N

N

Neural network regression for Bermudan option pricing

Bernard Lapeyre, Jérome Lelong

» To cite this version:

Bernard Lapeyre, Jérome Lelong. Neural network regression for Bermudan option pricing. 2019.
hal-02183587v2

HAL Id: hal-02183587
https://hal.univ-grenoble-alpes.fr/hal-02183587v2

Preprint submitted on 10 Dec 2019 (v2), last revised 27 Nov 2020 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.univ-grenoble-alpes.fr/hal-02183587v2
https://hal.archives-ouvertes.fr

Neural network regression
for Bermudan option pricing

Bernard Lapeyre* Jérome Lelong |

December 10, 2019

Abstract

The pricing of Bermudan options amounts to solving a dynamic programming princi-
ple, in which the main difficulty, especially in high dimension, comes from the conditional
expectation involved in the computation of the continuation value. These conditional ex-
pectations are classically computed by regression techniques on a finite dimensional vector
space. In this work, we study neural networks approximations of conditional expectations.
We prove the convergence of the well-known Longstaff and Schwartz algorithm when the
standard least-square regression is replaced by a neural network approximation. We illustrate
the numerical efficiency of neural networks as an alternative to standard regression methods
for approximating conditional expectations on several numerical examples.

Key words: Bermudan options, optimal stopping, regression methods, deep learning, neural
networks.

1 Introduction

Solving the backward recursion involved in the computation american option prices has been a
challenging problem for years and various approaches have been proposed to approximate its
solution. The real difficulty lies in the computation of the conditional expectation E[Ur, ,, | Fr,]
at each time step of the recursion. If we were to classify the different approaches, we could
say that there are regression based approaches (see Tilley [1993]], (Carriere| [1996]], Tsitsiklis and
Roy| [2001]], Broadie and Glasserman| [2004]]) and quantization approaches (see |Bally and Pages
[2003]], Bronstein et al.[[2013]). We refer to |Bouchard and Warin| [2012] and Pages| [2018]] for
an in depth survey of the different techniques to price Bermudan options.

Among all these available algorithms to compute american option prices using the dynamic
programming principle, the one proposed by |[Longstatf and Schwartz [2001]] has the favour of

*Université Paris-Est, Cermics (ENPC), INRIA, F-77455 Marne-la-Vallée, France
email: bernard. lapeyreQenpc.fr

tUniv. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France.
email: jerome.lelong@univ—-grenoble-alpes.fr

many practitioners. Their approach is based on iteratively selecting an optimal policy. Here, we
propose and analyse a version of this algorithm which uses neural networks in order to compute
an approximation of the conditional expectation and then to obtain an optimal exercising policy.

The use of neural network for the computation of American option prices is not new but we
are aware of no work devoted to its use for Longstaff-Schwartz style algorithms. Kohler et al.
[2010] used neural networks to price American options but he used the dynamic programing
equation on the value function (leading to a|Tsitsiklis and Roy| [2001]-type algorithm instead of
an equation involving only the optimal stopping policy as in|Longstaff and Schwartz [2001]-type
algorithm). Moreover they used new samples of the whole path of the underlying process X at
each time step n to prove the convergence. In our approach, we use a neural network inspired
modification of the original Longstaff-Schwartz algorithm and we draw a set of M samples with
the distribution of (X7, X1y, ..., X1,) before starting and we use these very same samples at
each time step. This save a lot of computational time by avoiding a very costly resimulation at
each time step, which very much improves the efficiency of our approach. Deep learning was
also used in the context of optimal stopping by Becker et al.|[2019alb] to parametrize the optimal
policy.

Now, we describe the framework of our study. We fix some finite time horizon 7" > 0 and a
filtered probability space (2, F, (F:)o<t<r, P) modeling a financial market. We assume that the
short interest rate is modeled by an adapted process (r;)o<:<7 With values in R, and that P is an
associated risk neutral measure. We consider a Bermudan option with exercising dates 0 =t <
Ty < Ty, < --- < Ty = T and discounted payoff ZTn if exercised at time 7,,. For convenience,
we add 0 and T’ to the exercising dates. This is definitely not a requirement of the method
we propose here but it makes notation lighter and avoids to deal with the purely European part
involved in the Bermudan option. We assume that the discrete time discounted payoff process
(Z1,)o<n<n is adapted to the filtration (Fr, Jo<n<n and that E[maxo<,<y |27, |?] < oc.

In a complete market, if [E denote the risk neutral probability, standard arbitrage pricing
arguments allows to define the discounted value (U,)o<,<n of the Bermudan option at times
(Th)o<n<n by

Ur, = sup E[Z]|Fz,]. (1)
T€TT,, T
Using the Snell enveloppe theory, the sequence U can be proved to be given by the following
dynamic programing equation

{UTN = Zr,

(2)
Ur, =max(Zr,,E[Ur, |Fr]), 0<n<N-1L1

This equation can be rewritten in term of optimal policy. Let 7,, be the smallest optimal policy
after time 7,, — the smallest stopping time reaching the supremum in (I]) — then

{TN =Ty)
Tn = Tnl{ZTnZlE[Zm+1|~7:Tn]} + Tn+11{ZT"<E[ZT"+1|]:T"]}.

All these methods based on the dynamic programming principle either as value iteration (2)
or policy iteration (3)) require a Markovian setting to be implemented such that the conditional

2

expectation knowing the whole past can be replaced by the conditional expectation knowing
only the value of a Markov process at the current time. We assume that the discounted payoff
process writes Z7, = ¢,(Xr,), forany 0 < n < N, where (X;)o<;<7 is an adapted Markov
process taking values in R”. Hence, the conditional expectation involved in (3)) simplifies into
EZ., . .|Fr,| = E[Z,,,,|Xr,] and can therefore be approximated by a standard least square
method.

Note that this setting allows to consider most standard financial models. For local volatility
models, the process X is typically defined as X; = (ry, .S;), where S, is the price of an asset and
r; the instantaneous interest rate (only X; = S; when the interest rate is deterministic). In the
case of stochastic volatility models, X also includes the volatility process o, X; = (14, St, 0¢).
Some path dependent options can also fit in this framework at the expense of increasing the
size of the process X. For instance, in the case of an Asian option with payoff (%AT — Sr)y
with A; = f(f S, du, one can define X as X; = (14, S;, 04, A;) and then the Asian option can be
considered as a vanilla option on the two dimensional but non tradable assets (S, A).

