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Konrad Żo lna1,∗,† , Thibault Asselborn2,∗ , Caroline Jolly3,∗ ,
Laurence Casteran4, Marie-Ange Nguyen-Morel4, Wafa Johal2, and Pierre Dillenbourg2

1Jagiellonian University, GMUM
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Abstract

Handwriting disorder (termed dysgraphia) is a far
from a singular problem as nearly 8.6% of the popu-
lation in France is considered dysgraphic. Moreover,
research highlights the fundamental importance to
detect and remediate these handwriting difficulties
as soon as possible as they may affect a child’s entire
life, undermining performance and self-confidence in
a wide variety of school activities.
At the moment, the detection of handwriting difficul-
ties is performed through a standard test called BHK.
This detection, performed by therapists, is laborious
because of its high cost and subjectivity. We present
a digital approach to identify and characterize hand-
writing difficulties via a Recurrent Neural Network
model (RNN). The child under investigation is asked
to write on a graphics tablet all the letters of the
alphabet as well as the ten digits. Once complete,
the RNN delivers a diagnosis in a few milliseconds
and demonstrates remarkable efficiency as it correctly
identifies more than 90% of children diagnosed as dys-
graphic using the BHK test.
The main advantage of our tablet-based system is
that it captures the dynamic features of writing –
something a human expert, such as a teacher, is un-
able to do. We show that incorporating the dynamic

∗Contributed equally
†Corresponding author, konrad.zolna@gmail.com

information available by the use of tablet is highly
beneficial to our digital test to discriminate between
typically-developing and dysgraphic children.

1 Introduction

Even in the era of digital learning, handwriting
is still a critical element of early childhood edu-
cation. Handwriting is a complex task involv-
ing cognitive, perceptual, attentional, linguis-
tic, and fine motor skills [11, 21, 46]. In France,
children learn to write cursively around the age
of 5 (preschool) and complete their handwrit-
ing mastery around ten years later [1, 63]. Dur-
ing learning, handwriting evolves both at qual-
itative (letter shapes and legibility) and quan-
titative levels (speed) [1, 10, 56]. In a constant
search for efficiency, handwriting progressively
becomes automated thanks to motor programs,
which allow the motor control system to pro-
duce integrated movements. These programs ap-
pear around the age of 8, and it is generally
admitted that automation is complete around
the age of 14 [10, 13, 21, 56, 61, 63]. A signifi-
cant breakthrough during recent decades in the
study of handwriting came from the development
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of graphics tablets and dedicated software, which
enables the high-frequency sampling and subse-
quent analysis of handwriting dynamics. These
tools greatly contribute to our current knowledge
of handwriting kinematics, the development of
motor skills for planning and controlling hand-
writing movements [51], and the understanding
of neuromotor deficits in handwriting disorders.
In the CoWriter project [33, 35, 43], we aim to
adapt handwriting training for children with dif-
ficulties by using a learning by teaching approach
in which children teach a humanoid robot how
to write on a graphics tablet.

Despite correct training, between 5% and 25%
of children never master handwriting like their
peers. With the increasing cognitive demand for
school work, handwriting rapidly becomes a lim-
iting task for these children who cannot handle
simultaneous efforts such as handwriting, gram-
mar, orthography, and composition. These stu-
dents may then rapidly face more general learn-
ing difficulties. Thus, it is crucial to detect and
remediate handwriting difficulties as soon as pos-
sible [15,21].

The handwriting tests are not difficult; chil-
dren are asked to copy a standard text, which is
then evaluated based on a predefined set of fea-
tures. In French-speaking countries, the BHK
test (The Concise Assessment Scale for Chil-
drens Handwriting) [12,28,58] is widely used for
diagnosing dysgraphia. This test is recognized
by health insurance companies, which pay the
costs of both diagnosis and treatment.

But when it comes to diagnosing dysgraphia
with the help of the BHK test, a number of
difficulties may arise. These are related to the
amount of time required for scoring the tests,
variability across evaluators, and most notably
the time lag often a period of 6 months or more
between initial concerns about a childs handwrit-

ing and the opportunity to consult with an ex-
pert.

In this context, we develop a new method to
allow rapid and accurate discrimination between
typically-developing (TD) and dysgraphic chil-
dren. The goal of our study is to create a di-
agnosis tool independent of human expertise to
avoid any subjectivity. We use a simple writ-
ing task, the alphabet task, which was proven
previously to predict children handwriting per-
formance and to discriminate between proficient
and non-proficient writers [7, 8, 24, 53]. We
showed that the main advantage of this tablet-
based test it that it exploits the dynamic features
of handwriting. Two models were compared:
a Convolutional Neural Network only analyzing
the data as a static image (like the pen-paper
tests used nowadays) with a Recurrent Neural
Network using the dynamical aspect of the data.
We showed that the latter outperformed the for-
mer.

