lay in
the θ direction. As before, the test-objects are considered to
be recovered if the reconstructed images completely separate

Fig. 6. Details of the simulation geometry. The transverse images (top left)
are in standard orientation (viewed from the feet, with patient lying face-
up). A parallel projection in the z-direction is shown (bottom left) illustrating
the positions of the vertices and the test-objects. Coronal images are shown
(top right), with the projection in the y-direction (bottom right). The elliptical
torso is visible, but was not used in the simulation. The 5 locations and
directions (x1, θ1) . . . (x5, θ5) under consideration are indicated in black in
the projected views; arrows showing the directions are only present when they
lie completely in the viewed orientation.

Fig. 7. Polar plots of I(x, θ) for x = x1, x2, . . . x5. The directions θ are
specified as if looking directly in the z-direction (“north pole” as shown
bottom right). The I(x, θ) values have been multiplied by 100. In each
plot, the small white “+” indicates θi (corresponding to the orientation of
the ith test object). The 12 dark bands on each plot are the traces of great
circles (on the unit sphere of directions) where each vertex provides “zero
incompleteness” (the line-of-sight from the vertex lies perpendicular to θ so
the RHS of equation (3) is zero).

the three disks, which we anticipate cannot happen for cases
where I(x, θ) > 0.28. Therefore, according to the model, we
anticipate test-object 4 will not be recovered, no matter what
image reconstruction algorithm is used. Figure 8 shows the
five test objects positioned and oriented according to the five
computed values I(xi, θi). The location of one coronal slice
and two transverse slices is also indicated, to help interpret
the images that the reconstruction algorithm will provide.

Using analytic line-length calculations through the ellip-
soidal and disk components, we computed the 12 CB pro-
jections of the right breast with activity level 1.0 and the
five test-objects with activity level 10.0. These ideal simulated
projections were of size 1024 x 1024 with pixel size 0.175 mm
x 0.175 mm to avoid detector resolution effects.

Image reconstruction was performed with both analytic and
iterative techniques. The scientific objective is to disprove the
incompleteness model, which in this case means to try to
successfully reconstruct test object 4 (i.e. produce an image
with clearly separated disks) which the incompleteness model
deems to be impossible.
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Fig. 8. The five test-objects. Each test-object consists of three parallel disks
of diameter 7 mm, thickness 1 mm and separated by 2 mm. The axis of the
ith disk was chosen to be θi. The idea is to try to resolve the gap between
the disks in the reconstructed images. The incompleteness measure predicts
that the test-object will not reconstruct well if I > 0.28. The 5 test-objects
were placed according to the locations and directions indicated in fig. 6. The
positions of coronal slice y = −23, and transverse slices z = 0 and z = 10
are shown.

The analytic reconstructions were performed on one coronal
tomographic slice (y = −23) and two transverse slices (z = 0
and z = 10) as indicated in fig. 8. The reconstructed slices
were of size 1024 x 1024 with cubic voxels of side 0.175
mm. The reconstruction algorithm was a refined version [18]
of the reconstruction code described in [15]. Briefly, the
algorithm performed a rebinning to the 3D Radon domain
followed by a standard reconstruction from a large Radon
array as described in [15]. The rebinning step from cone-beam
projections to the derivative of the 3D Radon transform was
slightly different from the earlier implementation however. The
parameters of the required samples of the 3D Radon array were
determined by the specified reconstruction geometry. Samples
which corresponded to planes passing through a vertex point
were directly available from the cone-beam projection data
(by applying Grangeats formula [3]). For the other samples,
a nearest neighbor approach was adopted which amounted to
finding the nearest available plane (containing a vertex) to the
required sample plane. The nearest plane was defined as one
making the smallest angle with the desired plane, and also
sharing a certain point P0. The point P0 was specified as the
point on the desired plane that was closest to the center of the
field-of-view (FOV). As will be apparent for the results, this
method of reconstruction was more accurate near the center of
the FOV, and we adjusted the method to allow other preferred
locations of reconstruction. The algorithm accepts a “focus”
point F , and the nearest neighbor scheme would use the point
P0 as the closest point on the desired sample plane to the point
F . We ran five additional reconstructions, with F set equal to
xi for i = 1, 2, 3, 4, 5.

