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I. ABSTRACT

A. Brief introduction

The literature on sparse precision matrix estimation is rapidly
growing and received significant attention from the research com-
munity [4], [3]. Many strong methods are valid only for Gaussian
variables [8], [7]. One of the most commonly used approaches in this
case is glasso [6] which aims to minimize the negative L1-penalized
log-likelihood function:

min
Θ�0

tr(ΘS)− log det(Θ) + ρ‖Θ‖1 (1)

S = 1
n

∑n
i=1(xi − µ)(xi − µ)T is the sample covariance matrix

of observed independent samples x1, · · · ,xn from N(µ,Σ), Θ =
Σ−1 is the precision matrix, ρ is a regularization parameter.

In practice, data may deviate from normality in various ways,
outliers and heavy tails frequently occur that can severely degrade
the Gaussian models performance. A natural solution is to turn to
heavier tailed distributions that remain tractable. For this purpose,
we propose a penalized version of EM-algorithm for Gaussian Scale
Mixtures. The proposition we state below allows us to design the
penalized EM algorithm valid for the distributions that can be seen
as Gaussian Scale Mixtures.

Definition 1 (Scale mixture of multivariate Gaussian distributions).
If µ is a p-dimensional vector, Σ is a p×p positive definite symmetric
matrix and fW is a probability distribution function of a univariate
positive variable W ∈ R+, then the p-dimensional density given by

p(x;µ,Σ,θ) =

∞∫
0

Np
(
x;µ,

Σ

w

)
fW (w;θ) dw (2)

is said to be a scale mixture of Gaussian densities with mixing
distribution function fW . If vector X has density (2), we write
X ∼ GSMp(µ,Σ, fW ) and we refer to W as the mixing variable.

Proposition 1. Let X ∼ GSMp(µ,Σ, fW ) and W denote the
mixing variable. Then X has an elliptical distribution

p(x : µ,Σ, fW ) = (2π)
p
2 |Σ|−

1
2 g((x− µ)TΣ−1(x− µ))

with generator g(t) = g(t) =
∫∞
0
w

p
2 exp(− 1

2
tw)fW (w)dw. It

follows that

E[W |x,Ψ] = −2
g′((x− µ)TΣ−1(x− µ))

g((x− µ)TΣ−1(x− µ))
,

where g′ is the derivative of g.

B. Penalized EM algorithm for Gaussian Scale Mixtures

Like in the Gaussian case, we put a L1-norm penalty on the
elements of the matrix Θ and wish to maximize the penalized log-
likelihood function. Let us consider n i.i.d. variables xi following a

GSMp(µ,Σ, fW ) distribution for i = 1 : n, the model parameters
to estimate are Ψ = {µ,Σ,θ}. Introducing the corresponding latent
variables {Wi, i = 1 : n}, we can consider an EM algorithm. The
expected complete likelihood Q(Ψ,Ψ(r−1)) at iteration (r) of the
algorithm takes the form:

Q(Ψ,Ψ(r−1)) =

n∑
i=1

E
[
log p(xi|Wi;µ,Σ)|xi,Ψ(r−1)

]
+

+ E
[
log fW (Wi)|xi,Ψ(r−1)

]
− ρ‖Σ−1‖1 (3)

By definition the distribution of (xi|Wi = wi) is N ( . ;µ, Σ
wi

) and
does not depend on θ.

The E-step is the same as for non-penalized version. For i =
1 : n, compute E[Wi|xi,Ψ(r−1)] according to Proposition 1 we
get: E[Wi|xi,Ψ(r−1)] = w̄

(r)
i = −2 g

′(δ(x,µ(r−1),Σ(r−1)))

g(δ(x,µ(r−1),Σ(r−1)))
, where

δ(x,µ,Σ) = (x − µ)TΣ−1(x − µ) is the Mahalanobis distance
between x and µ.

For the updating of Ψ, the M-step consists of two independent
steps for {µ,Σ} and θ respectively. The update for the vector µ
as well as for parameter θ has the same form as for non-penalized
version of EM. In contrast with the non-penalized version, the update
value Θ(r) is found by solving the following optimization problem:

min
Θ�0

tr(ΘS
(r)

)− log det(Θ) + ρ‖Θ‖1, (4)

where a ”weighted sample covariance matrix” S
(r)

and vector µ
are computed as S(r) = 1

n

∑n
i=1 w̄

(r)
i (xi − µ(r))(xi − µ(r))T and

µ(r) =
∑n
i=1(w̄

(r)
i xi)/

∑n
i=1 w̄

(r)
i . Note that (4) is a similar ob-

jective function minimized by glasso, so that the proposed penalized
algorithm reduces to solving at each iteration a glasso optimization
problem. There is no need to inverse the matrix Σ on each step
since for all i = 1 : n the variables w̄i depend on Θ(r−1) and not on
Σ(r−1). Moreover, it is shown in [1] that the optimization problem
4 can be replaced by more efficient CLIME algorithm [2].

C. Results

As a particular example of the described approach, Finegold and
Drton [5] proposed a tlasso procedure for multivariate t-distribution.
We compare the results of tlasso, tCLIME [1] which a modified
version of tlasso, CLIME [3] and EPIC method [9] designed for
elliptical distributions. To measure how well the sparsity of the true
precision matrix is recovered, we plot ROC curves presented in
Figure 1. For Gaussian data, the tCLIME and EPIC performance
is similar and better than that of tlasso and CLIME. When data is
generated from a t-distribution, tCLIME significantly outperforms
CLIME and also shows better results than EPIC and tlasso.

Index Terms—Structure learning, Gaussian Scale Mixtures, Gaussian
graphical model, t-distribution, sparse precision matrix estimation, robust
estimation



Fig. 1: ROC curves illustrating the performance of tlasso, CLIME,
tCLIME and EPIC methods on 2 different data sets. A random 100×100

sparse precision matrix Θ is generated according to the procedure
described in [5]; n=150 observations are simulated from t100(0,Θ

−1, 3)
and N100(0,Θ

−1). The four algorithms are then run with different values
of ρ and the whole process is repeated 50 times. The tuning parameter ρ is
chosen in the range [0.1, 2.5] with stepsize 0.05 for tlasso and [0.01, 0.4]
with stepsize 0.01 for CLIME, tCLIME anf EPIC.
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