2 Related work

2.1 Handwriting legibility analysis

Assessing the legibility or readability of hand-
writing is not a new challenge as studies relat-
ing to this topic exist since the beginning of
the twentieth century. The first scaling method
was developed by Thorndike [59] in 1910. This
constituted a very important contribution ”not
only to the experimental pedagogy but to the
entire movement for the scientific study of edu-
cation” [6]. Thorndike compared his invention to
the thermometer. ”Just as it was impossible to
measure temperature beyond the very hot, hot,
warm, cool, etc., of subjective opinion, so it had
been impossible to estimate the quality of hand-
writing except by such vague standards as one’s
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personal opinion that given samples were very
bad, bad, very good, etc.” [6].

Until now, two approaches are used to eval-
uate handwriting. The first is a global holistic
method that evaluates the handwriting quality
as a whole, while the second measures it accord-
ing to several predefined criteria [55].

The global holistic approach provides an over-
all judgment on the quality of handwriting
by comparing handwriting samples previously
sorted depending on quality. As a typical ex-
ample of this approach, Ayres developed in [6]
a scale in which teachers can mark the legibil-
ity of a handwriting sample by comparing it to
eight handwriting references of increasing qual-
ity included with the scale. Assessment of the
writing quality relies on subjective judgment by
the teacher. After that, several updated scales
with more objectivity were developed [9, 22,30].

The second approach for handwriting legi-
bility analysis is based on predefined criteria
(e.g., letter form, letter size, spacing, and line-
straightness). The judgment is then made by
individually grading these criteria and summing
the sub-scores. Among the large number of tests
developed during the past 40 years using this
approach, we can cite the concise Evaluation
Scale for Children’s Handwriting (BHK)
test [29] as the primary reference for the di-
agnosis of dysgraphia in Latin alphabet-based
languages [12, 28, 38, 48, 58]. We can also cite
more recent tests, such as the Evaluation Tool
of Children’s Handwriting (ETCH-C) [3]
and the Hebrew Handwriting Evaluation
(HHE) [20], which take into account other fea-
tures of handwriting. In the ETCH-C test,
for example, the pencil grasp, pencil pressure,
and in-hand manipulation are additional criteria
taken into account. In the HHE, the examiner
is asked to observe the pencil and paper position,

the body posture and stabilisation, and the fa-
tigue. However, the observation of all criteria re-
main partly subjective as a human being makes
them.

With the emergence of new tools (e.g., digital
tablet), the addition of several variables (hidden
so far) to the analysis of handwriting legibility
is now possible. In particular, the analysis of
dynamic features of handwriting allows a better
characterisation of childhood handwriting diffi-
culties [55]. Several techniques have then been
proposed to classify the handwriting legibility,
including the dynamics of the process [17,19,54],
thus leading to better accuracy and less subjec-
tivity.

2.2 Models used in handwriting
analysis

Recently, much research has generated models
for handwriting analysis using machine learning.
Indeed, machine recognition of handwriting is
used in various fields, such as reading postal ad-
dresses on envelopes, amounts written on bank
checks, and signature verification. Models are di-
vided into offline and online recognition. Offline
recognition focuses on the image of the hand-
written text, while in online recognition, the lo-
cation of the pen-tip is recorded as a function
of time [50]. As the offline/online designation
might not be clear, we change the terminology
for the remainder of this paper to static/dynamic
as we believe these are more relevant.

Static systems are less accurate than dynamic
ones due to the absence of temporal data (dy-
namics of writing), which contains information
that may be relevant [50] for the model. Only
the image of the handwritten text is available to
the model. MNIST [42] is the most widely used
benchmark for isolated handwritten digit recog-
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nition. Many machine learning techniques have
been used to classify the MNIST dataset from
the multi-layer perceptron (MLP) [57] to com-
plex variants of support vector machines (SVM)
[18]. However, CNN models seem to perform
best by providing outstanding results on the
MNIST dataset as well as on Latin letters and
Chinese characters, for example, [16].

For dynamic recognition, the temporal infor-
mation about handwriting is available to the
model. Different architectures of models are
then used for the classification. For example,
a Hidden Markov Model (HMM) [45] or a hy-
brid system gathering time-delay neural network
and HMM [34] has been used in the past twenty
years. Since then, RNNs have been used with
great success surpassing all previous results in
this field [26,27].