For limited-data circumstances such as the 12 pinhole
system, most iterative algorithms have the advantage over an-
alytic techniques of blindly using all equations in the forward
model to search for solutions, whereas analytic methods are
rarely designed for incomplete data and there is generally no
assurance that the solutions these methods provide even satisfy
the imaging equations at regions of incomplete data. The
disadvantage of iterative techniques is the need to model the

entire object, which would be prohibitively large if the breast
and five test-objects were all included with sufficiently small
voxels. Therefore, for the iterative algorithms we applied, two
different simulated projection data were used. The first used
only object 4, and the second used only object 5. In the first
case, the object distribution was replaced by a background
sphere of intensity 1, centered at test-object 4, with diameter
15 mm (and object 4 was included). In the second case,
only object 5 was simulated, including a 15 mm diameter
background sphere of intensity 1. Both of these scenarios
are equivalent to telling the reconstruction a priori the exact
location and density of the breast and the remaining test-
objects. However, the size of the reconstruction problem is
now far smaller, with fewer (nonzero) data measurements and
a much smaller collections of unknowns (fewer voxels to
reconstruct). Similar studies with test-objects 1,2, and 3 are
not shown here because the behavior was essentially the same
as that of object 5.

Two iterative image reconstruction algorithms were used
for these two reduced-scale datasets (isolated test-objects 4
and 5). The two algorithms were a total variation (TV)
regularized least-squares (LS) method and a L1-norm reg-
ularized LS algorithm, both with non-negativity constraints.
The cost function for the TV-regularized method was of the
form (1/2)||Af − g||2 + λ||∇f ||1 where || · || is the usual
Euclidean (L2) norm and || · ||1 is the L1 norm. Here A is the
discretized version of the forward model (equation (1)), and f
and g are the discretized descriptions of the unknown function
and projection data respectively. The TV regularization term,
||∇f ||1, uses the L1 norm and is the “anisotropic” form. A
Landweber type algorithm was used to minimize the cost
function for fixed values of λ. Our implementation was slightly
adapted from the description given by Loris and Verhoeven
[41]. Specifically, for fixed values of τ = 0.98/||AtA|| and
σ = 0.084, the update steps were

f (n+1) =
(
f (n) + τAt(g −Af (n))− τDtw(n+1)

)
+

(9)

where At is the backprojection operator, the transpose of A;
and D is the derivative operator (a matrix with only two non-
zero values in each row, +1 and -1); (u)+ = (u + |u|)/2,
understanding that for a vector argument, each component of
the vector which is negative is assigned to zero; and where

w(n+1) = Pλ(w
(n) + (σ/τ)Dk(n+1)) (10)

k(n+1) = f (n) + τAt(g −Af (n))− τDtwn (11)

with

Pλ(u) =

{
λ sgn(u) |u| > λ

u |u| ≤ λ
(12)

understanding that when Pλ is applied to a vector, the above
formula is applied separately to each component of the vector.
The iterations were initialized with f (0) = 0 and w(0) = 0.
We note that for λ = 0 the iterations simplify to f (n+1) =
(f (n) + τAt(g−Af (n)))+ which is a Landweber update that
converges to a minimizer of the data-fidelity term within the
set of non-negative solutions. Larger values of λ increase the
weight of the TV constraint.
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The cost function for the L1-norm regularized method is
||Af − g||2 + λ||f ||1 with the constraint f(x) ≥ 0. The
algorithm also used a Landweber type iteration, but with
soft-thresholding [42]. Our implementation used the following
update steps:

f (n+1) = Sλτ/2

(
f (n) + τAt(g −Af (n))

)
(13)

where τ = 0.98/||AtA|| and

Sλ(u) =

{
u− λ u > λ

0 u ≤ λ
(14)

which is applied component-wise when the argument to Sλ is a
vector. The algorithm was initialized with f (0) = 0. When λ =
0 the algorithm simplifies to the same non-negative Landweber
update f (n+1) = (f (n) + τAt(g −Af (n)))+.

