K. Ashurbekova, S. Achard, and F. Forbes, Robust structure learning using multivariate t-distributions, 50e Journées de la Statistique de la SFdS, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01941643

T. Cai, W. Liu, and X. Luo, A constrained l-1 minimization approach to sparse precision matrix estimation, J. Am. Stat. Assoc, vol.106, issue.494, pp.594-607, 2011.

T. T. Cai, Z. Ren, and H. H. Zhou, Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation, Electron. J. Stat, vol.10, issue.1, pp.1-59, 2016.

J. Fan, Y. Liao, and H. Liu, An overview of the estimation of large covariance and precision matrices, Econom. J, vol.19, issue.1, 2016.

M. Finegold and M. Drton, Robust graphical modeling of gene networks using classical and alternative t-distributions, Ann. Appl. Stat, pp.1057-1080, 2011.

J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol.9, issue.3, pp.432-441, 2008.

L. Han and W. Lie, Tiger: A tuning-insensitive approach for optimally estimating gaussian graphical models, 2012.

T. Sun and C. H. Zhang, Sparse matrix inversion with scaled lasso, J. Mach. Learn. Res, vol.14, issue.1, pp.3385-3418, 2013.

T. Zhao and H. Liu, Calibrated precision matrix estimation for high-dimensional elliptical distributions, IEEE Trans. Inf. Theory, vol.60, issue.12, pp.7874-7887, 2014.