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Abstract: This paper proposes a novel kind of Unknown Input Observer (UIO) called Reset Unknown Input Observer (R-UIO)

for state estimation of Linear Time Invariant (LTI) systems in the presence of disturbance using Linear Matrix Inequality (LMI)

techniques. In R-UIO, the states of the observer are reset to the after-reset value based on an appropriate reset law in order to

decrease the L2 norm and settling time of estimation error. It is shown that the application of reset theory to the UIOs in the LTI

systems can significantly improve the transient response of the observer. Moreover, the devised approach can be applied to both

SISO and MIMO systems. Furthermore, the stability and convergence analysis of the devised R-UIO is addressed. Finally, the

efficiency of the proposed method is demonstrated by simulation results.

1 Introduction a new session in reset control theory and gave a significant improve-
ment in the field. They used the state space representation rather than
transfer functions and started to answer such questions [26]. Since
then on, this field has been an appealing research field and a num-
ber of international research groups have been working actively in
this area and it turns to an attractive control design method with a
significant potential for practical applications [27–31]. The stabil-
ity problem and performance issue of the reset control systems is
addressed in [32–36]. Based on the well-posedness of reset instants,
the necessary and sufficient conditions for existence and uniqueness
of solutions is developed in [37]. The problem of the global expo-
nential stability of reset systems is discussed in [38]. A piecewise
quadratic Lyapunov function is used in [39] to deal with the sta-
bility of the reset control systems with uncertain outputs. In [40],
a linear uncertain system with uncertain nonlinear terms is consid-
ered and a robust reset control law is designed but the stability at
reset instances is not discussed. It is worth mentioning that all of the
aforementioned systems can be viewed as nonlinear systems with the
Lipschitz nonlinear term. In [41] and [42], systems with saturations
and nested saturations are considered and quadratic and exponential
stability are investigated in them respectively.

In the same way, a reset observer can be designed by applying
reset mechanism into a traditional observer. A reset observer is a
nonlinear observer consisting of a base observer and a reset law
that resets the states of the observer when some predefined reset
conditions are satisfied. The application of reset observers was first
proposed in [43], in which a new type of adaptive observer is pro-
posed. The designed observer is called Reset Adaptive Observer.
In this observer, the integral term has been substituted by a reset
element. In [44], an optimal reset adaptive observer is designed,
in which the observer parameters are chosen by solving an opti-
mization problem. In this observation scheme, the reset conditions
are zero crossing and sector condition. Furthermore, reset observers
have been improved and extended to nonlinear systems, Multi Input
Multi Output systems, and time-varying delayed systems [45, 46].
Besides, an adaptive reset observer method is proposed in [47] and a
reset observer based on the delay-dependent approach is developed
in [48]. A single Lyapunov function is considered for stability anal-
ysis because the closed-loop error dynamics is hybrid, the Lyapunov
function in both flow set and jump set should be decreasing. Note
that this approach is very conservative. For obtaining less conserva-
tive results, piecewise Lyapunov functions are used, in this approach,

The art of unknown input observer design for state estimation of 
systems with unknown inputs have attracted many attentions in the 
past decades. The problem of design a full-order observer for linear 
systems subject to unknown inputs has been investigated in [1] and 
[2]. Besides, some research on the reduced order types can be found 
in [3–6]. The existence of a UIO is investigated in [2–5, 7–9], and 
the necessary and sufficient conditions are presented. Reduced order 
UIO can be designed using a systematic procedure. In this procedure, 
the state vector is partitioned into two parts using a linear transforma-
tion. Unknown Input directly affects one part and has to be measured 
completely and the reduced order UIO, which is decoupled from the 
input, is used to estimate the other part [10]. The practical systems 
include unknown inputs such as the parameter perturbation [11], 
actuator faults and external disturbance [12] wherein the industrial 
process all can be viewed as UIs. Therefore, the discussions on UIO 
design are very important in both theory and applications, especially 
in the fields of observer-based control [13, 14]. The performance of 
the UIOs in the presence of uncertainty and disturbance are outstand-
ing [15–17]. Therefore, researchers have developed many different 
kinds of UIO. In [18] Linear Matrix Inequalities are used to design 
a full-order nonlinear UIO for a class of nonlinear Lipschitz systems 
with unknown input. Moreover, a reduced order UIO for one-sided 
nonlinear Lipschitz system is proposed in [19]. Considering uncer-
tainties in the model, a robust UIO for fault detection using linear 
parameter varying model is investigated in [20].