Although the implementation of our L1-norm constraint
algorithm is different from that described by Li et al [43],
the method is very much in the same spirit. The idea is that
by applying a ||f ||1 penalty, reconstructed images with more
zeros are preferred by the algorithm. We also applied the L1-
norm algorithm to the same two data sets (test-objects 4 and 5)
but with the 10% background spheres removed, to allow this
L1 sparsity preference to manifest itself more strongly. The
gaps between the disks should now preferentially reconstruct
to zero, rather than to the small positive background.

V. RESULTS

A. Circular vertex trajectory

Figure 9 shows a central slice through each of the three
reconstructed test objects. For the test-object located at z =
10 mm, the disks have been cleanly reconstructed with little
signs of artifacts, which is consistent with the calculated value
I(x1, θz) = 0.10. The intensity profile, plotted along the axis
of the test-object shows clear separation of the disks. In the
image, some negative undershoots appear at the edges of the
disks, and these are a known characteristic of reconstructed
disk phantoms in circular CB tomography. For the second test
phantom, at z = 29 mm, the disks have bulged out at the center
in their reconstructed images and are now virtually touching
each other. The visual interpretation is more favorable than
the intensity values plotted along the axis of the test object
where it is very difficult to discern the separation of the three

Fig. 9. FDK reconstructed images from the circle of 60 vertices. A vertical
slice is shown passing through the center of each test-object. On the right of
each image is a profile plot of the intensities along the central vertical line
through the objects (along the z-axis). Left: test-object centered at z = 10 mm.
Middle: test-object at z = 29 mm. Right: test-object at z = 40 mm.

disks. These observations are in agreement with the predicted
behavior based on the calculated incompleteness value of
I(x2, θz) = 0.29. Finally, for the third test object, centred
at z = 40 mm, the reconstructed disks have now distorted
so much that there is dramatic cross-talk and overlapping
of the features. With a minimum incompleteless level of
I(x3, θz) = 0.40, the standard disks phantom could not be
perfectly tomographically separated. Both visually and using
the plotted profile, it is not possible to reliably separate these
three disks along the axis of the phantom. We note that the
edges of the disks are still separated, which can give some
visual impression of resolving the test-object. The central
vertical profiles shown to the right of the images provide a
less subjective interpretation of separation of the disks. Recall
however, that the separation criterion applies along the central
axis of the test object.

In fig. 10, the reconstructions of the three new test-objects
are shown. At x3 (z = 40 mm), the test object threshold is 0.57
which is larger than the incompleteness value I(x3, θz) = 0.40
so no prediction of blurring the disks can be made. Indeed,
the reconstructed disks are distorted but still clearly separated.
At x2 (z = 29 mm) the test object threshold is 0.20 whereas
I(x2, θz) = 0.29 so according to our theory, the disks cannot
be tomographically separated (along the phantom axis) which
is in agreement with the observed reconstruction (fig. 10),
middle row, right). Lastly, at x1 (z = 10 mm) this test-object
threshold is 0.083 whereas the calculated incompleteness value
is 0.10, so the disks will not be completely tomographically
separated. The bottom right image of fig. 10 confirms that
the disks are not cleanly separated along the central axis. The
intensity profiles do not drop to zero. The bottom two disks are
nearly separated, whereas the top two are more blurred. This
effect is because at this location, the incompleteness value at
the space between the top two disks is 0.11 and between the
bottom two disks it is 0.09. The incompleteness value for the
bottom two disks is only slightly larger than the test-object
threshold of 0.083.

In fig. 11 (left), the reconstruction of the standard test-
object centred at x1 is shown, from substantially truncated
projections; it corresponds to the fig. 9 (left) where the
same object was reconstructed from non-truncated projections.
With the truncated projections, streak artifacts from the dense
object passed through the center of the test object making it
impossible to separate the disks at that location. The example
was carefully chosen, and is obviously an extreme case, but it
illustrates that point that the I(x, θ) metric indicates a minimal
level of incompleteness.

