

FDFC 2019

Oxygen Evolution Reaction Investigation on Model Catalysts in Acidic Medium: comparison between Ir(111), Ir(210) and nanostructured Ir(210)

M. Scohy¹, V. Martin¹, S. Abbou¹, E. Sibert¹, L. Dubau¹, B. Gilles², F. Maillard¹

- 1. Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP*, LEPMI, 38000 Grenoble, France * Institute of Engineering Univ. Grenoble Alpes
- 2. Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble, France CNRS, SIMAP, F-38000 Grenoble, France

Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem **3**, 1159–1165 (2011).

- IrO₂ → best compromise
 between activity and stability
- High cost and sarce material
- Design of more efficient catalysts to increase the specific catalytic activity

- Nanoparticles are composed of facets, edges and kinks
- Fondammental understanding of phenomena linked to the electronic structure of the electrode surface is necessary

Study single-cristal surfaces

- Study of 3 different surfaces
 - 3 « fresh » surfaces
 - 3 oxidized

Initial characterizations

- Electrochemical characterizations
- AFM
- XPS
- Ageing via chronoamperometry
 - ICP-MS measurement
- Final characterizations
 - Electrochemical characterizations
 - AFM

Initial state - fresh surfaces

Initial state - electrochemically oxidized surfaces

- Electrochemical oxidation of the fresh surfaces:
 - 15 potential cycles between 0.05 V vs. RHE to 1.6 V vs. RHE
- More active but less stable for the OER than metallic iridium and thermally formed oxide²

2. Cherevko, S., Geiger, S., Kasian, O., Mingers, A. & Mayrhofer, K. J. J. Oxygen evolution activity and stability of iridium in acidic media. Part 1. - Metallic iridium. J. Electroanal. Chem. (2016). doi:10.1016/j.jelechem.2016.04.033

Electrochemical characterization

- Oxygen-hydrogen
 flame annealing
- Cooling into 5% H₂ + Ar mixture
- Protection by a droplet of ultrapure water
- Hanging meniscus
 configuration

Electrochemical characterization - cyclic voltammetry

Fresh surfaces

Oxidized surfaces

Sweep rate: 50 mV s⁻¹

Electrochemical characterization - activity

- LSV at 5 mV s⁻¹ from 1.2 V vs. RHE to 1.6 V vs. RHE
- Current density at 1.51 V vs. RHE
- Oxidized surfaces are more active
- (210) is the most active
- Dissolution during oxidation: (111) < (210) < nanostructured (210)

X-ray photoelectron spectroscopy

After annealing and nanostructuration of 210: metallic Ir

Oxidized Ir(111): Ir(IV) Oxidized Ir(210): mixed Ir(IV)/Ir(III) Oxidized nanostructured Ir(210): mixed Ir(IV)/Ir(III)

Ageing

Electrochemical protocol

- Chronoamperometry
 - 2h at 1.6 V vs. RHE
 - 2h at 1.7 V vs. RHE
- Iridium content in the electrolyte analyzed by ICP-MS
- AFM images of the surfaces
- Measure of activity

Ageing ICP-MS

- Dissolution is more pronounced on nanostructured Ir(210)
- Higher dissolution for experiments at 1.7 V
- Oxidized surfaces dissolution is higher

Ageing ICP-MS

 If we normalized:
 more dissolution on nanostructured Ir(210)
 especially at 1.6V

Electrochemical characterization – cyclic voltammetry

• Ir(111) and oxidized Ir(111)

Sweep rate: 50 mV s⁻¹

Electrochemical characterization – cyclic voltammetry

Ir(210) and oxidized Ir(210)

Fresh surfaces

Oxidized surfaces

Sweep rate: 50 mV s⁻¹

Electrochemical characterization – cyclic voltammetry

• Nanostructured Ir(210) and oxidized nanostructured Ir(210)

Fresh surfaces

Oxidized surfaces

Sweep rate: 50 mV s⁻¹

Electrochemical characterization - activity

- Current density at 1.51 V vs. RHE
- Oxidized surfaces are more active except 111
- After 2h at 1.7V, activities of the catalysts tend to the same value

Comparison

lr(111)	lr(210)	Nanostructured Ir(210)
Few defects	Small steps and edges	Steps, edges and planar surfaces
Oxide growth: Ir(IV) small oxide peak low dissolution rate	Oxide growth: lr(IV)/lr(III) higher oxide peak higher dissolution rate changes in surface morphology	Oxide growth: lr(IV)/lr(III) higher oxide peak very high dissolution rate changes in surface morphology
small activity higher for the oxide	high activity higher for the oxide	high activity higher for the oxide
Ageing: low dissolution rate increase of activity for fresh surface no major changes in surface morphology	Ageing: higher dissolution rate decrease of activity but still the highest changes in surface morphology	Ageing: highest dissolution rate activity quite comparable changes in surface morphology

Conclusion

- Surfaces with few defects (Ir(111)) are the least active for OER
- Electrochemically grown oxide is more active than metallic surface, dissolution during the OER is comparable to metallic surfaces
- After ageing, activities are quite similar for all the surfaces
- Amount of Ir(III) seems to impact the activity of OER
- Surface morphology appears to impact mainly dissolution

Thank you for your attention !