On the other hand, several control strategies are developed for 
dynamical systems in the past decades. However, most of them suffer 
from having oscillatory transient responses [21–23]. In order to mit-
igate this issue and overcome the fundamental limitations of linear 
controllers, the idea of reset control theory, in which a reset mecha-
nism on the states of the controller is introduced, can be utilized. The 
idea of reset control originates from the Clegg Integrator (CI) which 
is aimed at overcoming the disadvantages of the traditional integra-
tors. The state of CI is reset to zero when the input crosses zero [24]. 
This idea is extended to the first order element and the First Order 
Reset Element (FORE) is developed [25]. However, answering the 
basic questions about well-posedness and stability has been the main 
problem in further developments of the reset control, for several 
years. In the late 1990s, the works of Chait, Hollot et al. initiated
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each Lyapunov function is only needed to be decreasing in a region
of the state space. As a result, less conservative stability analysis
results are obtained. In [48] a Proportional-Integral observer is used
and reset strategy is applied to the observer for fault detection pur-
poses. The conventional reset law (zero crossing) and after reset
value (jump to zero) is used and the results demonstrate that the fault
estimation and the residual convergence to zero can be strikingly
improved.

In this paper, reset strategy is extended to the UIO and a novel sort
of UIOs called Reset UIO is proposed. A suitable after-reset value
along with a proper jump sector is obtained using LMI approach.
Furthermore, the stability analysis for the reset error dynamics is
given. A R-UIO is designed in two steps wherein the first step, for
our main purpose we characterize the case assuming that all the sys-
tem states are available. Then, the reset law is designed by LMI and
the parameters are obtained. In the second case, it is assumed that
only the outputs are available but the bounds on the estimation errors
are known and the R-UIO is designed. It has been shown that exploit-
ing the reset mechanism in the UIO can improve the performance of
the observer.

The remainder of the paper is organized as follows: in Section
2, conventional approach of designing the base UIO is investigated.
In Section 3, the reset UIO in the ideal case is designed first and
then the non-ideal case is presented and stability analysis is provided.
In Section 4, simulation results are displayed to validate the perfor-
mance of the proposed observation strategy. Finally, the concluding
remarks are provided in Section 5.

2 Conventional UIO (C-UIO)

Consider the system:

{

ẋ = Ax+Bu+Dv
y = Cx

(1)

where x ∈ IRn, u ∈ IRq , v ∈ IRm and y ∈ IRp are the state vector,
known input vector, unknown input vector and output of the system
respectively. A,B,C and D are known matrices with appropriate
dimension. Without loss of generality, it is assumed that D is of full
column rank [8].

For the state estimation of the aforementioned system a full-order
C-UIO can be defined as

{

Ż = NZ +Gu+ Ly
x̂ = Z − Ey

(2)

where Z ∈ IRn is the state of this full-order observer, x̂ ∈ IRn is
the estimated state vector and N,G,L, E are design matrices for
unknown input decoupling goal and other required performances.
The parameters of the C-UIO can be obtained using [18]:



















N = MA−KC
G = MB
L = K(I + CE)−MAE
M = I + EC
MD = 0

(3)

It is assumed that rank(CD) = rank(D) and the pair (C,MA) is
detectable. Using the last equation in (3), E can be obtained as

E = −D(CD)+ + Y (I − (CD)(CD)+)

in which, (CD)+ is defined as (CD)+ = ((CD)T (CD))−1(CD)T

and Y is a free tunable parameter that can be used to improve the
performance, and K is a chosen such that N is Hurwitz [8].

Defining the estimation error as

e = x̂− x

the continuous error dynamics can be obtained as

ė = ˙̂x− ẋ = Ne

The above error dynamics indicates that the estimation error con-
verges asymptotically to zero and thus x̂ −→ x.

In the next section, the reset theory is used to introduce a nonlin-
ear observer which can reduce the L2 norm and settling time of the
estimation error.

3 Reset UIO (R-UIO)

In this section, R-UIO which is a novel kind of UIO is proposed
to estimate the states more rapidly and accurately. The design steps
are divided into two cases. In the first case which is called R-UIO
with full-state measurement (or ideal case), it is assumed that all the
system states can be measured. Then, this case is extended to the
second approach named R-UIO with partial state measurement (or
non-ideal case) in which only the outputs are available.

3.1 R-UIO with full-state measurement

In this part reset action is added to the C-UIO to improve the
performance of the observer. Thus, the R-UIO can be formulated
as







Ż = NZ +Gu+ Ly
x̂ = Z − Ey
ŷ = Cx̂







if e ∈ F

{

Z+ = (M −AREC)Z − (I − AR)MEy
x̂+ = Z+ − Ey

}

if e ∈ J

(4)

in which AR is the after reset matrix, F = {e ∈ IRn|eTFe ≥ 0}
is the flow set and J = {e ∈ IRn|eTFe ≤ 0} is the jump set and
as soon as e ∈ J jump will happen. It’s worth noting that F and
AR will be obtained by solving some inequalities. Note that in the
defined R-UIO, it is assumed that all the system states are required
to define the jump set. This assumption is just used for this step to
obtain the design parameters which will be used later.