The results of these numerical experiments are in complete
agreement with the proposition that the incompleteness value
I(x, θ) can quantitatively predict at what point the disks will
fail to be separated along their axis. The incompleteness value
is a “minimum” level of incompleteness, so in some situations,
the disks might fail to be separated even if I(x, θ) is lower
than the test-object threshold. However, for the examples
shown which did not involve projection truncation, the results
matched the predictions exactly. Note that the metric is not
designed to specifically predict the reconstruction outcome of
the test-objects; the purpose of the test-objects is to illustrate
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Fig. 10. Left column: three new disk phantoms, with diameter, thickness, and
separation shown. Our incompleteness theory states that for the top phantom,
the axis will not be tomographically separated if I(x, θ) > 0.57; the middle
phantom for I(x, θ) > 0.2; the bottom phantom, for I(x, θ) > 0.083. Right
column: FDK reconstructed images of the three new disk phantoms placed at
the same locations in the same geometry as shown in fig. 9. At the right of
each image is an intensity profile taken along the central vertical line through
the disks. Top row: disks positioned at z = 40 mm, where I = 0.40. Middle
row: disks positioned at z = 29 mm, where I = 0.29. Bottom row: disks
positioned at z = 10 mm, where I = 0.10.

Fig. 11. Reconstruction of standard test-object from truncated projections. A
dense cylinder was centered at height 20 mm, and at nearly 55 mm from the
center of the transverse plane. Right: one of the 20 non-truncated projections
showing the dense cylinder “behind and to the right” of the disks test-object.
Left: FDK reconstruction of the test-object showing a negative streak artifact
from the cylinder crossing directly through the axis of the disks.

failure of tomographic recovery when the incompleteness
metric exceeds the test-object threshold.

Central coronal reconstructions of the shell+bubble phantom
in its two locations are shown in fig. 12. It is immediately
obvious that the reconstructions of the phantom in the region
of the bubble differ, with the bubble appearing in the interior
of the phantom in the first case, and inside the shell in the
second case. These images illustrate that the same object can
be reconstructed differently when placed in different locations,
and when there are large incompleteness values at play. In
this case, with I(x1, θ) = 0.53 for the position of the bubble
in the first image, the reconstruction must be considered less
reliable at that location. In the second image, with the bubble
located at x2, the incompleteness value is I(x2, θ) = 0.037
so the degree of image artifact is likely to be much lower.
We note in particular that no blatantly obvious feature of the

images indicate the presence of artifacts (no obvious streaks
or blurring).

B. 12 pinhole vertices

The second row of fig. 13 shows the three reconstructed
slices from the 12 simulated pinhole projections. Although
the main concern is the reconstruction of the 5 test-objects,
we note that the overall shape of breast is reasonably well
recovered, with many of the streaks and artifacts probably
related to the presence of the small high-intensity disks.

The two test-objects lying inside the Tuy region, objects 1
and 5, were reconstructed satisfactorily, with clear visual
separation of the three disks. Test-object 4 was recovered
poorly with little suggestion that three disks were present at
that location. These results might have been anticipated using
only standard reconstruction theory, with some assumption that
the sampling of the rectangular curve was sufficient for the
frequency information sought in the test-objects. Conventional
theory would probably not have predicted the outcome of
test-object 2, where the disks were also well separated in
agreement with our model (which did not predict serious
artifacts in that orientation at that location). However, test-
object 3 was very poorly recovered, although our model
suggested comparable or better behavior than objects 2 and
5.