Once the Markov process X is identified, the conditional expectations can be written

E[Z:, | Fr,) = ElZ:, | X1, = ¥n(X7,) 4)

where 1,, solves the following minimization problem

inf IE[ZT — (X 2}
perith B || Zn —9(Xn)|

with L?(L£(X7,)) being the set of all measurable functions f such that E[f(Xr,)?] < co. The
real challenge comes from properly approximating the space L*(L£(X7,)) by a finite dimensional
space: one typically uses polynomials or local bases (see Gobet et al. [2005], Bouchard and
Warin [2012]) and in any case it always boils down to a linear regression. In this work, we use
neural networks to approximate v, in (d)). The main difference between neural networks and the
regression approaches commonly used comes from the non linearity of neural networks, which
also make their strength. Note that the set of neural networks with a fixed number of layers and
neurons is obviously not a vector space and not even convex. Through neural networks, this
paper investigates the effects of using non linear approximations of conditional expectations in
the Longstaff Schwartz algorithm.

The paper is organized as follows. In Section [2] we start with some preliminaries on neural
networks and recall the universal approximation theorem. Then, in Section (3| we describe our
algorithm, whose convergence is studied in Section4] Finally, we present some numerical results
in Section

2 Preliminaries on deep neural network

Deep Neural networks (DNN) aim at approximating (complex non linear) functions defined on
finite-dimensional spaces, and in contrast with the usual additive approximation theory built
via basis functions, like polynomials, they rely on composition of layers of simple functions.

The relevance of neural networks comes from the universal approximation theorem and the
Kolmogorov-Arnold representation theorem (see |Arnold| [2009], Kolmogorov| [1956]], Cybenko
[1989], Hornik [1991]]), and this has shown to be successful in numerous practical applications.

We consider the feed forward neural network — also called multilayer perceptron — for the
approximation of the continuation value at each time step. From a mathematical point view, we
can model a DNN by a non linear function

r€X CR +— O(x;0) € R
where @ typically writes as function compositions. Let L > 2 be an integer, we write
b =Ar00,0A;_10---00,04; 5
where for ¢ = 1,..., L, A, : R%-17E" are affine functions
Ay(x) =W + B, fora € R¥%1,

with W, € R%*d-1_and 5, € R%. In our setting, we have d; = r and d;, = 1. The function
o, is often called the activation function and is applied component wise. The number d, of
rows of the matrix W, is usually interpreted as the number of neurons of layer /. For the sake of
simpler notation, we embed all the parameters of the different layers in a unique high dimensional

Let L > 0 be fixed in the following, we introduce the set NN, of all DNN of the above
form. Now, we need to restrict the maximum number of neurons per layer. Letp € N, p > 1, we
denote by NN, the set of neural networks with at most p neurons per layer and L — 1 layers and
bounded parameters. More precisely, we pick an increasing sequence of positive real numbers
(7p)p such that lim,,_,, vy, = co. We introduce the set

O, = {# € R x R? x (R” x RP*P)" 7 x RP x RP*? : |g] < 7,). (6)
Then, N', is defined by
NN, = {D(-6) : 6 €0,

and we have NN, = UpenNN,,. An element of N, with be denoted by ®,(+;) with § € O,,.
Note that the space A/, is not a vector space, nor a convex set and therefore finding the element
of NN, that best approximates a given function cannot be simply interpreted as an orthogonal
projection.

The use of DNN as function approximations is justified by the fundamental results of Hornik!
[1991]] (see also [Pinkus|[[1999] for related results).

Theorem 2.1 (Universal Approximation Theorem) Assume that the function o, is non con-
stant and bounded. Let |1 denote a probability measure on R’, then for any L > 2, NN is
dense in L*(R",).

Theorem 2.2 (Universal Approximation Theorem) Assume that the function o, is a non con-
stant, bounded and continuous function, then, when L = 2, NN is dense into C (R") for the
topology of the uniform convergence on compact sets.

Remark 2.3 We can rephrase Theorem (2.1) in terms of approximating random variables. Let
Y be a real valued random variable s.t. E[Y?| < oo. Let X be a random variable taking values
in R” and G the smallest o —algebra such that X is G measurable. Then, there exists a sequence
(Op)p>2 € 1,25 Oy such that lim,, o E[|Y — &, (X; 0,)’] = 0. Therefore, if for every p > 2,
o, € O, solves

. . . 2
91€n®pr[|<DP<X76) Y‘]7

then the sequence (P,(X; a,))p>2 converges to E[Y|X| in L*(Q2) when p — oc.

3 The algorithm

3.1 Description of the algorithm

We recall the dynamic programming principle on the optimal policy

™ =1TN
{Tn = Tnl{ZTanE[anHIan}} + T"+11{ZTH<1E[ZTH+1IJ”T”]}’ forl1<n<N-1
Then, the time—0 price of the Bermudan option writes
Up = max(Zy,E[Z,,]).

The difficulty in solving this dynamic programming equation comes from the computation of the
conditional expectation at each time step. The idea proposed by |[Longstaff and Schwartz [2001]]
was to approximate the conditional expectation by a regression problem on a well chosen set of
functions. In this work, we use a DNN to perform this approximation.

=T (7)
Th = Tnl{ZTan’p(XTm@ﬁ)} - Tn+11{ZTn<¢P(XTn;6£)}7 forl<sn<N-1

where 62 solves the following optimization problem

inf E {
0€0,

2
O, (Xr,;0) — ZT5+1’ } . @)

Since the conditional expectation operator is an orthogonal projection, we have
2

E

1

2
@y(Xr,30) ~ Zoz| } —E {

®,(Xr,:0) —E [ZTSH |an}

vE|

Zy., —E|Zy |Fr]

Therefore, any minimizer in (8) is also a solution to the following minimization problem

juf E U@,,(XTR; 6) - E [anﬂ |an]

2
} . 9)

The standard approach is to sample a bunch of paths of the model X, m) , X (m) ,ngl)

along with the corresponding payoff paths Z&"), Z;l), ceey ngl), form=1,..., M . To compute
the 7,,’s on each path, one needs to compute the conditional expectations E[Z. . |Fp,] forn =
1,..., N — 1. Then, we introduce the final approximation of the backward iteration policy, in
which the truncated expansion is computed using a Monte Carlo approximation

(m)
TN TN
{5_\5,() =T, 1{ZT" X(m) } + Tn+(1 {Z(m)<¢)(m)(x(m) }, forl<n<N-1

where @\%M solves the sample average approximation of (8]

M 2
. (m), iy
3y 3 0 - 25 o
Then, we finally approximate the time—0 price of the option by
1 M
M
Ué) = max <Zo,Mm 1Z/\p (m)> (11)

4 Convergence of the algorithm

We start this section on the study of the convergence by introducing some bespoke notation
following |Clément et al.|[2002]].

