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Abstract: The design of a Model Predictive Control (MPC ) algorithm for quasi Linear
Parameter Varying (qLPV ) systems is developed herein. An online Least-Squares procedure
that computes the future evolution of the qLPV scheduling parameters is at the core of the
proposed method, which enables the replacement of a complex nonlinear optimization by a
(much simpler) Quadratic Programming Problem (QP) one. The method also uses contractive
terminal set constraints and a Lyapunov-associated terminal cost to the MPC QP, so that the
domain of attraction of this controller is enlarged and feasibility is guaranteed. This paper ends
with a successful simulation of this technique applied to the control of vehicular suspensions.

Keywords: Model Predictive Control, quasi Linear Parameter Varying Systems, Least Square
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1. INTRODUCTION

Over the last decade, Model Predictive Control (MPC )
(Camacho and Bordons, 2013) has become a very well es-
tablished technique, with more than 5800 successful appli-
cations (Alamir, 2013). It is a natural method towards op-
timal control of processes subject to constraints (Normey-
Rico and Camacho, 2007). In MPC loops, a model is used
to predict future outputs, based on past and current values
and on the (optimal) future control actions; these actions
are calculated by some solver that takes into account a
cost function (performance goals) and process constraints
(adequate operation).

Yet very powerful, standard MPC design is mainly at-
tached to the idea of controlling plants with linear time-
invariant (LTI ) models, which is no true for nonlinear
systems controlled over larger operating conditions or for
when the process responses depend on external parame-
ters, that are not directly managed by the control loop.

The concept of MPC itself is not restricted to linear
models, as it can be extended to nonlinear ones, although
the inclusion of nonlinear model predictions (NMPC ) is
not trivial and much increases the algorithm’s complexity
(Allgöwer and Zheng, 2012). NMPC algorithms suffer
from issues related to their high complexity, especially
when sought to run in real-time (for fast processes).

In paralel to the growth of predictive control applications,
literature became very rich on design methods for Lin-
ear Parameter Varying (LPV ) systems (Mohammadpour
and Scherer, 2012; Sename et al., 2013). Such systems
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are nonlinear ones that dependent on known, bounded
scheduling parameters ρ. Thanks to linear differential
inclusion, nonlinear systems can be represented within
a quasi LPV (qLPV ) setting, with simple (LTI alike)
mathematical frameworks. Although there exist general-
ized NMPC tools, the study of this control method for
nonlinear systems with qLPV models is yet to be properly
researched, and, therefore, the main motivation of this
paper.

In the recent literature, interesting results have been pre-
sented to simplify the LPV-MPC problem into feasible
(simpler) algorithms. Some of these are mentioned: (Ayala-
Bravo and Normey-Rico, 2009) propose interpolation-
based predictive controllers for a nonlinear system based
on local LTI models, which have been successfully applied
for the control of desalination plants (Ayala-Bravo et al.,
2011). The downside of these methods is that they do
not take into account the variability of the scheduling
parameter, but plan the LPV system into many local LTI
ones; therefore, they are not strictly optimal. Considering
bounded rates of the scheduling parameters, robust LPV-
MPC algorithms were developed in (Jungers et al., 2011)
and (Casavola et al., 2012; Bumroongsri and Kheawhom,
2012), where the evolution of ρ is treated by offline pro-
cedures (Linear Matrix Inequality (LMI ) and ellipsoidal
constraints, respectively). The problem with such works
is that they demand heavy offline computational proce-
dures, which are not necessarily simple to perform. (Abbas
et al., 2015, 2018) present very efficient robust LPV-MPC
algorithms with LMI constraints, but only applicable to
LPV system in the input-output (I/O) representation
form. Explicit MPC s for LPV systems were investigated
in (Besselmann et al., 2012) with stability and optimality



guarantees. The downside in these works is that, since the
future values of ρ are unknown, the algorithm ensures the
constraints are satisfied for all possible system trajecto-
ries, which leads to quite conservative results and highly-
demanding QPs (numerical-wise). Cisneros et al. (2018)
present an iterative MPC algorithm for qLPV systems
that basically uses an initially frozen trajectory guess for ρ
(that iterates according to measurements) and transforms
the nonlinear problem into a linear one. The issue that
resides with such method is that the results may be sub-
optimal and that the system trajectory might not be
inside the region of attraction of the MPC, resulting in
infeasibility. Tube-based MPC design must also be rapidly
mentioned, since interesting performance results can be
achieved, as in (Hanema et al., 2016, 2017). Anyhow, if
the tubes are badly planned, the algorithms may become
excessively conservative, which is not the focus of this
paper. Concerning the authors’ works, an LPV-MPC al-
gorithm for the control of automotive suspension dampers
was developed in (Morato et al., 2018b), with a fixed ρ
prediction, which is rather over-simplified, but effective; in
(Morato et al., 2019), a filtered-MPC strategy is proposed
for an LPV energy system, where a feedback filter adapts
the (LTI ) MPC law according to the evolution of ρ.

