A. Abadie and G. W. Imbens, Large sample properties of matching estimators for average treatment effects, Econometrica, vol.74, issue.1, pp.235-267, 2006.

A. B. Abdesslem and R. Chiappini, Cluster policy and firm performance: A case study of the french optic/photonic industry, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01834216

A. Chávez, S. Garcia-quevedo, and J. , The impact of r&d subsidies on r&d employment composition, Industrial and Corporate Change, vol.25, issue.6, pp.955-975, 2016.

D. Angrist, Estimating the labor market impact of voluntary military service using social security data on military applicants, Econometrica, vol.66, issue.2, 1998.

C. Bellégo and V. Dortet-bernadet, L'impact de la participation aux pôles de compétitivité sur les pme et les eti, Economie et statistique, vol.471, issue.1, pp.65-83, 2014.

H. Ben-hassine and C. Mathieu, Évaluation de la politique des pôles de compétitivité : la fin d'une malédiction ? Document de travail n ? 2017-03, 2017.

R. Blundell, C. Dias, and M. , Alternative approaches to evaluation in empirical microeconomics, Journal of Human Resources, vol.44, issue.3, pp.565-640, 2009.

L. G. Branstetter and M. Sakakibara, When do research consortia work well and why? evidence from japanese panel data, The American Economic Review, vol.92, issue.1, pp.143-159, 2002.

O. Brossard and I. Moussa, The french cluster policy put to the test with differences-in-differences estimates, Economics Bulletin, vol.34, issue.1, pp.520-529, 2014.
URL : https://hal.archives-ouvertes.fr/halshs-01228857

M. Caliendo and S. Kopeinig, Some practical guidance for the implementation of propensity score matching, Journal of economic surveys, vol.22, issue.1, pp.31-72, 2008.

M. Cano-kollmann, I. Hamilton, R. D. Mudambi, and R. , Public support for innovation and the openness of firms' innovation activities, Industrial and Corporate Change, vol.26, issue.3, pp.421-442, 2016.

M. Chaudey and M. Dessertine, Impact sur l'emploi de la participation aux projets de r&d des pôles de compétitivité. méthode et résultats, 2016.

W. Cochrane and D. Rubin, Controlling bias in observational studies, Sankyha, vol.35, issue.4, pp.417-446, 1973.

E. Commission, Smart guide to cluster policy, 2016.

C. Criscuolo, R. Martin, H. Overman, and J. Van-reenen, The effect of industrial policy on corporate performance: Evidence from panel data, 2007.

. Datar, La france, puissance indutrielle. une nouvelle politique industrielle par les territoires, la documentation française, paris, 2004.

R. H. Dehejia and S. Wahba, Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs, Journal of the American statistical Association, vol.94, issue.448, pp.1053-1062, 1999.

R. H. Dehejia and S. Wahba, Propensity score-matching methods for nonexperimental causal studies, Review of Economics and statistics, vol.84, issue.1, pp.151-161, 2002.

A. Diamond and J. S. Sekhon, Genetic matching for estimating causal effects: A general multivariate matching method for achieving balance in observational studies, Review of Economics and Statistics, vol.95, issue.3, pp.932-945, 2013.

R. Dieye and N. M. Massard, Subventions et politique des pôles de compétitivité dans les départements français: Une mesure des effets spatiaux et de réseaux sur données agrégées, p.36, 2019.

C. Dujardin, V. Louis, and F. Mayneris, Les pôles de compétitivité wallons quel impact sur les performanceséconomiques des entreprises? the walloon competitiveness clusters and their impact on firms' economic performances?, 2015.

D. Engel, T. Mitze, R. Patuelli, and J. Reinkowski, Does cluster policy trigger r&d activity? evidence from german biotech contests, European Planning Studies, vol.21, issue.11, pp.1735-1759, 2013.