4.1 Notation

First, it is important to note that the paths 7}” m ,TJZ\),’(m) form = 1,..., M are identically
distributed but not independent since the computations of 0% at each time step n mix all the paths.
We define the vector ¥ of the coefficients of the successive expansions ¥? = (67,...,6%_,) and
its Monte Carlo counterpart 9P = (60 . g2M).

Now, we recall the notation used by |Clément et al. [2002] to study the convergence of the
original Longstaff Schwartz approach.

Given a deterministic parameter ¥ = (¢},...,¢%, ;) in G)pN ~! and deterministic vectors z =
21,...,zyinRY and x = (21,...,2y) in (R")Y, we define the vector field F' = F}, ..., Fy by

{FN(tp,Z,Z') = ZN

Fn(tp,Z,ZE) = Zn]-{z'nz@p(mn;tg)} + Fn+1(tp7Z’x)l{zn<¢~p(a:n;tﬂ)}7 for1<n<N—1.

Note that F,,(t, z,) does not depend on the first n — 1 components of 7, ie F,,(t?, z, =) depends
only t2, ..., t% .. Moreover,

F, (07, Z, X) = Z.s,
F,(9PM zm) x)y — zm)

Moreover, we clearly have that for all t* & @pN -1

I[Fu(t?, 2,X)| < max |Zg,] (12)

4.2 Deep neural network approximations of conditional expectations

Proposition 4.1 Assume that Elmaxo<,<y |Z1,|?] < oo. Then, lim, o E[Z»|Fr,] =
E[Z, |Fr,] in L*(Q) forall 1 <n < N.

Proof. We proceed by induction. The result is true for n = N as 7y = 75 = T'. Assume it holds
forn+ 1 (with0 <n < N — 1), we will prove it is true for n.

+E|Z» A

n+11{ZTn<<pp(Xn;9£;)} - Tn+11{ZTn<E[ZTn+1|]—'Tn]}"’T:Tn}

= (ZTn - E[ZTn-‘rl"FTn]) <1{ZTn2<I>p(Xn;0ﬁ)} - 1{ZTn21E[ZTn+1|]"Tn]}>

=+ E _ZTTIZ-‘—I - ZTn+1|an] 1{ZTn<‘I)p(Xn§9'r€)}‘

By the induction assumption, the term E |:ZT£+1 — Zy 1| Fr, | goes to zero in L*(12) as p goes to
infinity. So, we just have to prove that

Afz = (ZTn - E[ZTn+1|-FTn]) <1{ZTn2q>p(Xn§‘9g)} - 1{ZT’VLZ]E[ZTn+1|‘FTn}}>
converges to zero in L*(2) when p — oo.

|Az'r;,| S ’ZTn - E[ZTn+l|‘FTn]

‘1{ZT7L2(DP(X’”70§L)} o 1{ZTn2E[ZTn+1|]:Tn}}‘

< ’ZTH - E[Z,,., ’anH ‘1{1@[2%“\an]>ZTn2<1>p(Xn;0ﬁ)} - 1{<I>p(Xn;GZ)>ZTn2]E[ZTn+1|]-'Tn}}’

< ‘ZTn — E[Zrn+1|}"TnH 1{|ZTn7E[Z.,-n+1\an]|§|<I>p(Xn;€fl)fE[ZTn+1\an]|}
S ‘(I)P<Xn7 Hrp;) - E[ZT7L+1 "FTH] ‘

< (I)p<Xn79£) - E[ZT7ZZ+1"FTH]

+ B2z, |Fr,] — ElZr,)P (13)

As the conditional expectation is an orthogonal projection, we clearly have that

2
B |[B2s,,170] - ElZe,][| <E|[BlZg,] - ElZe 0l

1

Then, the induction assumption for n + 1 yields that the second term on the r.h.s of (13)) goes to
zero in L*(Q2) when p — co.

To deal with the first term on the r.h.s of (13]), we introduce for any p € N, éﬁ € O, defined
as a solution to

juf B [|<1>p(XTn; 0) —E[Z,.|Fr] ﬂ . (14)

Note that ®(-, 67) is the best approximation on A/, of the true continuation value at time 7. As
0P solves (9)), we clearly have that
2}

5|
<E [&)X, 8) — Bl Z,p | F]

Dy (X3 07) — E[erjH | F1,]

|
2
1 +2E “E[an+1|]:Tn] - E[ZT£+1|'FT”}

< 9K { D,(X,;07) — E[Z,,..\| Fr,]

2
} (15)

Using the induction assumption for n + 1, the second term on the r.h.s of goes to zero in
L2(Q)

2

|0

From the universal approximation theorem (see Theorem [2.2]and Remark (2.3)), we deduce that

p—0o0

lim E UE[ZW Fr,] —ElZs_ |Fr,]

- 2
li_)m E { ¢, (X, 00) —E[Z,, ., | Fr,] } =0.
pP—00
Then, we conclude that lim,, ., E[|A?|*] = 0. [

Remark 4.2 Note that in the proof of Proposition there is no need for the sets ©, to be
compact for every p. We could have chosen v, = oo. However, the boundedness assumption will
be required in the following section, so to work with the same approximations over the whole
paper, we have decided to impose compactness on ©, for every p.

4.3 Convergence of the Monte Carlo approximation

In the following, we assume that p is fixed and we study the convergence with respect to the
number of samples M. First, we recall some important results on the convergence of the solution
of a sequence of optimization problems whose cost functions converge.

8

4.3.1 Convergence of optimization problems

Consider a sequence of real valued functions (f,,),, defined on a compact set K C R¢. Define,

vp = inf fn(x)

zeK

and let x,, be a sequence of minimizers
From [Rubinstein and Shapiro, 1993, Chap. 2], we have the following result.

Lemma 4.3 Assume that the sequence (f,,),, converges uniformly on K to a continuous function
f. Let v* = inf,c f(z) and S* = {z € K : f(x) = v*}. Then v, — v* and d(x,,S8*) — 0
a.s.

In the following, we will also make heavy use of the following result, which is a restatement
of the law of large numbers in Banach spaces, see [Ledoux and Talagrand, 1991, Corollary 7.10,
page 189] or [Rubinstein and Shapirol 1993, Lemma Al].

Lemma 4.4 Let (£;);>1 be a sequence of i.i.d. R™-valued random vectors and h : R? x R™ — R
be a measurable function. Assume that

o as., € R W0, &) is continuous,
o VC > 0, E [supw‘gc]h(Q,fl)H < +o0.
Then, a.s. 6 € RY %Z?zl h(0,&;) converges locally uniformly to the continuous function

6 € R s E[h(6,£,)], ie

1
lim sup [— Y h(6,&) —E[h(9,&)]] =0a.s.
n—oo Ielgc n i1

4.3.2 Strong law of large numbers
To prove a strong law of large numbers, we will need the following assumptions.
(H-1) Foreveryp € N, p > 1, there exist ¢ > 1 and x, > 0 s.t.