In Section 2, the standard LPV-MPC problem is defined,
where it becomes evident that the future evolution of ρ
becomes a computational issue, since: i) it is (a priori)
unknown; and ii) it transforms the usual QP MPC algo-
rithm into a complex nonlinear optimization procedure.

There is a vague space for feasible and implementable
LPV-MPC laws, specially those that use neither heavy
offline procedures nor excessive online conservativeness
(as when computing all possible scheduling trajectories).
Such novel tool would be an welcome extended to the
MPC paradigm. Thereby, this paper’s contributions to
this question of prime importance are:

• Considering qLPV models, an online Least-Squares
algorithm is proposed for the prediction of ρ inside a
future prediction horizon (Section 3);
• With these predictions, a qLPV-MPC algorithm is

proposed via a standard QP. It is developed with
contractive terminal set constraints and a terminal
stage cost, used to enlarge the domain of attraction
and guarantee feasibility (Section 4);
• Numerical simulations of the proposed algorithm ap-

plied to a Vehicle Semi-Active Suspension system are
presented to demonstrate its effectiveness (Section 5).
Conclusions are drawn in Section 6.

2. PREDICTIVE CONTROL WITH LPV MODELS

The complete standard MPC algorithm is now described.
This well-established technique is capable of obtaining an
optimal control law that takes into account constraints
on the states, outputs and control actions. With some
bland assumptions, it is possible to guarantee closed-loop
asymptotic stability. MPC is widely used for reference
tracking and disturbance rejection in processes control
(Camacho and Bordons, 2013) and it resides in solving 1 :

1 Notation (k+ i|k) is used to represent a predicted value for instant
k + i, computed at instant k. For now, the presence of disturbances
is suppressed, for simplicity.

Problem 1.

min
U

J =

Np∑
i=1

MPC Cost︷ ︸︸ ︷
` (x(k + i|k), y(k + i|k), u(k + i− 1|k)) (1)

s.t. x(k + i) = f(x(k), u(k))︸ ︷︷ ︸
System Model

, (2)

u(k + i− 1|k), x(k + i|k), y(k + i|k) ∈ U ,X ,Y . (3)

where U is the sequence of actions inside the prediction
horizon Np, i.e. col{u(k|k) , . . . , u(k + Np − 1|k)}. Some-
times, a terminal stage cost is also minimized, as well as
the use of terminal constraints and slew rates. Throughout
this work, take x ∈ Rn, u ∈ Rm and y ∈ Rp, with U , X
and Y as the set contraints that define feasibility.

If the system model equality (2) is linear (LTI case with
x(k+ i) = Ax(k+ i)+Bu(k)), this optimization procedure
is in fact a QP, which is easily tackled with standard
solvers. Nonetheless, if the system model is LPV, the
prediction problem is, in fact, nonlinear. Consider the
following generic discrete-time LPV model:

x(k + 1) =A(ρ(k))x(k) +B1(ρ(k))u(k) , (4)

y(k) =C(ρ(k))x(k) +D1(ρ(k))u(k) ,

with a vector of scheduling parameters ρ that evolves as:

Γk = col{ρ(k + 1) , ρ(k + 2) . . . , ρ(k +Np)} . (5)

The model-based prediction that the optimization has to
internally solve, with initial condition x(k) = xk, is:

1) x(k + 1|k) = A(ρ(k))xk +B1(ρ(k))u(k|k) , (6)

y(k|k) = C(ρ(k))xk +D1(ρ(k))u(k|k) ;

2) x(k + 2|k) = A(ρ(k + 1))A(ρ(k))xk (7)

+A(ρ(k + 1))B1(ρ(k)) u(k|k) +B1(ρ(k + 1))u(k + 1|k) ,

y(k + 1|k) = C(ρ(k + 1))A(ρ(k))xk

+C(ρ(k + 1))B1(ρ(k)) u(k|k) +D1(ρ(k + 1))u(k + 1|k) ;

and so forth, up to the Np-th prediction. Notice that non-
linear terms are already present on the second prediction,
as gave Eq. (7), which results in a non-QP version of
Problem 1. Moreover, to say one has knowledge of Γk is
obviously false, since only ρ(k) is known. For these two
reasons, this work investigates how to feasibly translate
Problem 1 into a QP version.

