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The design of a Model Predictive Control (MPC ) algorithm for quasi Linear Parameter Varying (qLPV ) systems is developed herein. An online Least-Squares procedure that computes the future evolution of the qLPV scheduling parameters is at the core of the proposed method, which enables the replacement of a complex nonlinear optimization by a (much simpler) Quadratic Programming Problem (QP ) one. The method also uses contractive terminal set constraints and a Lyapunov-associated terminal cost to the MPC QP, so that the domain of attraction of this controller is enlarged and feasibility is guaranteed. This paper ends with a successful simulation of this technique applied to the control of vehicular suspensions.

INTRODUCTION

Over the last decade, Model Predictive Control (MPC ) [START_REF] Camacho | Model predictive control[END_REF] has become a very well established technique, with more than 5800 successful applications [START_REF] Alamir | A pragmatic story of model predictive control: self-contained algorithms and case-studies[END_REF]. It is a natural method towards optimal control of processes subject to constraints (Normey-Rico and [START_REF] Normey-Rico | Control of deadtime processes[END_REF]. In MPC loops, a model is used to predict future outputs, based on past and current values and on the (optimal) future control actions; these actions are calculated by some solver that takes into account a cost function (performance goals) and process constraints (adequate operation).

Yet very powerful, standard MPC design is mainly attached to the idea of controlling plants with linear timeinvariant (LTI ) models, which is no true for nonlinear systems controlled over larger operating conditions or for when the process responses depend on external parameters, that are not directly managed by the control loop.

The concept of MPC itself is not restricted to linear models, as it can be extended to nonlinear ones, although the inclusion of nonlinear model predictions (NMPC ) is not trivial and much increases the algorithm's complexity [START_REF] Allgöwer | Nonlinear model predictive control[END_REF]. NMPC algorithms suffer from issues related to their high complexity, especially when sought to run in real-time (for fast processes).

In paralel to the growth of predictive control applications, literature became very rich on design methods for Linear Parameter Varying (LPV ) systems [START_REF] Mohammadpour | Control of linear parameter varying systems with applications[END_REF][START_REF] Sename | Robust control and linear parameter varying approaches: application to vehicle dynamics[END_REF]. Such systems This work has been supported by CNPq (305785/2015 -0) and ITEA3 European project (15016) EMPHYSIS.

are nonlinear ones that dependent on known, bounded scheduling parameters ρ. Thanks to linear differential inclusion, nonlinear systems can be represented within a quasi LPV (qLPV ) setting, with simple (LTI alike) mathematical frameworks. Although there exist generalized NMPC tools, the study of this control method for nonlinear systems with qLPV models is yet to be properly researched, and, therefore, the main motivation of this paper.