Ve eR", VO €O, |P,(x,0) <r,(1+]z]?.

Moreover, forall 1 < n < N — 1, a.s. the random functions § € ©, — ®,(X7,,0)
are continuous. Note that as ©, is a compact set, the continuity automatically yields the
uniform continuity.

(H-2) For ¢ defined in|(H-1), EHXTn]Qq] <ooforall0 <n < N.

9

(H-3) Forallpe N,p>1landalll<n <N —-1,P(Zg, = ®,(X1,;60%)) =0.

2
+1 ’

(H-4) Foreveryp € N,p > landevery 1 <n < N, forall §*, 0% € SP,
D, (2;0") = ®,(z;0*) forallz € R

We introduce the notation

S; = arg inf E Ucpp(XTn; 0) — Z.0
€O, n

Note that S? is a non void compact set.

Remark 4.5 Assumption is clearly satisfied for the classical activation functions ReLU
oo(x) = (x)4, sigmoid o,(x) = (1 + e *)"! and o,(x) = tanh(z). When the law of Xr, has a
density with respect to the Lebesgue measure, the continuity assumption stated in is even
satisfied by the binary step activation function o,(x) = 1z>0.

Remark 4.6 Considering the natural symmetries existing in a neural network, it is clear that
the set SP will hardly ever be reduced to a singleton. So, none of the parameters 0™ or 0F is
unique. Here, we only require the function described by the neural network approximation to
be unique but not its representation, which is much weaker and more realistic in practice. We
refer to\Albertini et al.|[|[1995|], Albertini and Sontag [1994] for characterization of symmetries of
neural networks and to \Williamson and Helmke [1995|] for results on existence and uniqueness
of an optimal neural network approximation (but not its parameters).

To start, we prove the convergence of the neural network approximation.

Proposition 4.7 Assume that Assumptions hold. Then, for every n = 1,...,N,
@(X}i); 0P M) converges to Q)p(X%); 6") a.s. as M — oc.

Lemma 4.8 Foreveryn=1,...,N — 1,

N N-1
|F”(a’ 2 X) o F”(b’ Z, X)| S (Z |ZT1'|> (Z 1{|ZTi*¢’p(XTi;bi) S’q’p(XTi;az‘)*‘I’p(XTi;bz‘) })

Proof (Proof of Propositiorj/@). We proceed by induction.
Step 1. Forn = N — 1, %", solves

@, (X

—1’

2
0) -z |

inf
0€O,

We aim at applying Lemma to the sequence of ii.d. random functions h,,(0) =
2

P, (X (m) :0) — Z%:)‘ . From Assumptions|(#-1)|and |(#-2), we deduce that

Tn_1’

E {sup |hm(9)|} < Q’fp]EHXTNqu] +E[(Zr)% < 0.
0cOp

10

Then, Lemma[.4]implies that a.s. the function

2
(pp(Xr}N)_l) 9) - Z%N)

1 M
9e@pHMmzl

converges uniformly to E[‘(IDP(XTNA; 0) — Zry }2] Hence, we deduce from Lemma that
d(gf\}]ﬁ, S%_1) — 0as. when M — oo. We restrict to a subset with probability one of the
original probability space on which this convergence holds and the random functions ¢ (X %N)_l i)
are uniformly continuous, see There exists a sequence (£%",))/ taking values in S%_,
such that ‘@\ﬁ,ﬁ — M

®(Xy) ;) yields that

— 0. when M — oo. The uniform continuity of the random functions

O(XS) MY —o(XL) S ehMy 50

Tn-1’

Then, we conclude from Assumption|(7{-4), that <I>(X7(%V)_1 LMy <I>(X%V)_1 0% 1)

Step 2. Choose n < N — 2 and assume that the convergence result holds forn +1,..., N — 1,
we aim at proving this is true for n. We recall that 62 solves

M

~ 2
inf cpp(X}m);e)—Fnﬂ(ﬁva,Z(m),X(m))‘ .
€0, "

=1

We introduce the two random functions for 6 € O,

~ 2
@y(X{;0) = Fra (974, 20, X0)|

m=1
1 U 2
VM) = 22 3 @KL 0) = Fua (97, 207, X))
m=1

The function v™ clearly writes as the sum of i.i.d. random variables. Moreover, by combin-

ing and Assumptions [(7-1)| and [(7{-2), we obtain

E | sup |®,(X7,:60) — Fpyt (0P, Z, X)|?
0O,

< 2kE[1 + | X7, "] + E [max (ZTZ)z} < 0.
>n+1

Then, the sequence of random functions oM

v defined for 0 € ©,, by

a.s. converges uniformly to the continuous function
v(0) = E [|®,(X1,;0) — Frp1 (97, Z, X)|*] -

11

It remains to prove that supyee, [0 (0) — v™(0)| — 0 a.s. when M — oo.

oM(0) — 0™ ()]

M
1 . o o
= Mn;IZq)p(X’}n)’e)_Fn+1(19p7MaZ()7X()>_Fn+1(79paz()7X())

Fn+1<{9\p’M7 Z(m)7 X(m)) - Fn+1<19p7 Z(m) X(m)>‘

Y

IN

M
1 m
” 2_12 (Fd(l + \X;n)‘q) + Jnax |ZT£]>

>n+1

Fopa (0P Z0m) X0y _ (9P Z(m), X<m>)‘

where we have used (12)) and Assumptions [(F{-1)| and [(7{-2)] Then from Lemma 4.8 we can
write

oM (0) — 0™ (0)]

M
1 m
<=>Y2 <H(1 X + max \ZTZ|>

N N-1
(m)
. ‘ZTi) (Z 1{\Z§T’—%(X§T);0f)\s%(X%”)w?“)—%(xg”);@f)\}>
1=n+1 i=n+1
I\ (m) |
o paxe: (mp(l HIXEPY 4+) ‘ZT:” ’)
i=n-+1
where C'is a generic constant only depending on x,, n and V.
Let € > 0. Using the induction assumption and the strong law of large numbers, we have

lim sup sup |”&M(9) - UM(Q)’
M 9eo,
L\ (m) -)|
. m)|2 (m
< hm];up i m§:10 ((1 + | X727 %) + iEnH ‘ZTZ_ >

N-1
(z’:;l 1{’417)—%()(;?;9?)’9})
N N-1
((1 + | X,) + Z |ZT1'|2) < Z 1{|ZTi—<I>p(XTi;9§) Se})]