This poor recovery of test-object 3 does not contradict
the predictions of our model, which is only strong enough
to say that the disks of test-object 4 will not be resolved,
and does not ensure that the other objects can be resolved.
However, the geometry did not suggest that test-object 3
was unfavorably located or oriented. In this case, it turned
out that the reconstruction algorithm was not providing the
best possible results at location 3. We were aware that the
reconstruction algorithm favored the center of the FOV, so
we ran a modified version as outlined in Sec. IV-B, setting
F = x3. The images obtained from this version of the
algorithm are shown in the third row of fig. 13. Small changes
appeared in almost all features of the reconstruction, including

Fig. 12. A central slice, containing the z-axis, of the shell+bubble phantom
reconstructed using the FDK algorithm from 60 CB projections along a
circular trajectory. The dotted white line indicates the level of the z = 0
plane in which the 60 CB vertices lie. Left: the phantom was positioned 100
mm above the z = 0 plane. The arrow indicates the location of x1 where
I(x1, thetaz) = 0.53. Right: the phantom was positioned 100 mm below the
z = 0 plane. The arrow indicates x2 with I(x2, θz) = 0.037. The position
of the bubble with respect to the shell is different in the two reconstructed
images.
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Fig. 13. Reconstruction images from the 12 pinhole geometry. Column 1: coronal slice y = −23. Column 2: transverse slice z = 0. Column 3: transverse
slice z = 10. (See fig. 8 for visualization of the slice locations.) Top row: slices through the simulated phantom. Middle row: reconstructions from simulated
data using the algorithm of [15]. Bottom row: reconstructions using a modified algorithm which treats x3 (location of test-object 3) as the focus point of the
algorithm (see text). These simulation results originally appeared in a [19] in a slightly different context.

the degree of recovery of the test objects. In this case test-
object 3 was well resolved. Consistent with the predictions of
the model, test-object 4 was still not resolved.

The position of test-object 4 and the action of the particular
reconstruction algorithm could explain the poor reconstruction
(fig. 13, bottom right) at that location. Figure 14 shows the
results of 5 different reconstructions, corresponding to F = xi
for i = 1, 2 . . . , 5. Only the reconstruction details of the
relevant test-object are displayed (for F = xi, only the ith test
object is displayed with a coronal and transverse slice through

the center of the disks). Here it is immediately apparent
that the individual disks of test-objects 1, 2, 3, and 5 are
clearly resolved, and test-object 4 remains heavily blurred with
only faint suggestions of three disks. In this reconstruction,
the edges of object 4 do appear to be resolved, similar to
the behavior observed for the circular study in fig. 9 (right)
which corresponded to the same incompleteness value of
I(x, θ) = 0.4.

For the TV regularized and L1 regularized reconstructions
of the isolated test objects 4 and 5, we used 500 Landweber
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Fig. 14. Results of 5 versions of the analytic reconstruction algorithm, each
applied by assigning F to the center of a test-object. The transverse slice
at location 3 is the same reconstruction shown in the third row of fig. 11.
Consistent with the predictions of the model, test-object 4 is not resolved.
(Faint cross-hair lines are visible in some images, showing the location of the
central horizontal and vertical profiles displayed adjacent to the images. The
two horizontal profile lines are parallel and very close to each other in the
3D geometry.)

iterations for all reconstructions, which we justified by observ-
ing only miniscule visible changes between 250 iterations and
500 iterations. The images of fig. 15 shows the progression
for a selection of the experimental studies.

Both of the iterative algorithms depend on a fixed reg-
ularization parameter λ. We performed reconstructions for
λ = 10−7, 10−6, . . . , 1. Visually, the images obtained for
all λ values below λ = 10−3 were very similar. The pixel
intensities changed in the second decimal place when λ
decreased from 10−3 to 10−4, and only in the third decimal
place when decreased from there down to 10−7. We present
the reconstruction images for λ = 1 and λ = 10−3 only.

Transverse and coronal slices through the TV-regularized
reconstructed images of test-objects 4 and 5 are shown in
fig. 16. We observe very similar results to the analytic recon-
structions of fig. 14. Even though the iterative reconstructions

Fig. 15. Convergence of the iterative algorithms - various examples of
transverse reconstructed slices from 12 CB projections, of the isolated test-
objects. Left column: 50 iterations, middle: 250 iterations; right 500 iterations.
For both the TV and L1 regularized reconstructions, using either test-object 4
or test-object 5, with or without background, essentially no visible change is
observable between 250 and 500 iterations.

were performed with the objects isolated (rather than all
present simultaneously, including the background from the
right breast) we found that reconstructed test-object 4 seemed
to be equally blurry and was visually similar to the analytic
reconstructions, and test-object 5 was cleanly reconstructed, as
before. Increasing the TV-penalty (i.e. increasing the λ param-
eter) visually improved the reconstruction of test-object 5, but
did not help separate the disks of reconstructed test-object 4,
especially near the central axis.