In the recent literature, interesting results have been presented to simplify the LPV-MPC problem into feasible (simpler) algorithms. Some of these are mentioned: [START_REF] Ayala-Bravo | Approach for non-linear predictive control based on the local model ideas[END_REF] propose interpolationbased predictive controllers for a nonlinear system based on local LTI models, which have been successfully applied for the control of desalination plants [START_REF] Ayala-Bravo | Local model predictive controller in a solar desalination plant collector field[END_REF]. The downside of these methods is that they do not take into account the variability of the scheduling parameter, but plan the LPV system into many local LTI ones; therefore, they are not strictly optimal. Considering bounded rates of the scheduling parameters, robust LPV-MPC algorithms were developed in [START_REF] Jungers | MPC for LPV systems with bounded parameter variations[END_REF] and [START_REF] Casavola | A fast ellipsoidal MPC scheme for discrete-time polytopic linear parameter varying systems[END_REF][START_REF] Bumroongsri | An ellipsoidal off-line model predictive control strategy for linear parameter varying systems with applications in chemical processes[END_REF], where the evolution of ρ is treated by offline procedures (Linear Matrix Inequality (LMI ) and ellipsoidal constraints, respectively). The problem with such works is that they demand heavy offline computational procedures, which are not necessarily simple to perform. [START_REF] Abbas | An MPC approach for LPV systems in input-output form[END_REF][START_REF] Abbas | A new approach to robust MPC design for LPV systems in input-output form[END_REF] present very efficient robust LPV-MPC algorithms with LMI constraints, but only applicable to LPV system in the input-output (I/O) representation form. Explicit MPC s for LPV systems were investigated in [START_REF] Besselmann | Explicit MPC for LPV systems: Stability and optimality[END_REF] with stability and optimality guarantees. The downside in these works is that, since the future values of ρ are unknown, the algorithm ensures the constraints are satisfied for all possible system trajectories, which leads to quite conservative results and highlydemanding QP s (numerical-wise). [START_REF] Cisneros | Constrained predictive control of a robotic manipulator using quasi-LPV representations[END_REF] present an iterative MPC algorithm for qLPV systems that basically uses an initially frozen trajectory guess for ρ (that iterates according to measurements) and transforms the nonlinear problem into a linear one. The issue that resides with such method is that the results may be suboptimal and that the system trajectory might not be inside the region of attraction of the MPC, resulting in infeasibility. Tube-based MPC design must also be rapidly mentioned, since interesting performance results can be achieved, as in [START_REF] Hanema | Tubebased anticipative model predictive control for linear parameter-varying systems[END_REF][START_REF] Hanema | Stabilizing tube-based model predictive control: Terminal set and cost construction for LPV systems[END_REF]. Anyhow, if the tubes are badly planned, the algorithms may become excessively conservative, which is not the focus of this paper. Concerning the authors' works, an LPV-MPC algorithm for the control of automotive suspension dampers was developed in [START_REF] Morato | LPV-MPC fault tolerant control of automotive suspension dampers[END_REF], with a fixed ρ prediction, which is rather over-simplified, but effective; in [START_REF] Morato | LPV-filtered predictive control design for fault-tolerant energy managements[END_REF], a filtered-MPC strategy is proposed for an LPV energy system, where a feedback filter adapts the (LTI ) MPC law according to the evolution of ρ.

In Section 2, the standard LPV-MPC problem is defined, where it becomes evident that the future evolution of ρ becomes a computational issue, since: i) it is (a priori ) unknown; and ii) it transforms the usual QP MPC algorithm into a complex nonlinear optimization procedure.

There is a vague space for feasible and implementable LPV-MPC laws, specially those that use neither heavy offline procedures nor excessive online conservativeness (as when computing all possible scheduling trajectories). Such novel tool would be an welcome extended to the MPC paradigm. Thereby, this paper's contributions to this question of prime importance are:

• Considering qLPV models, an online Least-Squares algorithm is proposed for the prediction of ρ inside a future prediction horizon (Section 3); • With these predictions, a qLPV-MPC algorithm is proposed via a standard QP. It is developed with contractive terminal set constraints and a terminal stage cost, used to enlarge the domain of attraction and guarantee feasibility (Section 4); • Numerical simulations of the proposed algorithm applied to a Vehicle Semi-Active Suspension system are presented to demonstrate its effectiveness (Section 5). Conclusions are drawn in Section 6.

PREDICTIVE CONTROL WITH LPV MODELS

The complete standard MPC algorithm is now described. This well-established technique is capable of obtaining an optimal control law that takes into account constraints on the states, outputs and control actions. With some bland assumptions, it is possible to guarantee closed-loop asymptotic stability. MPC is widely used for reference tracking and disturbance rejection in processes control [START_REF] Camacho | Model predictive control[END_REF] and it resides in solving1 :

Problem 1. min U J = Np i=1 MPC Cost (x(k + i|k), y(k + i|k), u(k + i -1|k)) (1) s.t. x(k + i) = f (x(k), u(k)) System Model , (2) 
u(k + i -1|k), x(k + i|k), y(k + i|k) ∈ U, X , Y . ( 3 
)
where U is the sequence of actions inside the prediction horizon N p , i.e. col{u(k|k) , . . . , u(k + N p -1|k)}. Sometimes, a terminal stage cost is also minimized, as well as the use of terminal constraints and slew rates. Throughout this work, take x ∈ R n , u ∈ R m and y ∈ R p , with U, X and Y as the set contraints that define feasibility.