IN

N-1
1 m m m m
‘ZI {|200 —@p (X 00) | <|@p (X380 M)0 (X 367)
1=n+

< CE

i=n+1 i=n+1
From , we deduce that lim,_,o 1 {122,y (X, 07| <2} = 0 a.s. and we conclude that a.s.

oM — v™ converges to zero uniformly. As we have already proved that a.s. v™ converges

12

uniforml to the continuous function v, we deduce that a.s. ™ converges uniformly to v. From
Lemma , we conclude that d(@p M SP) — 0 a.s. when M — oco. We restrict to a subset with
probability one of the original probablhty space on which this convergence holds and the random

functions (I)(X%V)_l; -) are uniformly continuous, see |(#-1)l There exists a sequence (£2M)y,

taking values in SP such that ‘gﬁ’M — M ‘ — 0 when M — oo. The uniform continuity of the

random functions (ID(X%V)_l; -) yields that

B(XW M) — o(X);erMy 0 when M — oo

Tn_1>"n

Then, we conclude from Assumption|(#-4)} that (ID(X%); 5571”) — @(X%); 6r) when M — oco.ll

Now that the convergence of the expansion is established, we can study the convergence of
UPM to UP when M — oo.

Theorem 4.9 Assume that Assumptions hold. Then, for « = 1,2 and every n =
1,...,N,

Proof. Note that E[(Z,»)*] = E[F,(V?, Z, G)*] and by the strong law of large numbers

lim — ZF (0P, 2™ X — |[F, (9%, Z, X)%] a.s.

M—oco M

Hence, we have to prove that

AFy = — Z ((PM | Zm) xmya _ o (gp, Z<m>,X<m>)a) RN}

M—o0

Forany v,y € R,and a = 1,2, [z —y*| = |z —y| 29" +y9"!|. Using Lemma4.§/and that
|Fn(’772ag)| < maXp<j<n |Zj’, we have

M
1 ~
|AFM| < M E ‘Fn<19p,M’ Z(m)’X(m))a _ Fn(ﬁp, Z(m), G(m))a
m=1

g

i+1

M
2y 23 [

Using Proposition foralls = n,...,N — 1,

)

— (0 when

N-1

1 m m m m
Z {|725) @ (X§507) | <[@0 (X507 M) — @, (XET500)
=n

q)P<XT) 95) M) (I)p(X%)Q 81:)

13

M — oo. Then for any € > 0,

lim Sup |AF |

22,

(m)
< 2lim sup — Z Z pax ‘ZTJ_

m=1 i=n

N-1
(; 1{‘Z(T?>_®p(X,g”);9f)‘<g}>
N N-1
S 2K anlji}%\f {ZT | |Z Tiv1 (Z 1{‘ZT1'(I)P(X(TT)§9?)‘S€})]

=n

where the last inequality follows from the strong law of larger numbers as E[max,,<;<y }ZTJ. ‘2] <
oo. We conclude that lim sup,, |AF),| = 0 by letting € go to 0 and by using|(#-3) |

The case & = 1 proves the strong law of large numbers for the algorithm. Considering
that all the paths are actually mixed through the neural network approximation, it is un-
likely that the estimators i E 7™ for 1 < n < N are unbiased. We recall that

Ap (m)

Uit — & 5@, 20, GO and 2,y — (0%, 2,X). Then,

n

E [UPM] —E[Z.s]

n

= Z < (GPM | Zm) | xm))y Fn(ﬂpjz(m)’X(m))>]
= E[F,(07, 20, XO) - (97, 20, x)]

where we have used that all the random variables have the same distribution.

5 Numerical experiments

In this section, we compare the results given by the standard Longstaff Schwartz approach with
polynomial regression to the algorithm described in Section The only difference between
the two methods lies in the way of approximating the conditional expectation at each time step.
The two algorithms are implemented in Python using the PolynomialFeatures toolbox of scikit-
learn Pedregosa et al.|[2011]] for the polynomial regression and the tensorFlow toolbox |Abadi
et al.|[2015] to compute the neural network approximation. We have chosen options for which
there is a substantial gap between the European and Bermudan prices, which means that there
exists indeed an early exercise strategy and that the accuracy of the conditional expectations
approximations plays a major role.

Details on the algorithm used in the experiments In all the experiments, we have run our
algorithm 100 times to compute the average price along with the half-width of the confidence
interval for the price estimator reported in the tables between parentheses in the form (+-).
Although the confidence interval is informative to know how much we can trust a price, it com-
pletely squeezes the bias related to the approximation of the conditional expectations. Remember

14

that the estimator given by (T1)) is not an unbiased estimator and one should therefore be very
careful when comparing the results. Keep in mind that a higher price does not always mean a
better price.

For the activation function o, in (5], we have used the leaky ReLU function defined by

(z) T ifx >0
oq.(x) =)
03 xz ifzx<0

We relied on the ADAM algorithm to fit the neural network at each time step and the columns
epochs refer to the number of times we go through the entire data set to train the network. Note
that using epochs = 1 corresponds to the standard approach used in online stochastic approxi-
mation, in which each data is used only once. We use the same neural network through all the
time stgps and in particular at a time step 0 < n < N — 1, we take the optimal parameter at time
n+1, Gfb’ﬂ, as the starting point of the training algorithm. Because of this smart choice, there is
actually no use setting epochs> 1 forn < N —1. We observed in our numerical experiments that
passing over all the data several times does not reduce the training error at times 0 < n < N — 1,
whereas it does help when fitting the first neural network at time N — 1. This allows for huge
computational time savings.

For learning the continuation value at each exercising date, we only use the in-the-money
paths as already suggested in the original Longstaff Schwartz algorithm Longstaft and Schwartz
[2001]). This means that the definition of the optimization problem (8) has to be changed into
2

inf E {
0€0,

p(XTn; 0) - ZT,S+1

1{ZTn>0}} -

The empirical counterpart (I0) needs to be adapted in a similar way. Note that it does not change
the theoretical analysis of the algorithm but it is numerically more efficient. We proceed similarly
in the original Longstaff Schwartz algorithm we are comparing to in the next sections.

5.1 Examples in the Black Scholes model
The d—dimensional Black Scholes model writes for j € {1,...,d}

dS] = S} (ridt + o’ L;dB,)

where B is a Brownian motion with values in R%, o = (0!, ..., %) is the vector of volatilities,

assumed to be deterministic and positive at all times and L is the j-th row of the matrix L defined
as a square root of the correlation matrix I', given by

L p P
A
p ... p 1

where p €] — 1/(d — 1), 1] to ensure that I is positive definite.