For the discrete error dynamics one has

e+ = x̂+ − x

= Z+ − Ey − x = Z+ − (I + EC)x (5)

substituting Z+ from (4) results in

e+ = (M − AREC)Z − (I −AR)MECx− (I + EC)x (6)

using Z = x̂+ ECx implies that

e+ = M(x̂+ ECx)− AREC(x̂+ ECx)

−MECx+ ARMECx−Mx (7)

simplifying the equation leads to

e+ = Me− ARECx̂+ ARECx (8)

adding and subtracting ARe, e+ can be obtained as

e+ = Me−AR(I + EC)e+ ARe

= (AR −ARM +M)e. (9)

IET Research Journals, pp. 1–10
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Therefore, defining H = AR − ARM +M , the error dynamics
can be written as

{

ė = Ne if e ∈ F
e+ = He if e ∈ J

(10)

Based on reset error dynamics the following theorem on the
convergence of R-UIO can be stated:

Theorem 1. For the system (1), if there exists symmetric matrices
P > 0,F and matrix Q and constants λf , τf , τj , τw > 0 and 0 <
λj ≤ 1 such that

NTP + PN + λfP + τfF < 0 (11a)
[

λjP + τjF (Q−QM + PM)T

Q−QM + PM P

]

≥ 0 (11b)

HTFH + τwF > 0 (11c)

the error dynamics is well-posed and the R-UIO given by (4) makes
the error converges to zero asymptotically for any initial condition.

Proof:
To prove the quadratic stability, consider the following Lyapunov

function:

V (e) = eTPe (12)

where P = PT > 0. The error dynamics (10) is stable asymptoti-
cally if:

{

V̇ (e) < −λfV (e) if eTFe ≥ 0

V (e+) ≤ λjV (e) if eTFe ≤ 0.
(13)

The continuous error dynamics inequality in (13) can be rewritten as

ėTPe+ eTP ė < −λfe
TPe

(Ne)TPe+ eTP (Ne) < −λfe
TPe

eT (NTP + PN + λfP )e < 0 (14)

if eTFe ≥ 0 holds. Using the S-procedure and taking eTFe ≥ 0
into account results in

NTP + PN + λfP + τfF < 0, τf ≥ 0 (15)

Similarly for the discrete error dynamics it is stated that

V (e+)− λjV (e) ≤ 0

(He)TP (He)− λje
TPe ≤ 0

eT (HTPH − λjP )e ≤ 0

HTPH − λjP ≤ 0 (16)

when eTFe ≤ 0 is satisfied, and with the aid of S-procedure the

condition eTFe ≤ 0 can be added to (16) as

HTPH − λjP − τjF ≤ 0 (17)

Using the Schur complement lemma the inequality (17) can be
rewritten as

[

λjP + τjF HT

H P−1

]

≥ 0 (18)

pre and post multiplying (18) by

[

I 0
0 P

]

results in

[

λjP + τjF HTP
PH P

]

≥ 0. (19)

Replacing H in the (19) results in

[

λjP + τjF AT
RP −MTAT

RP +MTP
PAR − PARM + PM P

]

≥ 0

(20)

The inequality (20) is not linear since it contains multiplication
of unknown parameters P and AR. Therefore, using the variable
change Q = PAR, one gets

[

λjP + τjF (Q−QM + PM)T

Q−QM + PM P

]

≥ 0 (21)

Moreover, for the well-posedness of the system it is required that
after a jump, the error trajectory jumps out of the jump set i.e:

(e+)TF (e+) > 0 if eTFe ≤ 0 (22)

thus, using S-procedure

HTFH + τwF > 0 (23)

must holds and this completes the proof. �

Remark 1. It’s worth mentioning that the inequality (23) is checked
a posteriori, in practice. It means that as H and F are obtained
previously in (11a) and (11b), if there is τw such that the inequality
(23) holds then the system is well-posed and in this case, the reset
will be applied to the system.

As it has been mentioned before, the ideal case is considered to
design the matrices F , P and AR. It means that if all the states
are available the mentioned matrices can be obtained by solving the
LMIs (11a) and (11b). But the problem with the designed R-UIO
in (4) is that the flow and jump sets depend on the estimation error
e which is not available in general. Moreover, in this observer, the
inequality (23) should be checked a posteriori and it may not be
satisfied in some cases.

3.2 R-UIO with partial state measurement

So far it has been assumed that all the states can be measured
to design the reset law parameters. Although the estimation errors
are available, this is not the case since only some of them can be
measured in practice and an observer is designed to estimate the
unmeasured states. The problem in the ideal case formulation is that

the error is used to decide whether jump happens or not (eTFe ≤ 0),
but it is not available in general. To cope with this problem assume
that error bounds are available instead of the exact error and use these
bounds to decide about jump instants.

Assumption 1. Suppose that a polytope S ⊂ IRn is known such that
e(t0) ∈ S . Denote with evi its vertices and i = 1, .., Nv where Nv

is the number of vertices.