While the literature reports a large number of
models to recognise digits, characters, words or
sentences, very few works aimed to assess hand-
writing legibility for dysgraphia detection pur-
poses. Rosenblum et al. [54] used a SVM classi-
fier on a set of manually extracted handwriting
features to classify between dysgraphic and non-
dysgraphic Hebrew writing children. The SVM
binary classification led to the accurate labeling
of 89 out of 99 writing products (89.9% accu-
racy). In [4], Asselborn et al. used a Random
Forest classifier to correctly identify 98% of the
56 dysgraphic children in their database. Their
method was taking in input the BHK test (latin
alphabet).

With our work, we embrace the same goal and
propose to create an easier test to effectively de-
tect dysgraphia in a classroom context. Instead
on focusing on the analysis of an handwritten
text, task that appears to be challenging for a
wide range of children, we developed a test work-
ing on individual letters (and numbers) that are

taught earlier in school curriculum [5,49,52]. In
addition, by characterizing difficulties indepen-
dently for each letter, we envision to build a
personalized training system that would gener-
ate words with letters specifically selected to suit
the training needs of the child.

The next section presents our motivations and
the machine learning tools used to build our
models for the diagnosis.

3 Motivations and Technical
Grounding

The overall goal of this project is to enable teach-
ers to evaluate in a fine grain handwriting in or-
der: (1) to detect children in high difficulties and
at risk for dysgraphia, (2) to generate a hand-
writing profile for the child pointing gyphs that
should be practiced more in later-on handwrit-
ing training. For this, we propose to build a
system able to assess handwriting legibility au-
tomatically. We present below pros and cons of
several methods and argument our choices.

Artificial neural network (ANNs) are partic-
ularly useful in the situations where the rela-
tionship between inputs and outputs is complex
and challenging to identify by a non-expert hu-
man observer. Practice has proven that artificial
neural networks may be successfully employed
to solve many of practical problems. They have
been used in a variety of applications, for ex-
ample, machine translation [14], image recogni-
tion [41], and even playing computer games on
the level beyond human skills [47].

In this work, we focus on two types of ANNs:
LSTM recurrent neural networks (RNN) [31]
and convolutional neural network (CNN) [42].
RNNs were introduced to analyse and interpret
sequences of data. Hence, this approach meets
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our applicative setup where each glyph1 may be
understood as a trajectory or the sequence of
consecutive positions of the pen tip on the paper.
This approach focuses on the temporal aspect of
data and considers the dynamics of writing. This
characteristic is known, and RNN has been ap-
plied to handwriting tasks before [25]. For this
reason, we believe that RNN can provide better
results to our applicative problem compared to
other methods using static images (including the
original way of evaluating BHK tests).

CNNs are widely used tools for deep learning.
They are known to be particularly well suited
for applications with images as inputs, although
they are now more frequently used in other ap-
plications involving text [39] or signals [44] as
inputs. CNNs have become a standard in text
recognition giving outstanding results [42,62].

In addition to the different architectures of
the network, it is important to notice that con-
trary to RNN, CNN takes the 2D image rep-
resenting the glyph as input, meaning that the
dynamic of the movement is lost. We present
here a new promising method based on a neu-
ral network taking into account dynamic features
of handwriting to discriminate between TD and
dysgraphic children.

4 Methods

4.1 Participants

The present study was conducted in accordance
with the Declaration of Helsinki, was approved
by the University of Grenoble Alps’ ethics com-
mittee (agreement n 2016-01-05-79). It was con-

1A glyph is a graphic symbol that provides the ap-
pearance or form for a character. A glyph can be an
alphabetic or numeric. In this paper, we focus on lower
case cursive alphabetical [a-z] and numerical [0-9] glyphs.

ducted with the understanding and written con-
sent of each child’s parents and the assent of each
child and in accordance with the ethics conven-
tion between the academic organisation (LPNC-
CNRS) and educational organisations. A to-
tal of 971 typically-developing children were re-
cruited in 14 schools from various suburbs to en-
sure different socio-economic environments (TD
dataset). 43 classes were included from pre-
school to fifth-grade. None of the TD children
included in the study presented known learning
problems or neuromotor disorders. Twenty-four
dysgraphic children recruited at the Learning
Disorders Center of Grenoble hospital (Centre
Référent des Troubles du Langage et des Ap-
prentissages, CHU Grenoble) were also included
in the study (D dataset) and were all diagnosed
as dysgraphic based on their BHK scores.