15

5.1.1 Benchmarking the method on the one-dimensional put option

Before investigating more elaborate numerical examples, we want to test our method on the one
dimensional put option. As standard as this example might be, getting a trustworthy reference
price is not an easy task. For this example, we compare our approach to the benchmark price
computed by a convolution method in|Lord et al. [2008]] and later used as reference prices in Fang
and Oosterlee|[2009]. Their reference price is 11.987 where all the digits are accurate.

L q epochs=1 epochs=5 epochs=10

2 32| 11.96(£0.07) 1197 (£0.06) 11.98 (£ 0.057)
2 128 | 11.96 (£0.07) 1197 (£ 0.056) 11.97 (£ 0.061)
2 512 1195(£0.076) 11.95(4£0.08) 11.96 (+0.071)
4 32 | 11.93(£0.083) 11.94(£0.09) 11.96 (£ 0.075)
4 128 | 11.89 (£0.145) 11.93 (£ 0.097) 11.95 (£ 0.081)
4 512 | 11.86 (£ 0.127) 11.93 (£ 0.096) 11.94 (£ 0.072)
8§ 32 | 11.89(£0.12) 11.93(£0.117) 11.95 (£ 0.096)
8 128 | 11.88 (£ 0.126) 11.92(£0.11) 11.94 (£ 0.102)
8 512 | 11.85(£0.129) 11.9(£0.163) 11.92(£0.111)

Table 1: Put option with r = 0.1, T = 1, K = 110, Sy = 100, 0 = 0.25,
N =10 and M = 100, 000.

We can see from Table|[I] using a really small neural network with only one input layer with
32 intermediate neurons and one output layer — meaning that the activation function is applied
only once — already yields very good results with a relative accuracy greater than 1%. Increasing
the number of epochs helps a bit correcting the bias created by the truncated approximation of
the conditional expectations but does lead to an increase of the computational time. The larger
the neural network (see in particular the cases L. = 8), the more epochs we need to ensure that the
fitting procedure has sufficiently well converged in order to make the most of the capabilities of
the network to accurately approximate the conditional expectations. Note that increasing the size
of the network also increases the overall variance of the algorithm as in the case of a polynomial
regression when the size of the regression basis increases (see (Glasserman and Yu| [2004]] for
details).

5.1.2 A put basket option

We now consider a put basket option with payoff

d
<K - Z (,UZS%> s
=1 +

which can be priced using the classical Longstaff Schwartz algorithm and therefore enables us
to test the accuracy of our approach in a multidimensional setting. We test our algorithm in
dimension 5 and report the results in Table [2] The standard Longstaff Schwartz algorithm yields

16

4.11 +0.03 (resp. 4.04 £ 0.034) for an order 3 (resp. 1) polynomial regression. For this example,
computing a reference price using polynomial regressions is virtually impossible because the
curse of dimensionality prevents us from using high order regressions and we have no idea of
the bias induced by the truncated approximation of the conditional expectations. Yet, the prices
reported in Table 2] are very close to the one obtained with an order 3 polynomial regression. We
can see that using a very large neural networks with several hidden layers and several hundreds
of neurons per layer does not really help. The results obtained for a small network with a few
dozens of neurons are already very good. The difference between the results for 1 epochs and 10
epochs is about half the width of the confidence interval, which makes it non meaningful. Hence,
there is no use putting more computational effort to through the all data set more than once.

L epochs=1 epochs=5 epochs=10

2 32 [4.08(£0.031) 4.1(£0.034) 4.11(£0.029)
2 128 | 4.08 (£ 0.036) 4.09 (£ 0.034) 4.1 (£ 0.032)
2 512 | 4.07(£0.034) 4.09 (£ 0.036) 4.1 (£0.033)
4 32 14.07(£0.034) 4.09(£0.033) 4.1(£0.032)
4 128 | 4.06(£0.039) 4.09(£0.04) 4.1 (£0.037)
4 512]14.05(£0.037) 4.08 (£ 0.034) 4.09 (£ 0.031)
8 32 |14.07(£0.034) 4.09 (£0.037) 4.1 (£0.035)
8 128 | 4.06 (£0.039) 4.09 (£0.032) 4.1 (£0.035)
8 512 | 4.04 (£0.066) 4.07 (£0.069) 4.08 (£ 0.063)

Table 2: Basket option with r = 0.05, d = 5, ¢ = 0.2, W' = 1/d,
Sé =100, p = 0.2, K =100, N = 20 and M = 100, 000.

A call on the maximum of d assets in the Black Scholes model.
the maximum of d assets in the Black Scholes model with payoff

(K — ig,a..)fd ST> . .

Pricing a call on the maximum of a basket of assets is usually far more difficult than a stan-
dard basket option because of the strong non linearity of the maximum function. The standard
Longstaff Schwartz algorithm yields 26.33 £ 0.12, 26.1 4+ 0.12, 25.4 £ 0.1 for a polynomial
regression of order 6, 3 and 1 respectively. The prices obtained with the polynomial regression
vary a lot with the degree of the regression. For this example, |Andersen and Broadie| [2004]]
reported a 95% confidence interval of [26.109, 26.292]. The prices reported in Table 3| are very
close to this confidence interval. Actually a small neural network (L = 2) enables us to get
values within 1% of the true price, which is a great achievement considering the complexity of
the product and the small size of the approximation. As in the other examples, using several
passes through the data to train the neural network does not really bring any improvement for
small neural networks. For larger networks, it helps a little but in the end larger networks are less
accurate than smaller ones. To get the best of large neural networks, we would need more data
to train the networks, ie. more Monte Carlo samples.

We consider a call option on

17

L 4 epochs=1 epochs=5 epochs=10

2 32 [2596(£0.118) 2594 (£0.13) 25.96 (£ 0.118)
2 128 | 2597 (£ 0.155) 25.96 (+£0.124) 26.01 (£ 0.13)
2 512 | 2591 (£0.126) 25.95(4+0.131) 26.01 (£ 0.175)
4 32 | 2585(£0.155) 25.99 (4 0.135) 26.02 (£ 0.155)
4 128 | 2578 (£ 0.2) 2592 (£ 0.16) 2599 (£ 0.177)
4 512] 25.66 (£ 0.265) 25.84 (£ 0.166) 25.95 (4 0.186)
8 32 | 2573(£0.176) 25.9(4+0.205) 25.95 (£ 0.16)
8 128 | 25.56 (£ 0.375) 25.84 (£0.223) 25.95(%0.174)
8 5121|2547 (£0.357) 25.74(£0.276) 25.85 (% 0.241)

Table 3: Prices for the call option on the maximum of 5 assets with pa-
rameters S} 100, T = 3, r = 0.05, K = 100, p = 0, 07 = 0.2,
6 =0.1, N = 9and M = 100, 000.