Reconstructed images from the L1-regularized algorithm are
shown in fig. 17. As before, only central transverse and coronal
slices are presented. We immediately observe that in all cases,
test-object 5 was cleanly reconstructed, with clear separation
of the disks, just as when the TV algorithm (fig. 16) and
the analytic algorithm (fig. 14) were used. For test-object 4,
we note visually comparable reconstructions at λ = 10−3 to
those of the TV and analytic algorithms. When increasing
the L1-norm penalty (λ = 1), a discernible improvement
is visible in the reconstructed images. For the case where
the 10% background was removed from the data, a more
pronounced improvement can be seen (bottom row of fig. 17),
suggesting that the non-negativity constraint had at least as
much influence as the L1 penalty. In all cases, however, the
gap between the disks of test-object 4 was not visible along the
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Fig. 16. Total variation (TV) regularized reconstructions of test-object 4
(below) and test-object 5 (above). The value of λ indicates the weight applied
to the TV regularization term (see text). The 15 mm diameter background
sphere (intensity 1.0) is faintly visible in the second row (test-object 5, λ = 1).
These images, from isolated test-object simulations, are to be compared with
those of fig. 12, rows 4 and 5. As predicted, the disks of test-object 4 are not
separated in the reconstructed images.

central axis of the phantom, as predicted by the incompleteness
metric.

VI. DISCUSSION AND CONCLUSIONS

For cone-beam tomography, we have defined a tomographic
incompleteness metric I(x, θ) that is based on known suf-
ficiency conditions for data incompleteness [2]. These con-
ditions are local and depend only on the geometry of the
cone vertices with respect to the location under scrutiny.
The detector is assumed to have perfect spatial resolution
so it plays no role in the definition of I(x, θ) unless the
measurement line from the vertex to is truncated (misses
the detector), in which case the vertex is excluded when
considering the location x. The incompleteness metric is
independent of the object being scanned, and independent of
the image reconstruction algorithm applied. A positive value

Fig. 17. L1-norm regularized reconstructions of isolated test objects 4 and 5.
Top two rows: with the 10% background sphere. Bottom two rows: without the
background sphere. Only miniscule visible differences appear when adjusting
the regularization weight (λ). Some improvement appears in the reconstruction
of test-object 4 when no background sphere is present, and the non-negativity
constraint has more effect. Nevertheless, the central axis of the 3 disks remains
blurred.

for our data incompleteness function indicates the (minimal)
level of incompleteness that exists at the particular location,
and in a particular direction θ.

Using small test-objects we have given concrete demon-
strations of the effects of data incompleteness in tomographic
reconstruction, and our examples support our claim that these
effects are independent of the image reconstruction algorithm
applied. If the calculated incompleteness value at x in direction
θ is I(x, θ) = k then a small disk phantom made of parallel
disks of unit diameter will be difficult to tomographically
resolve along its axis if their separation is less than k units,
(where the disks are oriented perpendicularly to θ, and cen-
tred at x). Our results demonstrated this behavior over two
very different imaging geometries, and using several different
analytic and iterative reconstruction algorithms.
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Fig. 18. The same transverse slice of a reconstructed storage drum from real
data taken on a circular vertex trajectory (left) and a circle-and-line vertex
trajectory (right). The incompleteness values (in the axial direction) were
much higher for the circular vertex trajectory in this slice. For the circle-and-
line trajectory, all incompleteness values were low. (Images were taken from
[44]; see also [45] and [16] for more information.) See text for explanation
of the features indicated by the white arrows.