4.2 Data collection

Children were asked to write cursively, without
a time limit, the 26 letters of the alphabet in
lower case, as well as 10 digits, randomly dic-
tated. Two procedures following different dicta-
tions were performed, the first in the middle of
the school year (January-February) and the sec-
ond at the end of the school year (May-June).
We checked that the dictation order did not
affect children performances (data not shown).
Dictations were performed on a sheet of paper
placed on a Wacom Intuos 4 A5 USB graphic
tablet (sampling frequency = 200 Hz; spatial res-
olution = 0.25 mm). The sheet of paper was used
to place the children in their usual handwriting
conditions as asking them to write directly on
the tactile surface might be different due to a
different friction coefficient [2]. All tracks were
monitored using the Scribble software developed
in the LPNC laboratory [36,37].
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4.3 Analysis of handwriting and iden-
tification of dysgraphic children

4.3.1 Scarcity of annotated data

As mentioned above, handwriting is a crucial
skill to acquire and paramount for many school
activities. Hence, children are taught handwrit-
ing in a standardised way from the beginning
of their school education. As a result, the vast
majority of data collected is inadequate com-
pared to with what was taught in school (re-
sulting in an over-representation of ”good” ex-
amples). In other words, the class of glyphs that
we are particularly interested in (”bad” exam-
ples) are underrepresented. In addition, we have
a significant variety of instances that belong to
the underrepresented class (illegible glyphs) as
compared to a relatively small variance in the
overrepresented class–there are only a few ways
to write a letter correctly, while there are many
ways to do it incorrectly.

Hence, the discrimination between typically-
developed and dysgraphic children seems to be
challenging as the class of illegible glyphs we
want to describe is underrepresented and varies a
lot. We argue that using a black box to solve this
problem would require a considerable amount of
data, which we find infeasible. We are then left
to work in a regime of underrepresented positive
cases meaning that a more sophisticated solu-
tion must be developed. We applied an idea of
transferring learning to address this challenge.

4.3.2 Transfer learning

In machine learning, transfer learning is an ap-
proach where a new task is solved through the
transfer of knowledge from a related proxy prob-
lem that is simpler to solve [60].

A small group of shapes are fixed to be letters

or digits, and people are trained to write and
read these symbols. The glyphs written by dys-
graphic children tend to be harder to decode as
they are not written conventionally. This is why
we believe that the problem of identifying dys-
graphic children may be resolved by using an ap-
proach that mimics humans. Hence, we decided
to train a recognising model to classify glyphs
and use its prediction to discriminate dysgraphic
children. We assume that if the model fails to
predict which glyph is the given one, then the
writer has a higher probability to be dysgraphic.
Our recognising model is trained to discriminate
glyphs, in other words, the model assesses leg-
ibility of a given glyph. It is important to no-
tice that this approach (using the predictions of
the recognising model by a high-level diagnos-
ing model to classify a writer) is plausible only
if the recognising model performs well while pre-
sented legible glyphs. In other words, the di-
agnosing model based on a poorly performing
recognising model would wrongly label all chil-
dren dysgraphic. Hence, we have to make sure
that the recognising model performs well enough
when glyphs written by non-dysgraphic children
are provided as the input.

Since we are in the regime of scarcity of anno-
tated data for dysgraphic children (as mentioned
in Section 4.3.1), we decided to use a straight-
forward diagnosing model (taking an average of
given predictions) built on top of an advanced
recognizing model (that may leverage the mas-
sive data we have for non-dysgraphic children).

4.3.3 Assessing glyphs’ legibility

We divided our data into three disjoint sets:

• Training set – 80% of TD dataset.

• Validation set – 20% of TD dataset.
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• Dysgraphic set – consists of all glyphs writ-
ten by dysgraphic children (D dataset).

Hence, the recognising model is trained on ex-
amples which are believed to be more legible.

The model’s input consists of a single glyph,
and there is a class for every glyph. Depending
on the model used, the inputs may be the tra-
jectories of a pen (point-by-point for the RNN
case) or the static images (final, visual results
for the CNN). This means the model treats the
problem as a multi-class classification balanced
by the design of the data collecting procedure
(each child has to write down every 36 glyphs).
In real-life applications, a child would be asked
to write down a given glyph and, even if the
ground truth is known, we let the model predict
the glyph’s label. Afterwards, the discrepancy
between the ground truth and the model’s pre-
diction is measured.
Assuming that the model discriminates the
glyphs properly with high accuracy, high dis-
crepancy means that glyphs are not legible and
the child is likely to be dysgraphic. There-
fore, while each child writes down all glyphs, the
model predicts in parallel the probability for ev-
ery glyph to be the requested one. These glyph-
level scores are averaged per child, and this value
is understood as a statistic for evaluating writ-
ing proficiency, and we call this statistic D (dys-
graphic statistic).