A geometric basket option in the Black Scholes model Benchmarking a new method on high
dimensional products becomes hardly feasible as almost no high dimensional Bermudan options
can be priced accurately in a reasonable time. An exception to this is the geometric option
with payoff (K — (H;l:1 S7)1/4) , for the put option. Easy calculations show that the price of this
d—dimensional option equals the one of the 1 —dimensional option with the following parameters

J 1/d
5= (H sg) ;
j=1

Table [summarizes the correspondences between the d—dimensional and 1—dimensional op-
tions we use in the examples. In every numerical experiments on the geometric basket option,
we report the price of the equivalent one dimensional Bermudan option obtained by the CRR
tree method |Cox et al.| [[1979] with 96, 000 discretization time steps. The benchmark price of the

S & 5
100 0.14 0.01
100 0.131 0.036

d S(_) O'j 1% (Sj
2 100 02 O O
10 100 0.3 0.1 O

Table 4: Correspondence table for the parameters of the geometric op-
tions.

2—dimensional option of Table [5]is 4.167. We can see from the numerical results of this table
that even a quite small neural network is able to capture the continuation values very well. In-
creasing the size of the network does not help at all to get a better price but increases the variance
unless we ensure a very accurate fit of the network by going through the data several times (see
the column epochs=10 for instance), which in turn leads to a much larger computational cost.
In comparison, the prices obtained with the standard Longstaff Schwartz algorithm with polyno-
mial regression of order respectively 1, 3 and 6 are 4.04 +0.036, 4.16 £0.032 and 4.16 £0.032.

18

On this small dimensional example, a low degree polynomial as well as a small neural network
give a very accurate price.

L 4 epochs=1 epochs=5 epochs=10

2 32 [4.14(£0.028) 4.15(£0.028) 4.16 (£ 0.032)
2 128 | 4.14 (£ 0.036) 4.15(4+0.03) 4.16 (£ 0.033)
2 512 [4.13(£=0.033) 4.14(£=0.034) 4.15(£0.04)
4 32 | 4.13(£0.035) 4.14(+0.041) 4.15(4+0.032)
4 128 | 4.11 (£ 0.049) 4.14 (£ 0.039) 4.14 (£ 0.036)
4 512 | 4.1(£0.047) 4.13(£0.042) 4.14 (£ 0.038)
8 32 | 4.11(£0.046) 4.14 (£ 0.038) 4.14 (£ 0.035)
8 128 | 4.11 (£ 0.046) 4.13 (£0.043) 4.14 (£ 0.039)
8 512 |4.07(£0.173) 4.11 (£ 0.191) 4.13 (£ 0.046)

Table 5: Prices for the geometric basket put option with parameters d = 2,
S =100,0°=0.2,p=0,8 =0,T = 1,r = 0.0488, K = 100, N = 12
and M = 100, 000.

The numerical results for the 10—dimensional geometric put option (see Table [f) basically
show the same behavior as the low dimensional problem. The true price obtained from the
1—dimensional equivalent problem is 15.1858. Using a very small neural network already pro-
vides very accurate results within 0.1% of the true price. Passing several times over the data to
train the network helps a bit to reduce the bias of the price estimator but at the expense of a much
higher computational effort. In comparison, the prices obtained with the standard Longstaff
Schwartz algorithm with polynomial regression of order respectively 1 and 3 are 15.03 £ 0.038
and 15.28 &£ 0.044. Unlike all other examples, in which the standard Longstaff Schwartz al-
gorithm with polynomial regression tends to exhibit a systematic negative bias, increasing the
polynomial degree in this example yields a price above the true one. Note that the true price is
always within the confidence intervals reported in Table[6] Our method does not seem to suffer
from this positive bias phenomenon.

5.2 A put option in the Heston model

We consider the Heston model defined by

dS; = Sy(rydt + /o, (pdW} + /1 — p2dW}?))
dO't = /1(9 — O't)dt + 5\/;,5th1

For the simulation of the model, we use a modified Euler scheme with 30 time steps per year, in
which we have replaced /7, by /(0¢)+ to deal with possibly negative values of the discretized
volatility process. For the option of Table [7] the standard Longstaff Schwartz algorithm yields
1.70 £ 0.008 (resp. 1.675 == 0.005) for an order 6 (resp. 1) polynomial regression. As in the other
examples, the use of a neural network as the regressor provides very accurate results even with a
quite small network (no hidden layer and very few neurons, see the case L. = 2 and d; = 32).

19

&

epochs=1

epochs=5

epochs=10

32
128
512

32
128
512

32
128
512

0000 A AR NN NN

15.08 (= 0.057)
15.1 (& 0.061)
15.07 (= 0.069)
15.08 (& 0.072)
15.07 (& 0.067)
15.05 (& 0.073)
15.1 (& 0.066)
15.11 (£ 0.086)
15.07 (£ 0.082)

15.16 (£ 0.048)
15.18 (£ 0.05)
15.16 (£ 0.057)
15.16 (£ 0.054)
15.15 (£ 0.051)
15.13 (£ 0.069)
15.17 (£ 0.064)
15.18 (£ 0.063)
15.13 (£ 0.082)

15.18 (& 0.051)
15.21 (£ 0.043)
15.21 (£ 0.052)
15.2 (& 0.048)
15.19 (& 0.058)
15.17 (& 0.063)
15.23 (& 0.064)
15.23 (£ 0.058)
15.16 (£ 0.08)

Table 6: Prices for the geometric basket put option with parameters d =
10, S§ = 100,06 =0.3,p = 0.1, =0, T = 1, r = 0.0488, K = 115,
n =12 and M = 100, 000.

L 4 epochs=1 epochs=5 epochs=10

2 32 11.69(£0.017) 1.7(£0.017) 1.7 (£0.016)
2 128 | 1.69 (£ 0.017) 1.7(x£0.019) 1.7(%0.019)
2 512 | 1.69(£0.019) 1.69 (£ 0.019) 1.69 (£ 0.018)
4 32]1.69(£0.022) 1.69(+0.017) 1.7(%0.018)
4 128 | 1.69 (£ 0.024) 1.69 (£ 0.02) 1.7 (£ 0.016)
4 512 | 1.68 (£ 0.025) 1.69 (£ 0.022) 1.69 (£ 0.022)
8 32 | 1.69(£0.023) 1.69 (£0.02) 1.69 (£ 0.019)
8 128 | 1.68(£0.03) 1.69(£0.022) 1.69 (£ 0.02)
8 512 | 1.68(£0.03) 1.68(4+0.041) 1.68 (£ 0.053)

Table 7: Prices for put option in the Heston model with parameters the
geometric basket put option with parameters with Sy = K = 100, 7' = 1,
oo =001, =02,0=001,k=2,p=—-03,r=0.1, N =10 and

M = 100, 000.