3. PREDICTION OF ρ USING LEAST-SQUARES
IDENTIFICATION

As discussed in Sec. 2, for MPC design, it is imperious to
describe the response of the system in the future (up to
Np steps ahead). With qLPV models, the future outputs
y(k+ t|k) depend not solely on the future inputs u(k+ t),
but also on the future (endogenous) scheduling parameters
ρ(k + t|k). Although the scheduling signals are known
(measured/observed) at instant k, their future behaviours
are unknown. Herein, the description of the scheduling pa-
rameters (for the future Np) steps is performed according
to an online Least Squares (LS ) procedure, as follows:



Assumption 1. The behaviour of the endogenous schedul-
ing parameters of qLPV systems can be approximately de-
scribed 2 by linear autoregressive (ARX ) models, function
of past values of the control signal and measured outputs.
This ARX model for the vector of endogenous scheduling
parameters is:

ρ(k +Np) = a1ρ(k) + · · ·+ aNpρ(k −Np)(8)

+b1u(k − 1)+ . . .+bNp
u(k −Np − 1)

+
[
c11 . . . c

p
1

]︸ ︷︷ ︸
c1

y(k)+ . . .+
[
c1Np

. . . cpNp

]
︸ ︷︷ ︸

cNp

y(k −Np) ,

which is in fact a discrete-time model with Np delays.

Model (8) can be extended to write Γk based solely on
known values, which is welcome for the MPC design
procedure, as discussed in the sequel. For such, it remains
to find parameters a1 to cpNp

. These parameters are coupled

together as Θ = col{a1 . . . cNp
}, giving:

ρ(k) = ΘΨT , (9)

for Ψ = [ρ(k−Np) . . . ρ(k−2Np) u(k−Np−1) . . . u(k−
2Np− 1) yT (k−Np) . . . yT (k− 2Np)]. The direct solution
used to find Θ is an online recursive LS algorithm:

Θ(k) = Θ(k − 1) + λQθ (Ψ(k), ρ(k), y(k), u(k)) , (10)

Ψ(k) = Ψ(k − 1) + µQψ (Ψ(k − 1), ρ(k), y(k), u(k)) ,

where λ and µ are update percentage parameters (forget-
ting factors) and Qθ and Qψ are update functions 3 .

After the ARX model parameters are obtained at instant
k, based on historical data, an approximate prediction
for Γk from Eq. (5) (namely Γ̂k) is found directly, by
computing Eq. (8).

4. NOVEL QUASI LPV MPC ALGORITHM

Using the LS -derived prediction guess Γ̂k, Problem 1 can
be converted into a QP version, since the nonlinearities
from the predictions (Eqs. (6)-(7)) are no longer 4 :

x(k + j|k) =Aj(Γ̂k)xk +Bj1(Γ̂k)U , (11)

y(k + j − 1|k) =Cj−1(Γ̂k)xk +Dj−1
1 (Γ̂k)U .

The proposed qLPV-MPC algorithm must use some other
tools in order to guarantee that the domain of attraction
is enlarged and that the controller operation is indeed
feasible. Notice that, since an approximate solution for
the evolution of the scheduling parameters is used, the
control policy computed via Problem 1 at instant k may be

2 Note that this assumption is quite reasonable for qLPV models,
since the scheduling parameters, at some instant k′, are imperiously
function of the states and inputs, i.e. ρ(k′) = fρ(u(k′), y(k′)).
Although ρ is varying over its whole spectrum, the ARX model can
give an approximate guess for its future behaviour (Np steps) from
the viewpoint of instant k′.
3 This paper will not prolong itself on this procedure; the complete
deduction is found in (Ljung, 1987), see Chapter 11.2.
4 Note that the nonlinear terms become constant matrices, depen-
dent on (the fixed) Γ̂k.

infeasible due to model-plant mismatches (caused by the

differences between Γk and Γ̂k) or even drive the system
out of an stability region, which can never be allowed.