Taking an unweighted average is a simple, ar-
bitrary choice and more sophisticated methods
may be invented as can be seen in Section 5.3.
However, we found this approach works suffi-
ciently well.

4.3.4 Final dysgraphic prediction

The lower the value of D statistic, the more likely
the child will be dysgraphic. However, to solve

our main problem, we have to answer the follow-
ing question:

Having a value of D statistic for the given
child, is the writer dysgraphic?

In other words, we have to find the threshold
(the critical value) of D statistic that divides the
children into two groups (dysgraphic and non-
dysgraphic children). In the original BHK test,
children are considered dysgraphic if they obtain
a score beyond two standard deviations from the
normative group. In practice, it was found that
8.6% of the population is dysgraphic [12].
We, therefore, decided to use the same approach
to compute the threshold in a way that the 8.6%
of the children who obtained the lowest values
of D statistic will be considered dysgraphic by
our diagnosing model. Of course, this threshold
value depends on the recognising model. The
main property of this approach for fixing the
threshold is that, on average, 8.6% of children
are labelled dysgraphic, precisely like the origi-
nal BHK test.

4.4 Discrimination procedure

To summarise, the discrimination procedure for
a given child consists of the following steps:

1. The child is asked to write down the 36
glyphs on the same digital tablet.

2. The recognising model, which is trained
to discriminate glyphs, is evaluated for all
drawings and a single value (the probability
that the glyph is the one requested) for each
is obtained. A higher value represents, the
greater legibility of the glyph.

3. All 36 scores are averaged giving the D
statistic.
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4. The value of the D statistic describes the
child’s handwriting proficiency. It is then
compared with a threshold calculated in
such a way that, on average, 8.6% of chil-
dren score below. A child with a score below
this threshold is labelled dysgraphic.

5 Results

As mentioned in Section 4, we trained the model
to calculate the D statistic for a given child. This
value is compared with the threshold found pre-
viously. If the value of D statistic is below the
threshold, then the child will be labelled ”dys-
graphic.”
In this section we address the following question:

Do 8.6% of all children suspected by our
prototype represent the group of children truly
diagnosed as dysgraphic by the original BHK

test?

We show in this section that our model pro-
vides very promising results when it uses dynam-
ics of writing as an input.

5.1 Recurrent neural network

We present results obtained using recurrent neu-
ral networks which, as pointed out in Subsection
3, utilises the temporal aspect of the data to take
into account the dynamics of writing. We argue
that this temporal information provides valuable
insights so that our model is advantageous over
other methods only using static images (includ-
ing the original BHK test).

A k-fold cross-validation [23] (with k = 5) pro-
duced the graph presented in Figure 1. Details
about the model, the learning procedure, and
the training procedure may be found in the Ap-
pendix. In Figure 1, the x-axis are quantiles and

Figure 1: With RNN, quantile function of av-
eraged D statistic on validation and dysgraphic
sets. The blue horizontal line represents the es-
timated threshold. Each point represents the D
statistic for a given child (averaged on each fold,
the error bar represents the standard deviation).
By definition, 8.6% of the validation results are
below threshold which separates the children
into dysgraphic and non-dysgraphic groups, such
that in the perfect case, all dysgraphic children
should score below this threshold.

the y-axis includes averaged D statistic values.
By definition, 8.6% of validation results are be-
low the threshold, which separates the children
into dysgraphic and non-dysgraphic groups. It
means that in the perfect case all dysgraphic
children should score below the threshold. The
most important finding is that only two dys-
graphic children are not below the threshold, and
hence more than 90% of dysgraphic children are
correctly diagnosed. This means that even the
prototype of the digital BHK test (trained only
on single glyphs) that takes into account the dy-
namics of writing would identify nearly all chil-
dren labelled by the original BHK test.

This result is impressive as without any fur-
ther research, we can prepare a model capable
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of identifying more than 90% of all dysgraphic
children without the laborious review by a hu-
man expert. Additionally, this digital approach
for labelling children is highly objective. Hence,
this work is a milestone in achieving our long-
term mission of creating a digital BHK test.