If the system model equality ( 2) is linear (LTI case with

x(k + i) = Ax(k + i) + Bu(k))
, this optimization procedure is in fact a QP, which is easily tackled with standard solvers. Nonetheless, if the system model is LPV, the prediction problem is, in fact, nonlinear. Consider the following generic discrete-time LPV model:

x(k + 1) = A(ρ(k))x(k) + B 1 (ρ(k))u(k) , (4) 
y(k) = C(ρ(k))x(k) + D 1 (ρ(k))u(k) ,
with a vector of scheduling parameters ρ that evolves as:

Γ k = col{ρ(k + 1) , ρ(k + 2) . . . , ρ(k + N p )} . (5)
The model-based prediction that the optimization has to internally solve, with initial condition x(k) = x k , is: 6)

1) x(k + 1|k) = A(ρ(k))x k + B 1 (ρ(k))u(k|k) , (
y(k|k) = C(ρ(k))x k + D 1 (ρ(k))u(k|k) ; 2) x(k + 2|k) = A(ρ(k + 1))A(ρ(k))x k (7) +A(ρ(k + 1)) B 1 (ρ(k)) u(k|k) + B 1 (ρ(k + 1))u(k + 1|k) , y(k + 1|k) = C(ρ(k + 1))A(ρ(k))x k +C(ρ(k + 1)) B 1 (ρ(k)) u(k|k) + D 1 (ρ(k + 1))u(k + 1|k) ;
and so forth, up to the N p -th prediction. Notice that nonlinear terms are already present on the second prediction, as gave Eq. ( 7), which results in a non-QP version of Problem 1. Moreover, to say one has knowledge of Γ k is obviously false, since only ρ(k) is known. For these two reasons, this work investigates how to feasibly translate Problem 1 into a QP version.

PREDICTION OF ρ USING LEAST-SQUARES IDENTIFICATION

As discussed in Sec. 2, for MPC design, it is imperious to describe the response of the system in the future (up to N p steps ahead). With qLPV models, the future outputs y(k + t|k) depend not solely on the future inputs u(k + t), but also on the future (endogenous) scheduling parameters ρ(k + t|k). Although the scheduling signals are known (measured/observed) at instant k, their future behaviours are unknown. Herein, the description of the scheduling parameters (for the future N p ) steps is performed according to an online Least Squares (LS ) procedure, as follows:

Assumption 1. The behaviour of the endogenous scheduling parameters of qLPV systems can be approximately described2 by linear autoregressive (ARX ) models, function of past values of the control signal and measured outputs. This ARX model for the vector of endogenous scheduling parameters is:

ρ(k + N p ) = a 1 ρ(k) + • • • + a Np ρ(k -N p )(8) +b 1 u(k -1)+ . . . +b Np u(k -N p -1) + c 1 1 . . . c p 1 c1 y(k)+ . . . + c 1 Np . . . c p Np c Np y(k -N p ) ,
which is in fact a discrete-time model with N p delays.

Model ( 8) can be extended to write Γ k based solely on known values, which is welcome for the MPC design procedure, as discussed in the sequel. For such, it remains to find parameters a 1 to c p Np . These parameters are coupled together as Θ = col{a 1 . . . c Np }, giving:

ρ(k) = ΘΨ T , ( 9 
) for Ψ = [ρ(k -N p ) . . . ρ(k -2N p ) u(k -N p -1) . . . u(k - 2N p -1) y T (k -N p ) . . . y T (k -2N p )].
The direct solution used to find Θ is an online recursive LS algorithm: 10)

Θ(k) = Θ(k -1) + λQ θ (Ψ(k), ρ(k), y(k), u(k)) , (
Ψ(k) = Ψ(k -1) + µQ ψ (Ψ(k -1), ρ(k), y(k), u(k)) ,
where λ and µ are update percentage parameters (forgetting factors) and Q θ and Q ψ are update functions3 .

After the ARX model parameters are obtained at instant k, based on historical data, an approximate prediction for Γ k from Eq. ( 5) (namely Γk ) is found directly, by computing Eq. ( 8).

NOVEL QUASI LPV MPC ALGORITHM

Using the LS -derived prediction guess Γk , Problem 1 can be converted into a QP version, since the nonlinearities from the predictions (Eqs. ( 6)-( 7)) are no longer4 :

x(k + j|k) = A j ( Γk )x k + B j 1 ( Γk )U , (11) 
y(k + j -1|k) = C j-1 ( Γk )x k + D j-1 1 ( Γk )U .
The proposed qLPV-MPC algorithm must use some other tools in order to guarantee that the domain of attraction is enlarged and that the controller operation is indeed feasible. Notice that, since an approximate solution for the evolution of the scheduling parameters is used, the control policy computed via Problem 1 at instant k may be infeasible due to model-plant mismatches (caused by the differences between Γ k and Γk ) or even drive the system out of an stability region, which can never be allowed.