Firstly introduced by Mayne et al. (2000), the use of i)
contractive terminal sets and ii) terminal stage costs has
become extremely important for the control of uncertain
systems (or nonlinear ones with model-plant mismatches,
as it is the case herein). These tools allow the controlled
system to meet the performance objectives (such as refer-
ence tracking, disturbance rejection etc), whilst stability
and feasibility are maintained. Both these techniques have
been combined with iii) artificial reference tracking, which
leads to an enlargement of the domain of attraction of
MPC algorithms, finding more options of stable closed-
loop equilibrium points (Limon et al., 2005).

Remark 1. In (Limón et al., 2008), these three tools are
generalized for the case of reference tracking. The frame-
work proposed therein was extended in (Ferramosca et al.,
2009), becoming able to guarantee performance and fea-
sibility of such MPC policies when applied to nonlinear
systems. In the sequel, they are individually explained:

4.1 Reference Tracking

Instead of the usual MPC reference tracking procedure
(i.e. weighting the quadratic difference between output and
reference in the cost function), consider: 1) Q ∈ Rn×n
and R ∈ Rm×m as positive definite matrices, and 2)
K ∈ Rm×n as an arbitrary stabilizing control gain s.t.
(A(ρ(k+Np))+B(ρ(k+Np))K) is Hurwitz and P ∈ Rn×n
as a positive definite matriz s.t. (A(ρ(k +Np)) +B(ρ(k +
Np))K)TP (A(ρ(k+Np)) +B(ρ(k+Np))K)−P = −(Q+
KTRK).

With these two hypothesis verified and any feasible initial
state x0, it can be guaranteed that an MPC controller can
asymptotically steer the controlled system to the steady-
state reference x̂s in an admissible manner, by minimizing
the following adjusted cost function (Limón et al., 2008):

JRT = Jo + ||x(k +Np|k)− xs||2P (12)

+

Np∑
i=1

(
||x(k + i|k)− xs||2Q

)
+

Np∑
i=1

(
||u(k + i− 1|k)− us||2R

)
,

with xs ∈ X , us ∈ U and Jo as a quadratic offset function
that penalizes the deviation between the artificial reference
xs and the target operation point x̂s.

Note that, with this tool, the pseudo-reference xs is created
s.t. the system is set to track it, while this signal must stay
as close as possible to the actual reference x̂s. Moreover,
if an output reference ŷ is the preferred option, it must be
true that the (possibly time-varying) target steady-state
equilibrium pt = (x̂s, us) leads to the desired output ŷ,
i.e. ŷ = C(ρ(k+Np))x̂s+D1(ρ(k+Np))us. Remark, once
again, that this procedure is approximated due to the use
of ρ(k +Np), which is taken from the LS estimative Γ̂k.

It is reasonable to assume that the target operation
point pt = (x̂s, us) is an admissible steady-state, which



derives from system (4) being LPV -stabilizable, w.r.t. the
definition presented by Shamma (2012).

4.2 Terminal Cost Jo

The inclusion of a suitable penalization of the terminal
state combined with a terminal constraint can lead to
asymptotic stability with satisfaction of performance con-
traints can be proved, as done in (Ferramosca et al., 2009).
For such, the offset Jo should be convex s.t.:

β1||xs − x̂s||1 ≤ Jo(ps, pt) ≤ β2||xs − x̂s||1 , (13)

where β1, β2 are positive real constants and ps = (xs, us).

These two tools guarantee that if the system evolves as
predicted (i.e. Γk = Γ̂k) and if pt is an admissible point
contained inside the tracking set, then it is an asymptoti-
cally stable point in closed-loop. Elsewise, the final closed-
loop equilibrium is p?s = (x?s, u

?
s) = arg minpsJo(ps, pt).

4.3 Contractive Terminal Set

As (very importantly) introduced by Blanchini (1999), the
notion of reachable sets is recalled: 1) a set Υ ⊂ Rn
is a control invariant set for system (4), subject to its
operational constraints (3), if, for all x ∈ Υ there exists an
admissible input u = u(x) ∈ Rm such that f(x, u) ∈ Υ 5 ;
2) the one-step set of Υ, Q{Υ}, stands for the set of states
which can be steered in one step k to the target set Υ by
an admissible control action; 3) a given set Υ is, thence,
a control invariant set iff Υ ⊆ Q{Υ}; 4) a sequence of
reachable sets {Υi} is the sequence of sets by which the
x can be driven through, passing from one set Υi to the
following Υi−1, in an admissible way, finally reaching the
(target invariant set) Υ, see (Bertsekas and Rhodes, 1971).