B. Erdyn-technopolis, Étude portant sur l'évaluation des pôles de compétitivité, 2012.

O. Falck, S. Heblich, and S. Kipar, Industrial innovation: Direct evidence from a cluster-oriented policy, Regional Science and Urban Economics, vol.40, issue.6, pp.574-582, 2010.

L. Fontagné, P. Koenig, F. Mayneris, and S. Poncet, Cluster policies and firm selection: Evidence from france, Journal of regional science, vol.53, issue.5, pp.897-922, 2013.

M. Freel, R. Liu, and C. Rammer, The export additionality of innovation policy, Industrial and Corporate Change, 2019.

M. M. Garrido, A. S. Kelley, J. Paris, K. Roza, D. E. Meier et al., Methods for constructing and assessing propensity scores, Health services research, vol.49, issue.5, pp.1701-1720, 2014.

J. Heckman, H. Ichimura, J. Smith, T. , and P. , Characterizing selection bias using experimental data, 1998.

J. J. Heckman, H. Ichimura, and P. E. Todd, Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme. The review of economic studies, vol.64, pp.605-654, 1997.

J. J. Heckman, R. J. Lalonde, and J. A. Smith, The economics and econometrics of active labor market programs, Handbook of labor economics, vol.3, pp.1865-2097, 1999.

G. W. Imbens and J. M. Wooldridge, Recent developments in the econometrics of program evaluation, Journal of economic literature, vol.47, issue.1, pp.5-86, 2009.

S. R. Khandker, G. B. Koolwal, and H. A. Samad, Handbook on impact evaluation: quantitative methods and practices, 2010.

M. Lechner, Program heterogeneity and propensity score matching: An application to the evaluation of active labor market policies, Review of Economics and Statistics, vol.84, issue.2, pp.205-220, 2002.

P. Martin, T. Mayer, and F. Mayneris, Public support to clusters: A firm level study of french "local productive systems, Regional Science and Urban Economics, vol.41, issue.2, pp.108-123, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01066195

J. Nishimura and H. Okamuro, R&d productivity and the organization of cluster policy: An empirical evaluation of the industrial cluster project in japan, The Journal of Technology Transfer, vol.36, issue.2, pp.117-144, 2011.

J. Nishimura and H. Okamuro, Subsidy and networking: The effects of direct and indirect support programs of the cluster policy, Research Policy, vol.40, issue.5, pp.714-727, 2011.

P. R. Rosenbaum and D. B. Rubin, The central role of the propensity score in observational studies for causal effects, Biometrika, vol.70, issue.1, pp.41-55, 1983.

P. R. Rosenbaum and D. B. Rubin, Constructing a control group using multivariate matched sampling methods that incorporate the propensity score, The American Statistician, vol.39, issue.1, pp.33-38, 1985.

A. D. Roy, Some thoughts on the distribution of earnings, Oxford Economic Papers, vol.3, issue.2, pp.135-146, 1951.

D. B. Rubin, Estimating causal effects of treatments in randomized and nonrandomized studies, Journal of educational Psychology, vol.66, issue.5, p.688, 1974.

D. B. Rubin and N. Thomas, Characterizing the effect of matching using linear propensity score methods with normal distributions, Biometrika, vol.79, issue.4, pp.797-809, 1992.

J. S. Sekhon, Multivariate and propensity score matching software with automated balance optimization: The Matching package for R, Journal of Statistical Software, vol.42, issue.7, pp.1-52, 2011.

M. Sopoligová and D. Pavelková, Cluster policy in europe and asia: A comparison using selected cluster policy characteristics, Studies, vol.10, issue.3, pp.35-50, 2017.

E. A. Stuart, Matching methods for causal inference: A review and a look forward, Statistical science: a review journal of the Institute of Mathematical Statistics, vol.25, issue.1, p.1, 2010.

. Tactics, Impact evaluation of cluster-based policies, 2012.

E. Uyarra and R. Ramlogan, The effects of cluster policy on innovation. Compendium of Evidence on the Effectiveness of Innovation Policy Intervention, 2012.