Remark 2. Assumption 1 could be relaxed to just suppose to know
a bound on e(0). In fact, if a general non-polytopic boundary set is
known (for instance, a bound on the norm) then it is possible to find
a polytope including the boundary set.

IET Research Journals, pp. 1–10
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Note that Assumption 1 implies that e(0) is the convex com-
bination of evi , i.e. ∃αvi ≥ 0 such that e(0) =

∑

i αvievi and
∑

i αvi = 1. Remember that from Assumption 1 it is supposed that
the vertices of the bounding set containing the e(0) are known. Given
a vertex as the initial condition and the set of reset instants then this
provides a trajectory which we call evi(t). Our objective is to give a
criterion such that

1. e(t) ⊆ conv{evi(t)} for t ∈ IR+ and
2. All the trajectories evi(t) are bounded and converge to 0.
Thus, the convergence of them results in the convergence of the

real error. Therefore, it is necessary to design an appropriate reset
law such that the stability of observer is guaranteed.

For example, suppose that only one of the states is not available
but the error bounds are known, let’s say the estimation error of this
state is in the interval [ev1 , ev2 ]. Starting from the vertices ev1 and
ev2 results in two error trajectories ev1(t) and ev2(t) (dash-lines in
Figure 1). Suppose that jump happens at t2, at this moment although
the trajectory ev2(t) is inside the jump sector, the trajectory ev1(t)
is outside and in this case stability is not guaranteed.

On the other hand, suppose that the jump set is J = {e ∈
IRn|eTFe ≤ 0} and reset will happen when ev1 , ev2 ∈ J . This
means that both error trajectories should be inside the jump sector,
and jump happens at t1. Even in this case, the convergence of e(t)
might not be satisfied. Since the behavior of the ev2(t) while flowing
in the jump set in the interval t1 − t2 is not known and if the reset
happens in a wrong moment it may destabilize the system.

An example is given to demonstrate the importance of choosing
the right jump moment even if there is only one single vertex and all
the states are measured.

-4 -3 -2 -1 0

X
1

-4

-2

0

2

4

X
2

Fig. 1: boundary trajectories and jump sector

Illustrative example: Consider the second order reset system
given by







ė = Ne if e ∈ F
e+ = He if e ∈ J

e(0) = [−15, 10]T
(24)

in which

N =

[

−0.1 1
−1 −0.1

]

,H =

[

0 0.4
−2 0

]

, F =

[

0 1
1 0

]

and F = {e ∈ IRn|eTFe ≤ 0}, J = {e ∈ IRn|eTFe ≥ 0}. In
this example, the error trajectory starts from the initial condition and
the wrong jump happens when the trajectory is inside the jump sec-
tor and |e2| = 0. In Figure 2 the phase portrait and the Lyapunov

function V = eTPe with P =

[

1.3296 0
0 0.2924

]

of the system

demonstrate that a wrong jump instant in the jump set can desta-
bilize the system. Therefore, it’s very important to choose the jump
moment carefully. It is worth mentioning that since the initial con-
dition is known there is just one vertex corresponding to this initial
condition and consequently there is just one error trajectory.

An additional constraint is needed to overcome the aforemen-
tioned problem to guarantee the asymptotic stability of the error
dynamics. The next Theorem addresses this issue.

Theorem 2. Consider the reset system

{

ė(t) = Ne(t) if t /∈ TR
e(t+) = He(t) if t ∈ TR

(25)

in which

TR ∈ {{tk}
N
k=0 : tk > tk−1,N ∈ N ∪ {∞}} (26)

is the reset times sequence. If the function V (e) = eTPe satisfies
the inequalities (11a) and (11b) of Theorem 1 and TR is such that

V (e(t−k )) ≤ (1− ǫ)V (e(τk)) ∀tk ∈ TR (27)

with ǫ ∈ (0, 1) and

τk = min{t ∈ IR+|e(t)TFe(t) ≤ 0, t ≥ tk−1} (28)

holds and e(t−
k
)Fe(t−

k
) ≤ 0 for all tk ∈ TR then the system (25) is

asymptotically stable.

Proof: Note that besides the function V (e) = eTPe obtained from

the Theorem 1, a Lyapunov function Vn(e) = eTPne exists for

the nominal system such that V̇n ≤ −λnVn for λn ≥ 0 since the
system is detectable.