5.2 Convolutional neural network

As explained in Subsection 3, CNN is a cate-
gory of neural networks shown to be very ef-
fective in tasks, such as image recognition and
classification. They work only with static 2D
data, so, contrary to the recurrent neural net-
work (see Subsection 5.1), the dynamics of hand-
writing (i.e., the timeframe) cannot be taken into
account. Only the final trace will be used by the
model to predict the label of the data.

Figure 2 follows the same procedure as used
to generate Figure 1 with the only difference be-
ing that CNN is the recognising model instead
of RNN. It can be seen that even if the score
of dysgraphic children is significantly lower than
the one not diagnosed (which does not guarantee
all these children are non-dysgraphic), we failed
to obtain a clear separation of 90% of the sub-
jects as found with the RNN. As can be seen in
Figure, only 25-30% of the dysgraphic are below
the threshold line suggesting that the model can
successfully identify approximately a quarter of
the dysgraphic children.

The results presented in this section suggest
the superiority of the RNN over CNN for this
task. We believe this difference in efficiency is
due to the incorporation of the movement’s dy-
namics for the RNN. This assumption will be
further explored in Section 5.4.

Figure 2: With CNN model, quantile function
of D statistic on validation and dysgraphic sets.
The estimated threshold is included, and each
point represents D statistic for one child (aver-
aged on each fold, the error bar represents the
standard deviation). By definition, 8.6% of the
validation results are below the threshold, which
divides the children into dysgraphic and non-
dysgraphic groups such that, in the perfect case,
all dysgraphic children should score below the
threshold. In our case, the model is not very ef-
ficient as less than 30% of dysgraphic children
are correctly diagnosed.

5.3 Discriminative glyphs

The method used to calculate the D statistic for
children may be slightly modified to obtain a
similar score for glyphs. We can calculate glyph-
level (not child-level) D statistic separately for
the dysgraphic children (D dataset) and for the
others (TD dataset) (validation part only) to
identify the most discriminative glyphs. These
glyphs are particularly hard to write for dys-
graphic children compared to the general pop-
ulation making them possibly the most helpful
for identifying dysgraphic children.

In Figure 3, the D statistics (averaged for each
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student and averaged on the five folds, and the
standard deviation were not presented for clar-
ity) of every glyph are presented. For each, the x
and y coordinates represent the mean D statistic
for the dysgraphic and non-dysgraphic children,
respectively. Each glyph close to the blue line
(where dysgraphic children and ”average” chil-
dren obtain the same score) is approximately
of the same difficulty for dysgraphic and non-
dysgraphic children. Those above the yellow line
are harder to draw for the group of children with
writing difficulties.

Figure 3: Discriminative glyphs (based on RNN
model). The comparison of the difficulty in writ-
ing particular glyphs for dysgraphic and non-
dysgraphic children. Glyphs above the yellow
line are harder to draw for the group of children
with writing difficulties. There are no glyphs
below the blue line since each letter is easier for
non-dysgraphic children. However, the digits ’0’
and ’4’ are nearly of the same difficulty for both
groups (it may be initially surprising that the
digit ’0’ is harder than the digit ’4’, but this is
the case because children are expected to write
down cursive glyphs; similarly, the letter ’o’ and
the digit ’0’ are found to be hard).

Therefore, the glyphs ’e’, ’s’, and ’k’, for exam-
ple, are discriminative glyphs according to our
RNN model. This knowledge may be used to

prepare even a better prototype, for example,
a weighting factor may be assigned proportion-
ally to the discriminative power of the glyphs.
Another possibility would be to ask children to
write down only the most discriminative glyphs.
This technique was applied to create Figure 4.
The 15 most discriminative glyphs were used to
compute the D Statistic. This technique reduces
the diagnostic test duration while providing an
accuracy similar to when all glyphs are used for
the diagnosis. As mentioned in Subsection 5.1,
we used a cross-validation technique by train-
ing the model for five folds. For each fold, the
most discriminative glyphs found can be slightly
different since they are within this particular
model and validation set. This means that us-
ing the same discriminative glyphs to assess the
model performance on the same validation set
would bias the model. Hence, to alleviate this
issue, we selected 15 of the most discriminative
glyphs found for another fold, where each fold
was used to obtain the most discriminative glyph
only once.

It is interesting to notice that some of the most
discriminative letters found are not used in the
original BHK (’y’, ’k’, ’q’, ’w’, and ’x’). We be-
lieve the utilisation of this subset in our proto-
type is one of the reasons why our model requires
fewer data compared to the BHK for classifica-
tion.