Firstly introduced by [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF], the use of i) contractive terminal sets and ii) terminal stage costs has become extremely important for the control of uncertain systems (or nonlinear ones with model-plant mismatches, as it is the case herein). These tools allow the controlled system to meet the performance objectives (such as reference tracking, disturbance rejection etc), whilst stability and feasibility are maintained. Both these techniques have been combined with iii) artificial reference tracking, which leads to an enlargement of the domain of attraction of MPC algorithms, finding more options of stable closedloop equilibrium points [START_REF] Limon | Enlarging the domain of attraction of MPC controllers[END_REF].

Remark 1. In [START_REF] Limón | MPC for tracking piecewise constant references for constrained linear systems[END_REF], these three tools are generalized for the case of reference tracking. The framework proposed therein was extended in [START_REF] Ferramosca | Mpc for tracking of constrained nonlinear systems[END_REF], becoming able to guarantee performance and feasibility of such MPC policies when applied to nonlinear systems. In the sequel, they are individually explained:

Reference Tracking

Instead of the usual MPC reference tracking procedure (i.e. weighting the quadratic difference between output and reference in the cost function), consider: 1) Q ∈ R n×n and R ∈ R m×m as positive definite matrices, and 2) K ∈ R m×n as an arbitrary stabilizing control gain s.t.

(A(ρ(k+N p ))+B(ρ(k+N p ))K) is Hurwitz and P ∈ R n×n as a positive definite matriz s.t. (A(ρ(k

+ N p )) + B(ρ(k + N p ))K) T P (A(ρ(k + N p )) + B(ρ(k + N p ))K) -P = -(Q + K T RK).
With these two hypothesis verified and any feasible initial state x 0 , it can be guaranteed that an MPC controller can asymptotically steer the controlled system to the steadystate reference xs in an admissible manner, by minimizing the following adjusted cost function [START_REF] Limón | MPC for tracking piecewise constant references for constrained linear systems[END_REF]:

J RT = J o + ||x(k + N p |k) -x s || 2 P (12) + Np i=1 ||x(k + i|k) -x s || 2 Q + Np i=1 ||u(k + i -1|k) -u s || 2 R ,
with x s ∈ X , u s ∈ U and J o as a quadratic offset function that penalizes the deviation between the artificial reference x s and the target operation point xs .

Note that, with this tool, the pseudo-reference x s is created s.t. the system is set to track it, while this signal must stay as close as possible to the actual reference xs . Moreover, if an output reference ŷ is the preferred option, it must be true that the (possibly time-varying) target steady-state equilibrium p t = (x s , u s ) leads to the desired output ŷ, i.e. ŷ = C(ρ(k + N p ))x s + D 1 (ρ(k + N p ))u s . Remark, once again, that this procedure is approximated due to the use of ρ(k + N p ), which is taken from the LS estimative Γk .

It is reasonable to assume that the target operation point p t = (x s , u s ) is an admissible steady-state, which derives from system (4) being LPV -stabilizable, w.r.t. the definition presented by [START_REF] Shamma | An overview of lpv systems[END_REF].

Terminal Cost J o

The inclusion of a suitable penalization of the terminal state combined with a terminal constraint can lead to asymptotic stability with satisfaction of performance contraints can be proved, as done in [START_REF] Ferramosca | Mpc for tracking of constrained nonlinear systems[END_REF].

For such, the offset J o should be convex s.t.: 13) where β 1 , β 2 are positive real constants and p s = (x s , u s ).

β 1 ||x s -xs || 1 ≤ J o (p s , p t ) ≤ β 2 ||x s -xs || 1 , (
These two tools guarantee that if the system evolves as predicted (i.e. Γ k = Γk ) and if p t is an admissible point contained inside the tracking set, then it is an asymptotically stable point in closed-loop. Elsewise, the final closedloop equilibrium is p s = (x s , u s ) = arg min ps J o (p s , p t ).