−50 0 50
−100

0

100

e1

e 2

J

FJ

C

(a) Phase portrait

0 2 4 6 8
0

2,000

4,000

6,000

8,000

time(s)

(b) Lyapunov Function

Fig. 2: Destabilizing the system with wrong jump moment
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Fig. 3: level sets of V and Vn

To assert asymptotic stability, we first prove the inequalities

V (e(t)) ≤ βV (e(t+k−1)) ∀t ∈ (tk−1, tk) (29)

V (e(t+k )) ≤ λj(1− ǫ)V (e(t+k−1) (30)

with β defined as

β = max
e∈εn(γ)

V (e) (31)

in which

γ = max
e∈ε(1)

Vn(e) (32)

ε(α) = {e ∈ IRn|V (e) ≤ α} (33)

εn(α) = {e ∈ IRn|Vn(e) ≤ α}. (34)

To prove (29), note that from the definition of β and γ it can be
inferred that ε(β) ≥ εn(γ) ≥ ε(1). An illustrative example of the

sets is given in Figure 3. Since V̇n ≤ −λnVn, any trajectory start-
ing in εn(γ) at t = t0 stays in εn(γ) for all t ≥ t0 while flowing.
Therefore, it also remains in ǫ(β) between two jumps. As a result,

considering V (t+
k−1) = V̄ one has V (t) ≤ βV̄ for t ∈ (tk−1, tk).

After a jump, because of the (11b), V is decreasing again, and
consequently, the error cannot go further than ε(β) and remains
bounded when starting in ε(1). Due to the homogeneity, this reason-
ing can be extended to other level sets leading to (29) when flowing.

To prove (30), two possibilities should be considered:
1. After a jump, the error trajectory is in the flow set. In this case one
has

V̇ ≤ −λfV t ∈ (t+k−1, τk) (35)

from the definition of τk in (28), resulting in

V (e(τk)) ≤ e−λf (τk−tk−1)V (e(t+k−1)). (36)

Since by construction one has (27) and

V (e(t+k )) ≤ λjV (e(t−k )) (37)

holds from (11b), hence,

V (e(t+k )) ≤ λj(1− ǫ)V (e(τk)) (38)

Since −λf is negative e−λf (τk−tk−1) ≤ 1 and therefore, (38) and
(36) result in

V (e(t+k )) ≤ λj(1− ǫ)V (e(τk))

≤ λj(1− ǫ)e−λf (τk−tk−1)V (e(t+k−1))

≤ λj(1− ǫ)V (e(t+k−1)) (39)

It should be noted that in this case there is no Zeno solution since
after a jump there is always flowing.

2. If the error trajectory jumps in the jump sector. In this case,

τk = t+
k−1 and then e−λf (τk−tk−1) = 1. Hence from (39)

V (e(t+k )) ≤ λj(1− ǫ)V (e(t+k−1))

Principally, in this case there could be Zeno solution. However, since

ǫ > 0 and from (27), t−
k

> τk . Hence there is always flowing before
next jump and therefore Zeno cannot happen.

From (29) and (30) V (e(t)) ≤ βV (e(0)) is true which implies
stability. Moreover, (30) implies attractivity and from this asymp-
totic stability is inferred.

�

This Theorem shows that at the reset moment tk the error trajec-

tory should be inside the sector (e(t−
k
)Fe(t−

k
) ≤ 0) and the value

of the function V should be less than its value at the instant τk .
Furthermore, TR is a set of strictly increasing instants of all jumps.

Remark 3. The proof of the Theorem 2 is valid for both finite and
infinite N . If N is finite, from (29) and (30) the system states remains
bounded and after the last jump since the nominal error dynamics is
asymptotically stable, the error will go to zero asymptotically. Simi-
larly, if N is infinite, since (29) and (30) hold for every tk, k → ∞,
the system (25) is asymptotically stable.

Remark 4. Inequality (27) guarantees that before the next jump
there is a positive time interval of flow which means that there is no
Zeno solution and system is well-posed.

Notice that τk is the first instant that the error trajectory enters the

jump sector after the k − 1th jump. If it leaves the sector without
any jump, the τk is held until a jump happens. After that, a new value
for the τk should be considered. Moreover, tk is obtained when the
error trajectory is inside the jump sector and the jump condition is
satisfied. It should be noted that if after a jump, the error trajectory
is again inside the jump sector then τk+1 is equal to tk . Therefore,
tk−1 ≤ τk < tk

In the Theorem 2, a reset law is proposed to guarantee the bound-
edness and convergence of a given trajectory. Since many trajectories
generated by evi as initial condition are considered, it is necessary
to impose that not only the reset law of Theorem 2 is satisfied, but
also e(t) ⊆ conv{evi(t)}. The next Theorem addresses this issue.

Theorem 3. Suppose Assumption 1 holds and with V satisfying
(11a) and (11b), the reset system (25) with reset times sequence TR
is such that

τki
= min{t ∈ R

+|evi(t)
TFevi(t) ≤ 0, t ≥ tk−1} (40)

V (evi(t
−
k )) ≤ (1− ǫ)V (evi(τki

)) ∀tk ∈ TR, ǫ > 0 (41)

for all i = 1, ..., Nv , then the reset system (25) is asymptotically
stable.