5.4 Adding the handwriting dynamic
reduces confusion between visu-
ally similar glyphs

Certain glyphs might look very similar when we
only have access to the final trace. This is, for ex-
ample, the case between the letters ’e’ and ’l’ or
between ’g’ and the digit ’9’. Thus, we hypothe-
size that the final trace is sometimes not enough
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Figure 4: With RNN, quantile function of D
statistic on the validation and dysgraphic sets
calculated for the 15 most discriminative glyphs.
The estimated threshold is also included. Each
point represents D statistic for one child (aver-
aged on each fold, the error bar represents the
standard deviation). The results are similar to
the case where all glyphs are used (see Figure 1).
The key difference is a higher variance that re-
flects a smaller number of the instances for each
child.

to discriminate between these classes, so, in these
cases, the dynamics of handwriting must be fun-
damental. For these glyphs whose final traces
look similar, the CNN will make inaccurate clas-
sifications while the RNN will have better results
due to its access to the movement dynamics. We
believe that this is one of the reasons explaining
the superiority of the RNN model over CNN.
Figure 5 plots the confusion between the six most
similar pairs of glyphs (representing the pairs of
glyphs with the greatest confusion) of the CNN
and RNN models. The confusion for a pair of
glyph A-B is the number of misclassification (B
instead of A or A instead of B) over the entire
set of As and Bs. The misclassification of A in
B over all As and the misclassification of B in
A over all Bs are different. However, as it was

giving similar values in our case, we decided to
use their average to obtain the final misclassifi-
cation values plotted in Figure 5. For example,
a confusion of 16% for the CNN model is seen
between the letters ’e’ and ’l’ meaning that the
misclassification of ’e’ in ’l’ or the misclassifica-
tion of ’l’ in ’e’ occurs in 16% of the cases.
This graph appears to confirm our hypothesis as
we can see that the RNN generates fewer confu-
sions between the pairs of glyphs that looks visu-
ally similar, likely due to its access to the hand-
writing dynamics. Concerning the other pairs of
glyphs that do not look visually similar, the con-
fusion between the two models is essentially the
same and close to 0% of misclassification.

Figure 5: Confusion between the six most sim-
ilar pair of glyphs (those that bring the highest
confusion) for the RNN and CNN models.

5.5 Additional class

We noticed that it is beneficial to add a class to
the training set, which we call the star or, simply,
the ’*’ class. This class consists of random hy-
brids of real glyphs obtained by combining two
or three drawings to create a non-existing glyph,
such that the beginning part of the first glyph
trajectory is associated to the middle part of the
second one, for example.
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This data augmentation makes our model sus-
picious about glyphs that look strange and labels
them as ’*’. In other words, our model cannot as-
sume that the analysed object is a glyph. We be-
lieve this strategy helps in situations when a dys-
graphic child would perform poorly on a glyph
but still makes a good guess since the mistake is
easy to figure out. Examples include triple ’w’
or a letter ’i’ with additional dots.

Figure 6: An example of glyph ’w’ (top) with
consecutive RNN label predictions (bottom).

Figure 6 presents the evolution of consecutive
predictions of our RNN model for the letter ’w’.
In the beginning, the most probable answers are
star class since the usual existing glyphs are al-
ways longer. Afterward, the model switches to ’r’
because the first curve of the glyph ’w’ looks sim-
ilar to the beginning of the glyph ’r’. The model
further evolves to ’v’, ’u’, and finally the cor-
rect answer ’w’. Employing the dynamics in the
model not only improves the predictive power
but also makes the model interpretable.

6 Discussion

This tablet-based test might pave the way to the
systematic diagnosis of dysgraphia in schools.
Our aim would be to minimize the impact of
dysgraphia on childrens school experiences by
providing a rapid, simple and cheap diagnostic
tool that will allow for earlier remediation. For
example, this tool could be employed in conjunc-
tion with other screening tests that are already
in use in schools, such as auditory and ophthal-
mologic tests, facilitating the early detection and
remediation of handwriting issues.

Contrary to all the techniques used for the
diagnosis of dysgraphia (particularly the BHK
test) that only include the final trace as input
and, therefore, exclude key parts of the infor-
mation, our test exploits the dynamic of the
handwriting. We showed that adding the dy-
namics of the movement improves the accuracy
and decreases the necessary amount of informa-
tion needed to deliver the identification of dys-
graphic children. The RNN using the time-frame
in addition to the trace allows improved results
(90% of dysgraphic children successfully labelled
dysgraphic) over the CNN using only the static
image (less than 30% of dysgraphic children suc-
cessfully labelled dysgraphic). This is the pri-
mary reason that suggests developing a digital
approach is valuable for this field as the dynam-
ics of the movement is difficult to interpret with
the final trace alone, even if an expert is observ-
ing the child while writing.