Then, to guarantee that in Nr steps the controlled system
(4) reaches a control invariant set Υ that contains the
target performance steady-state equilibrium point pt, the
following contractive terminal set constraint is derived:

x(NP )∈Υj , j = max{Nr − k , 0} , (14)

under the assumption that a sequence of Nr reachable sets
{Υi} is available. This terminal set Υj is equal to the larger
ΥNr at the initial instant k0 being shrinked subsequently
until, at k0 +Nr, it becomes the smallest set Υ.

When the above constraint is coupled to the MPC design,
there is indeed an enlargement of its domain of attraction,
giving further holds on stability and feasibility, which are
needed due to model-plant differences, i.e. Γk 6= Γ̂k.
Note that the sequence of reachable sets are computed
with Γ̂k. If further robustness is sought, one could assume
bounded rates on ρ (i.e. dρ

dt (t) ∈ Ṗ) and compute all
possible trajectories and reachable set sequences from xk
and, finally, take their intersection as {Υi}.
Since all the necessary tools have now been presented, the
novel qLPV-MPC algorithm is obtained as follows:

Algorithm 1. (1) Iterate Eq. (10), obtaining an approxi-
mate guess for the Np-steps evolution of the schedul-

ing parameters Γ̂k;
5 The vectorial map f represents the LPV system model applica-
tion, i.e. f(x, u) = A(ρ(k))x(k) +B1(ρ(k))u(k).

(2) Find the linear system evolution/prediction laws that
approximate the behaviour of the controlled qLPV
system for the next Np steps, given by Eq. (11) with
j = 1 , . . . , Np.

(3) Then, solve the following QP :

min
U

J = JRT (15)

+

Np∑
i=1

` (x(k + i|k), y(k + i|k), u(k + i− 1|k))

s.t. System Evolution: Eq. (11) ,

y(k + i|k) ∈ Y ,

u(k + i− 1|k) ∈ U ,

x(k + i|k) ∈ X ,

x(k +NP |k) ∈ Υj , j = max{Nr − k , 0} ,

(4) From the solution U , take the first entry u(k|k) and
apply it to the controlled plant.

Note that the policy derived from this algorithm is impe-
riously time-varying for the first Nr samples, due to the
contractive terminal constraint. Usually, Nr ≥ Np.

5. NUMERICAL EXAMPLE

Simulation results are now presented to assess the perfor-
mance of the proposed qLPV-MPC policy achieved with
Algorithm 1. The considered study-case is the control of
the vertical dynamics of a 1/5-scaled vehicle equipped
with 4 semi-active dampers 6 . This system is described
by a Quarter-of-Vehicle qLPV model that comprises the
vertical displacement of each chassis corner zs(t) and of
each wheel zus(t), due to the road disturbances zr(t). The
control input for this system is the damping coefficient
variation u(t); the complete damping force is given by
Fd(t) = (c+ u(t)) (żs(t)− żus(t)). This damping force is
naturally bounded, which leads to the dissipativity con-
traints u(t) ∈ D = [u , u]. The endogenous scheduling
parameter is the suspension deflection velocity ρ = żs(t)−
żus(t). The vertical acceleration variables are the sole mea-
surable outputs, with the use of on-board vehicle sensors
(i.e. inertial units), this is:

ẋ(t) = Ax(t) + B1(ρ)u(t) + B2zr(t)
y(t) = Cx(t) + D1(ρ)u(t)

, (16)

with x(t) = [ zs(t) żs(t) zus(t) żus(t) ]
T

and y(t) =

[ z̈s(t) z̈us(t) ]
T

. Model matrices are:

A=


0 1 0 0
−ks
ms

−c
ms

k

ms

c

ms
0 0 0 1
ks
mus

c

mus
− (kt + ks)

mus

−c
mus

 ,B2 =


0
0
0
kt
mus

 ,

B1(ρ) =

 =−DT
1 (ρ)︷ ︸︸ ︷[

0 − ρ

ms

]
DT

1 (ρ)

T ,C =

[
1 0 −1 0
−ks
ms

0
ks
ms

0

]
.

