O. Banerjee, L. E. Ghaoui, and A. , Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data, J. Mach. Learn. Res, vol.9, pp.485-516, 2008.

P. Bickel and E. Levina, Covariance regularization by thresholding, The Annals of Statistics, vol.36, issue.6, pp.2577-2604, 2008.

J. Bien and R. Tibshirani, Sparse estimation of a covariance matrix, Biometrika, vol.98, issue.4, pp.807-820, 2011.

E. Bullmore and O. Sporns, The economy of brain network organization, Nature Reviews Neuroscience, vol.13, issue.5, p.336, 2012.

T. Cai, W. Liu, and X. Luo, A constrained 1 minimization approach to sparse precision matrix estimation, Journal of the American Statistical Association, vol.106, issue.494, pp.594-607, 2011.

T. Cai, Z. Ren, and H. Zhou, Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation, Electron. J. Stat, vol.10, issue.1, pp.1-59, 2016.

X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, Learning laplacian matrix in smooth graph signal representations, IEEE Transactions on Signal Processing, vol.64, issue.23, pp.6160-6173, 2016.

J. Fan, Y. Liao, and H. Liu, An overview of the estimation of large covariance and precision matrices, Econom. J, vol.19, issue.1, 2016.

S. Fattahi and S. Sojoudi, Graphical lasso and thresholding: Equivalence and closed-form solutions, 2017.

J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol.9, issue.3, pp.432-441, 2008.

N. Friedman and D. Koller, Probabilistic graphical models: Principles and techniques, 2009.

O. Ledoit and M. Wolf, A well-conditioned estimator for largedimensional covariance matrices, Journal of multivariate analysis, vol.88, issue.2, pp.365-411, 2004.

J. Mei and J. Moura, Signal processing on graphs: Estimating the structure of a graph, International Conference on Acoustics, Speech and Signal Processing, pp.5495-5499, 2015.

A. J. Rothman, E. Levina, and J. Zhu, Generalized thresholding of large covariance matrices, Journal of the American Statistical Association, vol.104, issue.485, pp.177-186, 2009.

M. Rubinov and O. Sporns, Complex network measures of brain connectivity: uses and interpretations, Neuroimage, vol.52, issue.3, pp.1059-1069, 2010.

S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, Network topology inference from spectral templates, IEEE Transactions on Signal and Information Processing over Networks, vol.3, issue.3, pp.467-483, 2017.

M. Termenon, C. Delon-martin, A. Jaillard, and S. Achard, Reliability of graph analysis of resting state fMRI using test-retest dataset from the human connectome project, Neuroimage, vol.142, issue.15, pp.172-187, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01330966

H. Wang, Coordinate descent algorithm for covariance graphical lasso, Statistics and Computing, vol.24, issue.4, pp.521-529, 2014.

E. Yang, A. C. Lozano, and P. Ravikumar, Elementary estimators for graphical models, Advances in neural information processing systems, pp.2159-2167, 2014.

E. Yang, A. C. Lozano, and P. Ravikumar, Elementary estimators for sparse covariance matrices and other structured moments, International conference on machine learning, pp.397-405, 2014.

R. Yehezkel and B. Lerner, Bayesian network structure learning by recursive autonomy identification, Journal of Machine Learning Research, vol.10, pp.1527-1570, 2009.

M. Yuan, High dimensional inverse covariance matrix estimation via linear programming, Journal of Machine Learning Research, vol.11, pp.2261-2286, 2010.

M. Yuan and Y. Lin, Model selection and estimation in the Gaussian graphical model, Biometrika, vol.94, issue.1, pp.19-35, 2007.