A digital approach to the diagnosis offers ad-
ditional potential interests. First, it enables to
remove human subjectivity as the model cannot
be biased by any external parameters that can
influence a human. The diagnosis of dysgraphia
is important as it has significant implications for
the lives of children and their parents. Hence,
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providing a non-subjective method is certainly
not negligible. Moreover, digitally diagnosing
dysgraphia will enable to save time as trained
therapists spend around 10 minutes per BHK
test to analyse the handwriting of the children.

Other information, such as the pressure or
inclination of the pen during handwriting ex-
tractable with devices like the Wacom(C) graph-
ics tablet could be integrated with the model to
improve efficiency further. Currently, the chil-
dren are asked to write all the letters of the al-
phabet. As seen in Section 5.3, even if we could
remove certain nondiscriminatory letters, some
vital information may remain in the way letters
or words are linked together. Our model does
not consider this potential connection, and it
would be interesting to incorporate this aspect
in future work.

During this project, the data acquisition
utilised a Wacom(C) tablet with an A5 paper
sheet affixed to the screen. This device was
selected because, in addition to the x, y, and
time coordinates, it can accurately extract pres-
sure and pen inclination. However, our current
model only incorporates the first three proper-
ties. Data acquisition with a high-end tablet,
such as the one we use, may soon become obso-
lete as an available Android device that is less ex-
pensive and more accessible may offer a practical
solution for anyone wishing to apply the model.
However, it is important to note that the friction
between the pen and a tactile surface or paper is
not the same between the two classes of device.
So, data extracted from the two solutions can
differ in ways that would mislead the model. In
future work, it may be required to compare the
handwriting output difference between the two
approaches and, if necessary, train a new model
with data extracted from a tactile tablet.

7 Future Work

In a general context, this approach could have
great potential for educational purposes, such
as the CoWriter project [32, 33, 35, 43]. This
project aims to teach handwriting by using an
original approach: the learner becomes the pro-
fessor of a robot needing help to improve writ-
ing techniques. This paradigm, known as learn-
ing by teaching, takes advantage of the Protégé
effect by making the child feel responsible for
the robot, thus encouraging the child to be more
engaged in the task. Words the child needs
to teach to the robot, using a digital tablet to
write handwriting examples, are randomly cho-
sen and might not be appropriate for the child’s
skill level or needs. We imagine applying this
work to create a child’s handwriting profile us-
ing the D-statistic of each letter to represent the
child’s proficiency for the letter. With this type
of handwriting profile, we can then choose more
relevant words that would make the child focus
on the targeted letters the model detects with
deficiencies.
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[10] A. W. Blöte and L. Hamstra-Bletz. A longi-
tudinal study on the structure of handwrit-
ing. Perceptual and Motor Skills, 72(3):983–
994, 1991.

[11] B. Bourdin and M. Fayol. Is graphic ac-
tivity cognitively costly? a developmental
approach. Reading and Writing, 13(3):183–
196, 2000.

[12] M. Charles, R. Soppelsa, and J. Albaret.
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Appendix

Recurrent neural network details

Architecture

The recurrent neural network is a 2-layer LSTM
architecture with hidden sizes of 100 (for both
layers). The output of the second LSTM layer is
followed by a feed-forward neural network with
one hidden layer (of size 40), a dropout (p=0.5),
and ReLU (rectified linear unit) nonlinearity to
obtain a final output of size 37. The final output
is then softmaxed to achieve a probability dis-
tribution over all possible glyphs (26 letters, 10
digits, and the special character ’*’).

Learning procedure

All parameters were initialised randomly using
a uniform distribution on the interval (−0.08,
0.08). The Adam optimizer [40] was used with
default hyper-parameters except for the learn-
ing rate where 0.005 was used instead. Gradi-
ent clipping was also used (threshold equals 10
for L∞ norm), and the batch size was constant
at 20. The learning procedure was stopped af-
ter 15 epochs without progress on the valida-
tion set (considered to be early stopping). The
hyper-parameters were found using a random
grid search, and the span of the checked values
was not very wide due to limited computation
power so that these initialization results may be
improved.

Cross-validation

A k-fold (k = 5) cross-validation was performed
for the training. For each fold, the ratio be-
tween the training and validation data was fixed
to 80%− 20% (see Subsection 4.3.3 for more de-

tails). Since k was set to 5 and 20% of the data
were used for the validation in each run, every
child record in our database was used in the val-
idation set exactly once.
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