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Robust penalized inference for Gaussian Scale Mixtures

The literature on sparse precision matrix estimation is rapidly growing and received significant attention from the research community [START_REF] Fan | An overview of the estimation of large covariance and precision matrices[END_REF], [START_REF] Cai | Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation[END_REF]. Many strong methods are valid only for Gaussian variables [START_REF] Sun | Sparse matrix inversion with scaled lasso[END_REF], [START_REF] Han | Tiger: A tuning-insensitive approach for optimally estimating gaussian graphical models[END_REF]. One of the most commonly used approaches in this case is glasso [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF] which aims to minimize the negative L1-penalized log-likelihood function:

min Θ 0 tr(ΘS) -log det(Θ) + ρ Θ 1 (1) 
S = 1 n n i=1 (xi -µ)(xi -µ) T is the sample covariance matrix of observed independent samples x1, • • • , xn from N (µ, Σ), Θ = Σ -1 is the precision matrix, ρ is a regularization parameter.
In practice, data may deviate from normality in various ways, outliers and heavy tails frequently occur that can severely degrade the Gaussian models performance. A natural solution is to turn to heavier tailed distributions that remain tractable. For this purpose, we propose a penalized version of EM-algorithm for Gaussian Scale Mixtures. The proposition we state below allows us to design the penalized EM algorithm valid for the distributions that can be seen as Gaussian Scale Mixtures.

Definition 1 (Scale mixture of multivariate Gaussian distributions).

If µ is a p-dimensional vector, Σ is a p×p positive definite symmetric matrix and fW is a probability distribution function of a univariate positive variable W ∈ R + , then the p-dimensional density given by

p(x; µ, Σ, θ) = ∞ 0 Np x; µ, Σ w fW (w; θ) dw (2) 
is said to be a scale mixture of Gaussian densities with mixing distribution function fW . If vector X has density (2), we write X ∼ GSM p (µ, Σ, fW ) and we refer to W as the mixing variable.

Proposition 1. Let X ∼ GSM p (µ, Σ, fW ) and W denote the mixing variable. Then X has an elliptical distribution

p(x : µ, Σ, fW ) = (2π) p 2 |Σ| -1 2 g((x -µ) T Σ -1 (x -µ)) with generator g(t) = g(t) = ∞ 0 w p 2 exp(-1 2 tw)fW (w)dw. It follows that E[W |x, Ψ] = -2 g ((x -µ) T Σ -1 (x -µ)) g((x -µ) T Σ -1 (x -µ)) ,
where g is the derivative of g.

B. Penalized EM algorithm for Gaussian Scale Mixtures

Like in the Gaussian case, we put a L1-norm penalty on the elements of the matrix Θ and wish to maximize the penalized loglikelihood function. Let us consider n i.i.d. variables xi following a GSM p (µ, Σ, fW ) distribution for i = 1 : n, the model parameters to estimate are Ψ = {µ, Σ, θ}. Introducing the corresponding latent variables {Wi, i = 1 : n}, we can consider an EM algorithm. The expected complete likelihood Q(Ψ, Ψ (r-1) ) at iteration (r) of the algorithm takes the form:

Q(Ψ, Ψ (r-1) ) = n i=1 E log p(xi|Wi; µ, Σ)|xi, Ψ (r-1) + + E log fW (Wi)|xi, Ψ (r-1) -ρ Σ -1 1 (3) 
By definition the distribution of (xi|Wi = wi) is N ( . ; µ, Σ w i ) and does not depend on θ.

The E-step is the same as for non-penalized version. For i = 1 : n, compute E[Wi|xi, Ψ (r-1) ] according to Proposition 1 we get: E[Wi|xi, Ψ (r-1) ] = w(r) i = -2 g (δ(x,µ (r-1) ,Σ (r-1) )) g(δ(x,µ (r-1) ,Σ (r-1) )) , where δ(x, µ, Σ) = (x -µ) T Σ -1 (x -µ) is the Mahalanobis distance between x and µ.

For the updating of Ψ, the M-step consists of two independent steps for {µ, Σ} and θ respectively. The update for the vector µ as well as for parameter θ has the same form as for non-penalized version of EM. In contrast with the non-penalized version, the update value Θ (r) is found by solving the following optimization problem:

min Θ 0 tr(ΘS (r) ) -log det(Θ) + ρ Θ 1, (4) 
where a "weighted sample covariance matrix" S (r)

and vector µ are computed as 4) is a similar objective function minimized by glasso, so that the proposed penalized algorithm reduces to solving at each iteration a glasso optimization problem. There is no need to inverse the matrix Σ on each step since for all i = 1 : n the variables wi depend on Θ (r-1) and not on Σ (r-1) . Moreover, it is shown in [START_REF] Ashurbekova | Robust structure learning using multivariate t-distributions[END_REF] that the optimization problem 4 can be replaced by more efficient CLIME algorithm [START_REF] Cai | A constrained l-1 minimization approach to sparse precision matrix estimation[END_REF].

S (r) = 1 n n i=1 w(r) i (xi -µ (r) )(xi -µ (r) ) T and µ (r) = n i=1 ( w(r) i xi)/ n i=1 w(r) i . Note that (

C. Results

As a particular example of the described approach, Finegold and Drton [START_REF] Finegold | Robust graphical modeling of gene networks using classical and alternative t-distributions[END_REF] proposed a tlasso procedure for multivariate t-distribution. We compare the results of tlasso, tCLIME [START_REF] Ashurbekova | Robust structure learning using multivariate t-distributions[END_REF] which a modified version of tlasso, CLIME [START_REF] Cai | Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation[END_REF] and EPIC method [START_REF] Zhao | Calibrated precision matrix estimation for high-dimensional elliptical distributions[END_REF] designed for elliptical distributions. To measure how well the sparsity of the true precision matrix is recovered, we plot ROC curves presented in Figure 1. For Gaussian data, the tCLIME and EPIC performance is similar and better than that of tlasso and CLIME. When data is generated from a t-distribution, tCLIME significantly outperforms CLIME and also shows better results than EPIC and tlasso.

Index Terms-Structure learning, Gaussian Scale Mixtures, Gaussian graphical model, t-distribution, sparse precision matrix estimation, robust estimation Fig. 1: ROC curves illustrating the performance of tlasso, CLIME, tCLIME and EPIC methods on 2 different data sets. A random 100 × 100 sparse precision matrix Θ is generated according to the procedure described in [START_REF] Finegold | Robust graphical modeling of gene networks using classical and alternative t-distributions[END_REF]; n=150 observations are simulated from t 100 (0, Θ -1 , 3) and N 100 (0, Θ -1 ). The four algorithms are then run with different values of ρ and the whole process is repeated 50 times. The tuning parameter ρ is chosen in the range [0.1, 2.5] with stepsize 0.05 for tlasso and [0.01, 0.4] with stepsize 0.01 for CLIME, tCLIME anf EPIC.