20

6 Conclusion

The difficulties in pricing Bermudan options come from approximating the continuation value at
each exercising date. While polynomial regression is widely used for this step, we have proposed
to use deep learning. We have proved the theoretical convergence of our algorithm with respect
to both the neural network and Monte Carlo approximations. Our numerical experiments show
that the prices computed using our approach are very similar to those obtained from the standard
Longstaft Schwartz algorithm. With no surprise, using neural networks does not help much for
low dimensional problems but does scale far better on high dimensional problems as it does
not suffer from the curse of dimensionality the way polynomial regression does. Polynomial
regression requires a relatively high order to provide accurate prices, which is not feasible in
high dimensional problems. Neural networks approximation capabilities seem far better and
relatively small networks already provided very accurate results. Indeed, a few hundred neurons
with no hidden layers were sufficient to have very accurate prices. Training a neural network
usually requires several passes through the whole data set. Yet, in our examples this seemed
pretty much useless mostly because the functional representation of the continuation function
should not vary much over time. So, once the neural network has been well trained, one pass
over the data (epochs = 1) is enough to fit the network at a new date. This saves a lot of
computational time. Neural networks have proved to be a very versatile and efficient tool to
compute Bermudan option prices especially when the problem is highly non linear.

References

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
URL http://tensorflow.org/. Software available from tensorflow.org.

F. Albertini and E. D. Sontag. Uniqueness of weights for recurrent nets. MATHEMATICAL
RESEARCH, 79:599-599, 1994.

F. Albertini, E. D. Sontag, and V. Maillot. Uniqueness of weights for neural networks. Artificial
Neural Networks for Speech and Vision, pages 115-125, 1993.

L. Andersen and M. Broadie. Primal-dual simulation algorithm for pricing multidimensional
american options. Management Science, 50(9):1222-1234, 2004.

V. I. Arnold. On functions of three variables. Collected Works: Representations of Functions,
Celestial Mechanics and KAM Theory, 1957—1965, pages 5-8, 2009.

21

http://tensorflow.org/

V. Bally and G. Pages. A quantization algorithm for solving multidimensional discrete-time
optimal stopping problems. Bernoulli, 9(6):1003-1049, 2003.

S. Becker, P. Cheridito, and A. Jentzen. Deep optimal stopping. Journal of Machine Learning
Research, 20(74):1-25, 2019a.

S. Becker, P. Cheridito, A. Jentzen, and T. Welti. Solving high-dimensional optimal stopping
problems using deep learning, 2019b.

B. Bouchard and X. Warin. Monte-carlo valuation of american options: Facts and new algorithms
to improve existing methods. In R. A. Carmona, P. Del Moral, P. Hu, and N. Oudjane, editors,
Numerical Methods in Finance, volume 12 of Springer Proceedings in Mathematics, pages
215-255. Springer Berlin Heidelberg, 2012.

M. Broadie and P. Glasserman. A stochastic mesh method for pricing high-dimensional american
options. Journal of Computational Finance, 7:35-72, 2004.

A. L. Bronstein, G. Pages, and J. Portes. Multi-asset american options and parallel quantization.
Methodology and Computing in Applied Probability, 15(3):547-561, 2013.

J. F. Carriere. Valuation of the early-exercise price for options using simulations and nonpara-
metric regression. Insurance: mathematics and Economics, 19(1):19-30, 1996.

E. Clément, D. Lamberton, and P. Protter. An analysis of a least squares regression method for
american option pricing. Finance and Stochastics, 6(4):449-471, 2002.

J. Cox, S. Ross, and M. Rubinstein. Option pricing: A simplified approach. Journal of Financial
Economics, (7):229-263, 1979.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303-314, Dec 1989.

F. Fang and C. W. Oosterlee. Pricing early-exercise and discrete barrier options by fourier-cosine
series expansions. Numerische Mathematik, 114(1):27, 2009.

P. Glasserman and B. Yu. Number of paths versus number of basis functions in american option
pricing. The Annals of Applied Probability, 14(4):2090-2119, 2004.

E. Gobet, J. Lemor, and X. Warin. A regression-based Monte Carlo method to solve backward
stochastic differential equations. Annals of Applied Probability, 15(3):2172-2202, 2005.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4
(2):251 =257, 1991.

M. Kohler, A. Krzyzak, and N. Todorovic. Pricing of high-dimensional american options by
neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics
and Financial Economics, 20(3):383-410, 2010.

22

A. Kolmogorov. On the representation of continuous functions of several variables as superpo-
sitions of functions of smaller number of variables. In Soviet. Math. Dokl, volume 108, pages
179-182, 1956.

M. Ledoux and M. Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse der Math-
ematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-
Verlag, Berlin, 1991. ISBN 3-540-52013-9. Isoperimetry and processes.

F. Longstaff and R. Schwartz. Valuing American options by simulation : A simple least-square
approach. Review of Financial Studies, 14:113-147, 2001.

R. Lord, F. Fang, F. Bervoets, and C. W. Oosterlee. A fast and accurate fft-based method for
pricing early-exercise options under 1évy processes. SIAM Journal on Scientific Computing,
30(4):1678-1705, 2008.

G. Pages. Numerical Probability: An Introduction with Applications to Finance. Springer, 2018.
doi: 10.1007/978-3-319-90276-0.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine Learning in Python . Journal of Machine Learn-
ing Research, 12:2825-2830, 2011.

A. Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica, 8:
143-195, 1999.

R. Y. Rubinstein and A. Shapiro. Discrete event systems. Wiley Series in Probability and Math-
ematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Ltd., Chich-
ester, 1993. ISBN 0-471-93419-4. Sensitivity analysis and stochastic optimization by the
score function method.

J. A. Tilley. Valuing american options in a path simulation model. Transactions of the Society of
Actuaries, 45(83):104, 1993.

J. Tsitsiklis and B. V. Roy. Regression methods for pricing complex American-style options.
IEEE Trans. Neural Netw., 12(4):694-703, 2001.

R. C. Williamson and U. Helmke. Existence and uniqueness results for neural network approxi-
mations. IEEE Transactions on Neural Networks, 6(1):2—-13, 1995.

23

	Introduction
	Preliminaries on deep neural network
	The algorithm
	Description of the algorithm

	Convergence of the algorithm
	Notation
	Deep neural network approximations of conditional expectations
	Convergence of the Monte Carlo approximation
	Convergence of optimization problems
	Strong law of large numbers

	Numerical experiments
	Examples in the Black Scholes model
	Benchmarking the method on the one-dimensional put option
	A put basket option

	A put option in the Heston model

	Conclusion