6 Refer to http://www.gipsa-lab.fr/projet/inove/. Results are shown
for the front-left corner of the vehicle; similar results were obtained
for the other corners



The control goal `(·) is set to minimize both chassis and
wheel accelerations and, by doing so, to achieve a smoother
and more comfortable drive, while respecting the semi-
active (min./max.) dissipativity constraints (Morato et al.,
2018a).

min
u(t)

∫ τ

0

`(·)︷ ︸︸ ︷(
a1z̈

2
s(t) + a2z̈

2
us(t)

)
dt , (17)

s.t. u(t) ∈ D .

a1 and a2 are taken, respectively, as 0.95 and 0.05 so
that passengers are isolated from the road bumping. To
compute the MPC control action, the above model is
discretized with a sampling period of Ts = 5 ms.

The following results are obtained with the aid of softwares
packages Matlab, Yalmip and SDPT3 (QP) solver. Model
parameters are: ms = 2.27 kg; mus = 0.32 kg; kt =
12270 N/m; k = 1396 N/m; c = 70 N.s/m. The chosen road
disturbance, zr(t) in Fig. 1, represents a car running in a
straight line on a dry road, when it encounters (t′ = 0.5 s)
a sequence of 5 mm bumps on all its wheels, exciting a
bouncing motion.
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Front-Left Road ProfileBump!

Fig. 1. (Front-Left) Simulation Scenario

As suggests Morato et al. (2018a), the prediction horizon
Np is taken as 10 samples, while the contractive horizon Nr
is taken as 50. This means that control set shrinks with the
pace five times slower than the receding horizon (note that
Nr does not slide). To be in accordance with the control
goal, the traget equilibrium is taken as pt = (x̂s , us) =
([ · 0 · 0 ] , 0). Weighting matrices are Q = a1In and
R = a1Im.

To elucidate the effectiveness of Algorithm 1, the proposed
controller is compared to a simpler one (namely SMPC ),
that makes no use of the terminal cost and set tools
described in Sec. 4, simply solving the original MPC
Problem (1) with a constant prediction guess for the
scheduling parameter, i.e. ρ̂(k + t|k) ≈ ρ(k|k).

In terms of numerical complexity, the proposed qLPV-
MPC method takes, in average, only 3.09 % longer
elapsed (computational) time to compute the control pol-
icy u(k). This is tolerable amount, given that it does not
violate operational contraints, but achieves significantly
better performances, as demonstrated in the sequel:

Fig. 2 shows the controlled outputs (accelerations of the
chassis axle z̈s(t) and wheel link z̈us(t)) with both meth-
ods. It is evident that the proposed qLPV-MPC technique
can further minimize the control objective `(·), while abid-
ing to the dissipativity constraints D (shown in Fig. 3 7 ).
Numerically speaking, the proposed approach (compared
to the SMPC ) presents a significant 9.35 % of reduction
of the root-mean-square value of the performance objective

7 Note that the SMPC approach disrespects these contraints at
some moments!

`(·) 8 , which would certainly be felt in terms of passenger
comfort.

Fig. 2. (Front-Left) Sprung/Unsprung Accelerations and
Damper Force

Fig. 3. (Front-Left) Damper Dissipativity Constraints

Fig. 4 shows some snippets of the evolution of the (front-
left corner) scheduling parameters żs(t)− żus(t) compared
with the LS predictions at some points. It is clear that the
ARX model given by Eq. (8) cannot catch the complete
behaviour of ρ, but it provides a sufficient guess that is
adequately incorporated to the MPC loop. In comparison
with a constant/fixed prediction, the use of the LS tool
provides much more trustworthiness.
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Fig. 4. (Front-Left) Scheduling Parameter Evolution

Finally, Fig. 5 shows the evolution of the velocity states
żs(t) and żus(t) and illustrates the sequence of reachable
control sets 9 . It is clear that the contractive terminal set
constraint (14) makes these velocities converge to a final
set Υ (from t = 1 to 5 s), guaranteeing that the system is
not driven into instability.

8 The obtained rms{`(·)} values were 0.21217 (SMPC ) and 0.19233
(qLPV-MPC ).
9 The boxes are not the actual sets, but just illustration tools to
show how they shrink.
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6. CONCLUSIONS

This paper elaborated on a novel MPC algorithm for
nonlinear systems with qLPV models. The method takes a
LS guess for the future scheduling parameters behaviours,
which transforms the nonlinear prediction problem into
a linear QP. This is a welcome application, since many
nonlinear systems can be embedded in the qLPV repre-
sentation form. The algorithm is applied to the control of
a Semi-Active suspension system, achieving good results.
For further works, stronger stability, optimality and feasi-
bility holds of the proposed algorithm will be presented.
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