Because the metric is only based on sufficiency conditions,
a value of I(x, θ) = 0, meaning “no incompleteness,” is not
an assertion of local data completeness. Sufficient conditions
for data completeness at a given location are much more
complicated and depend on the support of the object being
scanned relative to the cone vertices, as well as the incomplete-
ness values elsewhere in the object. Furthermore, completely
general necessary and sufficient conditions for tomographic
completeness in CB tomography are not yet known.

We emphasize that incompleteness at various (x, θ) of a CB
geometry does not imply that artifacts are inevitable for all ob-
jects and all reconstruction algorithms. It only means that cer-
tain features will be very difficult to reconstruct. In particular
we were not able to accurately reconstruct the features of the
small disk phantoms. In general, the features in question are
likely to be surfaces normal to the direction θ, but the specific
artifacts manifested are liable to depend on the reconstruction
algorithm (how the algorithm handles incomplete data). For
our test objects, a blurring appeared between the disks, but less
obvious artifacts can occur as evidenced by the behavior on
the shell+bubble phantom (fig. 12). A similar but less dramatic
effect of incompleteness in circular CB with real data was
observed with an industrial scan of the contents of a storage
drum. In fig. 18 (left) the lower curved structure appears to
actually intersect with a small disk like object (see bottom
arrow) and also with the second, straighter structure. This
second structure appears as a single piece. A second scan taken
with additional CB projections (a tomographically complete
“circle-and-line” trajectory) revealed that the second structure
was really two pieces, and the first structure was shorter than
appeared in the previous reconstruction. In motion-corrected
helical CT, incompleteness artifacts presented in [31] primarily
consisted of streaks with some blurring of local features.
Incompleteness artifacts can be innocuous, so a calculation
of I(x, θ) throughout the imaging region is recommended, to
anticipate where incompleteness artifacts are likely to occur.

The formula for our incompleteness metric I(x, θ) is sim-
ilar to other metrics that have been suggested for CB data
completeness and incompleteness. We can informally describe

I(x, θ) as “min | tanψi|” where ψi is the angle made by the
ray from x to vertex ai with respect to the plane passing
through x with normal θ. A popular alternative choice is to
take the fraction of all directions θ such that I(x, θ) = 0 as a
heuristic completeness measure at the point x [23], [26], [27],
[28], [29]. It was pointed out in [28] that this metric provided
a necessary completeness condition (which is equivalent to
saying the metric provides a sufficient incompleteness con-
dition). Other variations include averaging | cosψi| over all
(so a value of 1 at location x indicates data completeness)
[24], and taking the maximum value of| sinψi| over all θ
as an incompleteness metric [31]. The metric we propose
here has been previously described in conference proceedings
papers [18], [17], [19], [46] but as a heuristic approach to
defining resolution in tomographic reconstructions. (Although
incompleteness causes a blurring of the test-object features,
we prefer to call this “poor tomographic recovery” rather than
“poor resolution”, because the effect scales with the size of
the object which is not the usual meaning of “resolution.”)
These are the only cases where the stratification according to
θ was maintained, whereas other metrics use an average or
maximum value to compress the θ variable. The advantage
of this stratification is that I(x, θ) provides a quantitative
description of the (best-case) behavior of the reconstructed
test-objects, thereby providing concrete verifiable examples of
what can go wrong when I(x, θ) 6= 0, as our simulations
studies have demonstrated. For example, test-objects 2,3, and 4
in the breast phantom simulation were in roughly the same
location with similar patterns of measured lines, as can be
seen from the polar plots of fig. 7. Any metric that condenses
the angular information would assign very similar values to
these three positions. However, we have demonstrated that
the test-object will behave very differently depending on its
orientation, with test-object 4 having a particularly unfavorable
orientation.