Proof: First note that Assumption 1 implies that e(0) is a convex
combination of vi.

if t /∈ TR, then from ė(t) = Ne(t) while flowing for all t ∈
[tk−1, tk)

e(t) = eNte(t+k−1)

e(t) = eNt(αv1ev1(t
+
k−1) + αv2ev2(t

+
k−1) + ...+ αvievi(t

+
k−1))

e(t) = αv1(e
Ntev1(t

+
k−1)) + αv2(e

Ntev2(t
+
k−1)) + ...

+ αvi(e
Ntevi(t

+
k−1))
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Therefore, e(t) is also a convex combination of the error trajectories.
Similarly if t = tk, thus t ∈ TR then

e(t+k ) = He(t−k )

e(t+k ) = H(αv1(e
Ntev1(t

−
k )) + αv2(e

Ntev2(t
−
k )) + ...

+ αvi(e
Ntevi(t

−
k )))

e(t+k ) = αv1(HeNtev1(t
−
k )) + αv2(HeNtev2(t

−
k )) + ...

+ αvi(HeNtevi(t
−
k ))

Moreover, according to Theorem 2 since each error trajectory evi(t)
converges to zero and since e(t) is in the convex hull of the all tra-
jectories evi(t) it will converges to zero also and this completes the
proof. �

This Theorem states that the jump happens for all the trajectories
evi(t) at the same instant tk in which the jump condition (41) is sat-
isfied. Hence, it can be seen that whether flowing or jumping the real
error is a convex combination of the error trajectories and converges
to zero.

4 Simulation

In order to show the effectiveness of the proposed method a numer-
ical example is considered [8, 18]. For a fair comparison, C-UIO is
designed to be optimal (using LQR method), the goal is to show that
the proposed R-UIO outperforms the optimal C-UIO.

Consider the system (1) with

A =





−1 1 0
−1 0 0
0 −1 −1



 , B =





0
0
1



 , C =

[

1 0 0
0 0 1

]

, D =





−1
0
0



 ,

using the LQR method with weighting matrices equal to identity, the
observer gain, K is obtained as

K =





1.2926 0.3638
−0.7654 −1.0076
0.3638 0.9830





choosing

Y =





1 1
1 1
1 1





and using (3), the observer parameters can be calculated as

E =





−1 1
0 1
0 1



 , N =





−1.2926 −1.0000 −1.3638
−0.2346 −1.0000 0.0076
−0.3638 −2.0000 −2.9830





G =





1
1
2



 , L =





0 4.0202
−1.0000 0.2194

0 6.3297



 ,M =





0 0 1
0 1 1
0 0 2





with these parameters, the design of optimal C-UIO is completed.
Now, to obtain the matrices P , F and AR, the ideal R-UIO should

be designed by solving the inequalities (11a) and (11b) of Theorem
1. It worth noting that, λf , λj , τf and τj are unknown and result
in multiplication of parameters. Therefore, to solve these inequali-
ties, a change of variable is used to remove one of them. Consider
τfF = F̄ thus, τjF can be replaced with

τj
τf

F̄ = τ̄j F̄ . It is the same

as letting τf = 1 and solving the inequalities. Since an analytical
solution for the optimal value of the unknown parameters can’t be
obtained, a numerical approach is used to find the suboptimal solu-
tion. To deal with this, a grid is considered for λf , λj and τj , then
the inequalities are solved at each point of the grid to obtain a feasi-
ble solution. Thus, many feasible, but sub-optimal solutions may be
obtained and a criterion is needed to choose the best one.

Consider λfif
= 0.1 + if∆λf

,∆λf
= 1, λjij = 0.1 + ij∆λj

,

∆λj
= 0.1, τjiτ = 0.1 + iτ∆τj ,∆τj = 1 and if , ij , iτ < 10 as

natural numbers. Now, the inequalities in Theorem 1 with the
remaining parameters are linear and can be solved using LMI tech-
niques. Solving the LMIs result in 20 feasible solutions which are
shown in Table 1. As can be seen from Figure 4 the sector size is
directly related to the λf and λj . This means that, in a fixed τj , big-
ger λf and λj result in a bigger sector which in turn increases the
jump probability.

Now to find the sub-optimal solution, a Monte-Carlo simulation
has been run for all the feasible solutions with two performance crite-
ria to evaluate them. The first one is the L2 norm of the error and the
second one is the settling time (2%) of the error. The fifth and sixth
rows of Table 1 show the percentage of improvement (more than
1 percent) of the mentioned measures in the R-UIO in comparison
with the C-UIO. Table 1 indicates that there are 20 feasible solutions
and the best solution in the sense of improving both L2 norm and
settling time of the error is the last entry. Therefore, the correspon-
dent λf = 1.1, λj = 0.8 and τj = 1 is chosen and the simulation is
continued. In this case, the related parameters will be obtained as

F =





−0.4090 0.2892 0.4246
0.2892 0.7555 0.7758
0.4246 0.7758 0.9560





P =





1.1029 −0.1262 −0.3658
−0.1262 1.1057 0.1314
−0.3658 0.1314 0.6295





AR =





−0.0009 1.0000 0.0000
0.1295 0.3264 0.0000
−0.0031 2.0019 0.0000





Remark 5. The matrix F should be chosen such that it is neither
positive definite nor negative definite in order to represent a sector.