Contractive Terminal Set

As (very importantly) introduced by [START_REF] Blanchini | Set invariance in control[END_REF], the notion of reachable sets is recalled: 1) a set Υ ⊂ R n is a control invariant set for system (4), subject to its operational constraints (3), if, for all x ∈ Υ there exists an admissible input u = u(x) ∈ R m such that f (x, u) ∈ Υ5 ; 2) the one-step set of Υ, Q{Υ}, stands for the set of states which can be steered in one step k to the target set Υ by an admissible control action; 3) a given set Υ is, thence, a control invariant set iff Υ ⊆ Q{Υ}; 4) a sequence of reachable sets {Υ i } is the sequence of sets by which the x can be driven through, passing from one set Υ i to the following Υ i-1 , in an admissible way, finally reaching the (target invariant set) Υ, see [START_REF] Bertsekas | On the minimax reachability of target sets and target tubes[END_REF].

Then, to guarantee that in N r steps the controlled system (4) reaches a control invariant set Υ that contains the target performance steady-state equilibrium point p t , the following contractive terminal set constraint is derived:

x(N P ) ∈ Υ j , j = max{N r -k , 0} , (14) under the assumption that a sequence of N r reachable sets {Υ i } is available. This terminal set Υ j is equal to the larger Υ Nr at the initial instant k 0 being shrinked subsequently until, at k 0 + N r , it becomes the smallest set Υ.

When the above constraint is coupled to the MPC design, there is indeed an enlargement of its domain of attraction, giving further holds on stability and feasibility, which are needed due to model-plant differences, i.e. Γ k = Γk . Note that the sequence of reachable sets are computed with Γk . If further robustness is sought, one could assume bounded rates on ρ (i.e. dρ dt (t) ∈ Ṗ) and compute all possible trajectories and reachable set sequences from x k and, finally, take their intersection as {Υ i }.

Since all the necessary tools have now been presented, the novel qLPV-MPC algorithm is obtained as follows: Algorithm 1. (1) Iterate Eq. ( 10), obtaining an approximate guess for the N p -steps evolution of the scheduling parameters Γk ;

(2) Find the linear system evolution/prediction laws that approximate the behaviour of the controlled qLPV system for the next N p steps, given by Eq. ( 11) with j = 1 , . . . , N p . (3) Then, solve the following QP : min

U J = J RT (15) + Np i=1 (x(k + i|k), y(k + i|k), u(k + i -1|k))
s.t. System Evolution: Eq. ( 11) ,

y(k + i|k) ∈ Y , u(k + i -1|k) ∈ U , x(k + i|k) ∈ X , x(k + N P |k) ∈ Υ j , j = max{N r -k , 0} , (4 
) From the solution U , take the first entry u(k|k) and apply it to the controlled plant.

Note that the policy derived from this algorithm is imperiously time-varying for the first N r samples, due to the contractive terminal constraint. Usually, N r ≥ N p .

NUMERICAL EXAMPLE

Simulation results are now presented to assess the performance of the proposed qLPV-MPC policy achieved with Algorithm 1. The considered study-case is the control of the vertical dynamics of a 1/5-scaled vehicle equipped with 4 semi-active dampers6 . This system is described by a Quarter-of-Vehicle qLPV model that comprises the vertical displacement of each chassis corner z s (t) and of each wheel z us (t), due to the road disturbances z r (t). The control input for this system is the damping coefficient variation u(t); the complete damping force is given by F d (t) = (c + u(t)) ( żs (t) -żus (t)). This damping force is naturally bounded, which leads to the dissipativity contraints u(t) ∈ D = [u , u]. The endogenous scheduling parameter is the suspension deflection velocity ρ = żs (t)żus (t). The vertical acceleration variables are the sole measurable outputs, with the use of on-board vehicle sensors (i.e. inertial units), this is: T . Model matrices are:

ẋ(t) = Ax(t) + B 1 (ρ)u(t) + B 2 z r (t) y(t) = Cx(t) + D 1 (ρ)u(t) , (16) 
A =        0 1 0 0 -k s m s -c m s k m s c m s 0 0 0 1 k s m us c m us - (k t + k s ) m us -c m us        , B 2 =      0 0 0 k t m us      , B 1 (ρ) =   =-D T 1 (ρ) 0 - ρ m s D T 1 (ρ)   T , C = 1 0 -1 0 -k s m s 0 k s m s 0 .
The control goal (•) is set to minimize both chassis and wheel accelerations and, by doing so, to achieve a smoother and more comfortable drive, while respecting the semiactive (min./max.) dissipativity constraints (Morato et al., 2018a). 2018a), the prediction horizon N p is taken as 10 samples, while the contractive horizon N r is taken as 50. This means that control set shrinks with the pace five times slower than the receding horizon (note that N r does not slide). To be in accordance with the control goal, the traget equilibrium is taken as p