A potential weakness of the I(x, θ) definition is that the
value is determined by the location of a single “best” CB
vertex with angle ψmin. It could be supposed that the positions
of remaining vertices would also affect location incomplete-
ness. For example, at some location x, if all the vertices
provided the same value of ψmin (= min | tanψi|), then
“better reconstruction” might be expected than if the remaining
vertices all had much larger values ψi > ψmin. However,
our experimental simulation show this not to be the case,
and provides a justification for the simple “one best vertex”
approach to defining I(x, θ). For the first simulation geometry
with 60 vertices on a circle, at the location 40 mm above the
centre of the circle (fig. 4), we obtained I(x, θz) = 0.40. In this
case, all 60 vertices had the same minimal angle ψmin. In the
second simulation, position 4 also had I(x, θ) = 0.40, but this
value was determined by only one of the 12 vertices, the other
vertices giving larger values of ψi (see fig. 7, where the 12 dark
bands are different distances from the white “+”). However,
the reconstructed images of the test object consistently had the
same visual quality, when comparing fig. 9 (right) with fig. 14,
or with the various reconstructions of fig. 16 or fig. 17. This
result strongly supports the proposed definition for I(x, θ) that
uses the single best CB vertex, irrespective of the distribution
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of the remaining vertices.
We have noted that test-object 4 of the breast study was

reconstructed with similar blurring behavior to the test-object
at z = 40 mm for the circular study; in both cases, I(x, θ) =
0.40. We also note that the reconstructions of test-objects 2
and 3 in the breast simulations study (fig. 14 left, rows 2 and 3)
showed a similar slight blurring along the axis as that of fig. 9
(left) for the circular study. This blurring is more quantitatively
evident in the axial profile plots shown next to the images. The
incompleteness values were 0.10, 0.075 for the breast study
and 0.10 for the circular study with very different geometric
contributions of the CB projections. The agreement of the
reconstructed images with the incompleteness values also
supports the quantitative nature of the definition of I(x, θ),
and its universal applicability.

When considering a test-object at x of unit-diameter disks
separated by k units, we are claiming that if the incomplete-
ness value I(x, θ) is greater than k then it will be very difficult
to tomographically resolve the test-object along its axis. The
reason is that I(x, θ) > k implies that any measurement line
passing through the axis will be inclined by more than the
angle tan−1 k with respect to the central plane parallel to the
disks, and therefore will pass through both disks. Therefore,
no measurement lines exist that pass between the disks and
intersect the axis of the phantom. On the other hand, it is
geometrically possible for steeper lines to pass between the
disks if they do not pass through the central axis, thus allowing
the outer edges of the test-object to be resolved. For our test
object of diameter 7 mm and separation 2 mm, we have
k = 2/7. However, at 2.5 mm from the axis of the test-
object (1 mm from the edge) the “equivalent” value would be
2/(2
√
3.52 − 2.52)=1/

√
6 ≈ 0.41, so incompleteness values

of I(x, θ) = 0.40 would be compatible with resolving the
outer 1 mm edge of the disks. In figs. 9, 14, 16, 17, the edges of
the test-object (located and oriented such that I(x, θ) = 0.40)
were visibly resolved.

This feature of the disks phantom, of non-uniform response
to incompleteness when moving away from the central axis, is
a disadvantage of this choice of test-object. One possible way
to avoid this non-uniform response would be to use concentric
spherical shells as was applied in [31]. This concentric-
shells phantom has the additional advantage of simultaneously
responding to all directions θ. However, it would be less
obvious to identify how the spacing of the shells would
relate quantitatively to incompleteness values. Furthermore, for
physical experiments, phantoms made of small disks, possibly
with an adjustable spacing, would be much easier to fabricate
for x-ray and SPECT studies.

In summary, we propose a measure of local directional
incompleteness in CB tomography. The incompleteness model
is easily applied because the metric is geometric, based only
on the location of the CB vertices, and assumes ideal CB pro-
jections (no physical effects such as photon counting statistics,
Compton scatter effects) with perfect detector resolution. No
assumptions are made on the physical extent (“support”) of
the object being scanned. Our model describes tomographic
incompleteness both inside and outside the convex hull of the
CB vertices. We have used computer simulations with test

phantoms to quantitatively verify the effects of incompleteness
on reconstructed images. We used two different analytic recon-
struction algorithms and two different iterative algorithms in
our studies. Further verification of this incompleteness model
could include studies with complex patterns of truncated
projections, and experimental studies with real data.
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