The next step is to define a suitable reset law which results
in more improvement in the settling time and L2 norm of the
error. It should be reminded that in this example the state x2 is
not measured but its bound are known and therefore the boundary

error trajectories are used. Notice that eTFe ≤ 0 is equivalent to

max(eTv1(t)Fev1(t), e
T
v2(t)Fev2(t)) < 0 and we can replace this

part of the condition, which is additional to the condition on τk, with
others defined in (42). Although the first one is the only reset law for
which asymptotic stability is proved, it is slightly conservative. Thus,
to relax it some other reset laws are defined without stability proof.

max(eTv1(t)Fev1(t), e
T
v2(t)Fev2(t)) < 0 (42a)

eTv1(t)Fev1(t) + eTv2(t)Fev2(t) < 0 (42b)

max(eTv1(t)Fev1(t), e
T
v2(t)Fev2(t)) < ||[ev1(t), ev2(t)]||2e

−t

(42c)
{

eTv1(t)Fev1(t) + eTv2(t)Fev2(t) < ||[ev1 (t), ev2(t)]||2, k = 1

eTv1(t)Fev1(t) + eTv2(t)Fev2(t) < 0, k 6= 1
(42d)

The general concept of the other reset laws lies in the fact that
although all the vertices may not be inside the jump sector, a
jump could lead to speed up the convergence, although asymptotic
stability guarantee is lost.

The second reset law comes from the fact that the summation of
the error trajectories should be inside the sector, not both of them. It
means that reset may happen when only a single error trajectory is
inside the sector not all of them.

In the third reset law, the jump sector is expanded according to
the norm of the error and it is exponentially decreasing to reach the
first reset law. It is motivated by observing that a bigger jump sector
and hence more jump probability may improve the response more.
Finally, the 4th reset law is the same as the second except that the
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Fig. 4: Jump sector

first reset may happen more quickly and leads to more improvement
in the results.

As mentioned before, since e2 is not available in this example,
assume that it lies in an uncertainty interval thus, use the two bound-
ary trajectories instead of the unknown parameter and construct the
reset laws based on these trajectories (Figure 1).

The results of the reset laws in (42) are shown in Table 2. In this
table, the improvement of different reset laws is divided into 5 sub-
categories to check the improvement amount. For example, in the
first reset law, 57.2% of the improvements of the L2 norm are less
than 20 % and so on. The last column means that for example with
the first reset condition regarding all the initial conditions, 21.33%
improvement in ||e||2 and also 24.03% improvement in the settling
time is achieved. Based on this table, we can see that the 3rd reset
law on average is better than the others. It should be mentioned that
in all cases the initial condition of the observer is zero and the initial
condition of the system is a random number such that ||x||∞ ≤ 20.

Using the first reset condition, the state estimation and the estima-
tion errors in both C-UIO and R-UIO are shown in the Figure 5 and

Figure 6 respectively. As can be seen, after the first reset the estima-
tion error is reduced significantly. Figure 7 shows the correspondent
jump sector, Lyapunov function and the root of the square error. In
Figure 7a there are two error boundary trajectories associated with
the two outer bounds of initial condition and the starting point is
marked with a star. In the first reset condition, when both of the tra-
jectories are inside the sector, i.e max(eTv1Fev1 , e

T
v2Fev2) ≤ 0 and

also the inequality (27) is satisfied the jump will happen. With this
jump, as it is depicted in Figure 7b and 7c a significant decrease in
the Lyapunov function and in the square root of error is seen.

A quantitative comparison of these 4 reset laws with the same
initial condition (x1 = −5, x2 ∈ [−5, 5], x3 = 10) is done in Table
3. In this table, the first instant of the jump, L2 norm and settling
time (2%) of error is calculated. As the table shows, all the proposed
reset laws outperform the C-UIO which in turn, demonstrates the
effectiveness of exploiting the reset in the UIO.