t = (x s , u s ) = ([ • 0 • 0 ] , 0). Weighting matrices are Q = a 1 I n and R = a 1 I m .
To elucidate the effectiveness of Algorithm 1, the proposed controller is compared to a simpler one (namely SMPC ), that makes no use of the terminal cost and set tools described in Sec. 4, simply solving the original MPC Problem (1) with a constant prediction guess for the scheduling parameter, i.e. ρ(k + t|k) ≈ ρ(k|k).

In terms of numerical complexity, the proposed qLPV-MPC method takes, in average, only 3.09 % longer elapsed (computational) time to compute the control policy u(k). This is tolerable amount, given that it does not violate operational contraints, but achieves significantly better performances, as demonstrated in the sequel: Fig. 2 shows the controlled outputs (accelerations of the chassis axle zs (t) and wheel link zus (t)) with both methods. It is evident that the proposed qLPV-MPC technique can further minimize the control objective (•), while abiding to the dissipativity constraints D (shown in Fig. 3 7 ). Numerically speaking, the proposed approach (compared to the SMPC ) presents a significant 9.35 % of reduction of the root-mean-square value of the performance objective (•)8 , which would certainly be felt in terms of passenger comfort. Finally, Fig. 5 shows the evolution of the velocity states żs (t) and żus (t) and illustrates the sequence of reachable control sets9 . It is clear that the contractive terminal set constraint ( 14) makes these velocities converge to a final set Υ (from t = 1 to 5 s), guaranteeing that the system is not driven into instability. This paper elaborated on a novel MPC algorithm for nonlinear systems with qLPV models. The method takes a LS guess for the future scheduling parameters behaviours, which transforms the nonlinear prediction problem into a linear QP. This is a welcome application, since many nonlinear systems can be embedded in the qLPV representation form. The algorithm is applied to the control of a Semi-Active suspension system, achieving good results. For further works, stronger stability, optimality and feasibility holds of the proposed algorithm will be presented.

  Fig. 1. (Front-Left) Simulation Scenario As suggests Morato et al. (2018a), the prediction horizon N p is taken as 10 samples, while the contractive horizon N r is taken as 50. This means that control set shrinks with the pace five times slower than the receding horizon (note that N r does not slide). To be in accordance with the control goal, the traget equilibrium is taken as p t = (x s , u s ) = ([ • 0 • 0 ] , 0). Weighting matrices are Q = a 1 I n and R = a 1 I m .
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 2 Fig. 2. (Front-Left) Sprung/Unsprung Accelerations and Damper Force

Fig. 4 .

 4 Fig. 4. (Front-Left) Scheduling Parameter Evolution

  Fig. 5. Contractive Terminal Set Contraint 6. CONCLUSIONS

Notation (k + i|k) is used to represent a predicted value for instant k + i, computed at instant k. For now, the presence of disturbances is suppressed, for simplicity.

Note that this assumption is quite reasonable for qLPV models, since the scheduling parameters, at some instant k , are imperiously function of the states and inputs, i.e. ρ(k ) = fρ(u(k ), y(k )). Although ρ is varying over its whole spectrum, the ARX model can give an approximate guess for its future behaviour (Np steps) from the viewpoint of instant k .

This paper will not prolong itself on this procedure; the complete deduction is found in[START_REF] Ljung | System identification: theory for the user[END_REF], see Chapter 11.2.

Note that the nonlinear terms become constant matrices, dependent on (the fixed) Γk .

The vectorial map f represents the LPV system model application, i.e. f (x, u) = A(ρ(k))x(k) + B 1 (ρ(k))u(k).

Refer to http://www.gipsa-lab.fr/projet/inove/. Results are shown for the front-left corner of the vehicle; similar results were obtained for the other corners

Note that the SMPC approach disrespects these contraints at some moments!

The obtained rms{ (•)} values were 0.21217 (SMPC ) and 0.19233 (qLPV-MPC ).

The boxes are not the actual sets, but just illustration tools to show how they shrink.