Table 1 choosing λf , λj and τj

Feas.Sol 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

λf 0.1 0.1 1.1 0.1 0.1 0.1 1.1 0.1 1.1 1.1 0.1 1.1 1.1 0.1 1.1 1.1 1.1 1.1 1.1 1.1
λj 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.8
τj 9 10 1 1 9 10 1 1 1 2 1 1 2 1 1 2 1 2 1 1

||e||2 0.1 0.2 2.7 8.7 1.1 1.1 14.4 12.2 27.6 19.3 19.3 39.8 25.8 23.9 45.6 35.3 53.8 42.2 62.6 67.5
Tsettling 0.1 0.2 19.9 23.4 3.7 1.5 56.7 33.9 76.7 54.1 50.5 95.9 71 56.9 98.2 88.3 99.3 96.6 99.6 99.8

Table 2 The effect of different reset laws on performance indices

Reset law
0%-20% 20%-40% 40%-60% 60%-80% 80%-100% average

||e||2 Tstl ||e||2 Tstl ||e||2 Tstl ||e||2 Tstl ||e||2 Tstl ||e||2 Tstl

1 57.20 39.30 24.90 52.00 8.60 8.30 4.90 0.40 4.40 0 21.33 24.03
2 54.30 24.40 23.80 67.20 12.30 7.00 6.00 1.10 3.60 0.3 23.19 25.51
3 45.00 1.50 32.10 60.20 10.30 36.40 7.10 1.80 5.30 0 27.73 38.80
4 54.20 30.40 23.80 57.80 9.90 9.60 5.40 1.20 5.80 0.70 26.28 25.90
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Table 3 Comparison of different reset laws

1st reset law 2nd reset law 3rd reset law 4th reset law Conv-UIO

T1stReset(s) 0.236 0.182 0.193 0.148 -
√∫

∞

0
eT edt 5.1992 4.8050 5.1783 4.3270 8.1944

Settling time (2%) 3.356 3.106 4.229 3.071 6.715
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Fig. 5: State estimation with the first reset law
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Fig. 6: Estimation error with the first reset law
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(a) Jump sector and error trajectory
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Fig. 7: Jump sector, Lyapunov function and error function

5 Conclusion

In this paper, Reset Unknown Input Observer was proposed where
the states of the observer are reset to a suitable value based on
a time-dependent reset law. Design starts with an ideal case and
a jump sector was obtained. Then, in non-ideal case we used the
boundary error trajectories to determine the reset times. Moreover,
the stability and convergence analysis showed that the estimation
error converged to zero asymptotically. Furthermore, we exploited
a simulation example to demonstrate the efficiency of using the
reset in the UIO to decrease the L2 and settling time of estima-
tion error. Moreover, to relax the conservatism of the proposed

reset law, we presented some other reset laws. Although such reset
laws may perform nicely in some cases, there is no rigorous stabil-
ity proof for them. The focus of our future work is on developing
less conservative reset laws with stability proof using the presented
R-UIO.

6 References

1 F. Yang and R.W Wilde. Observers for linear systems with unknown inputs. IEEE

Transactions on Automatic Control, 33(7):677–681, 1988.

2 M. Darouach, M. Zaadzinski, and S. Xu. Full-order observers for linear systems

with unknown inputs. IEEE Transactions on Automatic Control, 39(3):606–609,

1994.

3 P. Kudva, N. Viswanadham, and A. Ramakrishna. Observers for linear systems

with unknown inputs. IEEE Transactions on Automatic Control, 25(1):113–115,

1980.

4 Y. Guan and M. Saif. A novel approach to the design of unknown input observers.

IEEE Transactions on Automatic Control, 36(5):632–635, 1991.

5 M. Hou and P. Muller. Design of observers for linear systems with unknown inputs.

IEEE Transactions on Automatic Control, 37(6):871–875, 1992.

6 G. Duan and R.J Patton. Robust fault detection using luenberger-type unknown

input observers-a parametric approach. International Journal of Systems Science,

32(4):533–540, 2001.

7 J. Chen, R.J Patton, and H. Zhang. Design of unknown input observers and robust

fault detection filters. International Journal of Control, 63(1):85–105, 1996.

8 J. Chen and R.J. Patton. Robust Model-Based Fault Diagnosis for Dynamic Sys-

tems. The International Series on Asian Studies in Computer and Information

Science. Springer US, 2012.

9 D. Koenig and S. Mammar. Design of a class of reduced order unknown inputs

nonlinear observer for fault diagnosis. In American Control Conference, 2001.,

volume 3, pages 2143–2147. IEEE, 2001.

10 M. Corless and J. Tu. State and input estimation for a class of uncertain systems.

Automatica, 34(6):757–764, 1998.

11 T. Park and D. Kim. Design of unknown input observers for linear systems with

unmatched unknown inputs. Transactions of the Institute of Measurement and

Control, 36(3):399–410, 2014.

12 P.P Menon and C. Edwards. A sliding mode observer for monitoring and fault

estimation in a network of dynamical systems. International Journal of Robust

and Nonlinear Control, 24(17):2669–2685, 2014.

13 J. Yang, J. Su, S. Li, and X. Yu. High-order mismatched disturbance compensation

for motion control systems via a continuous dynamic sliding-mode approach. IEEE

Transactions on Industrial Informatics, 10(1):604–614, 2014.

14 W. Kim and C.C Chung. Robust output feedback control for unknown non-linear

systems with external disturbance. IET Control Theory & Applications, 10(2):173–

182, 2016.
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