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Neural network regression
for Bermudan option pricing

Bernard Lapeyre* Jérome Lelong |

July 15, 2019

Abstract

The pricing of Bermudan options amounts to solving a dynamic programming princi-
ple, in which the main difficulty, especially in large dimension, comes from the computation
of the conditional expectation involved in the continuation value. These conditional ex-
pectations are classically computed by regression techniques on a finite dimensional vector
space. In this work, we study neural networks approximation of conditional expectations.
We prove the convergence of the well-known Longstaff and Schwartz algorithm when the
standard least-square regression is replaced by a neural network approximation.

Key words: Bermudan options, optimal stopping, regression methods, deep learning, neural
networks.

1 Introduction

We fix some finite time horizon 7" > 0 and a filtered probability space (2, F, (Ft)o<t<r, P)
modeling a financial market. We assume that the short interest rate is modeled by an adapted
process (7t )o<¢<r With values in R and that [P is an associated risk neutral measure. We consider
a Bermudan option with exercising dates 0 = t5 < 177 < Ty < --- < Ty = T and discounted
payoff ZTn if exercised at time 7,,. For convenience, we add 0 and 7' to the exercising dates. This
is definitely not a requirement of the method we propose here but it makes notation lighter and
avoids to deal with the purely European part involved in the Bermudan option. We assume that
the discrete time discounted payoff process (Zr, Jo<n<n is adapted to the filtration (Fr, Jo<n<n
and that E[maxo<,<y |Z7,|’] < oo.
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Standard arbitrage pricing theory defines the discounted value (U, )o<,n of the Bermudan
option at times (7},)o<.n by

UTN =7 Tn
(1)
UTn = max (ZTTL’ E[UTn+1 |FT7L])
Using the Snell enveloppe theory, the sequence U can be proved to be given by
Ur, = sup E[Z|Fr,). 2)

T€TT,,T

Solving the backward recursion (IJ) known as the dynamic programming principle has been a
challenging problem for years and various approaches have been proposed to approximate its
solution. The real difficulty lies in the computation of the conditional expectation E[Ur, ., |Fr, ]
at each time step of the recursion. If we were to classify the different approaches, we could
say that there are regression based approaches (see Tilley [1993], |(Carriere| [1996], Tsitsiklis and
Roy|[2001]], Broadie and Glasserman| [2004]) and quantization approaches (see Bally and Pages
[2003]], Bronstein et al. [2013]]). We refer to Bouchard and Warin [2012] and |Pages| [2018]] for a
survey of the different techniques to price Bermudan options.

Among all the available algorithms to compute U using the dynamic programming principle,
the one proposed by [Longstaft and Schwartz| [2001] has the favour of practitioners. Their ap-
proach is based on iteratively selecting the optimal policy. Let 7,, be the smallest optimal policy
after time 7,, — the smallest stopping time reaching the supremum in (2)) — then

=T
{TN N 3)

Tn = Tnl{ZTnZE[ZTn+II}—Tn]} + Tn+11{ZTn <]E[an+1|}—Tn}}

All these methods based on the dynamic programming principle either as value iteration (1))
or policy iteration (3)) require a Markovian setting to be implemented such that the conditional
expectation knowing the whole past can be replaced by the conditional expectation knowing only
the value of a Markov process at the current time.

We assume that the discounted payoff process writes Z7,, = ¢,,(Xr, ), forany 0 < n < N,
where (X;)o<:<r is an adapted Markov process taking values in R". Hence, the conditional
expectation involved in (3) simplifies into E[Z,, . |Fr,] = E[Z;, | X7,]| and can therefore be
approximated by a standard least square method.

In local volatility models, the process X is typically defined as X; = (ry, S;), where S is the
price of an asset and r; the instantaneous interest rate (only X; = S; when the interest rate is
deterministic). In the case of stochastic volatility models, X also includes the volatility process
o, Xy = (r, Sy, 04). Some path dependent options can also fit in this framework at the expense
of increasing the size of the process X. For instance, in the case of an Asian option with payoff
(A7 — Sp)4 with 4, = fot S.du, one can define X as X; = (r, S, 04, A;) and then the Asian
option can be considered as a vanilla option on the two dimensional but non tradable assets

(S, A).



Once the Markov process X is identified, the conditional expectations can be written
E[ZT7L+1 ‘FTn] = E[ZTn+l ’XTn] = wn(XTn> (4)

where v,, solves the following minimization problem

. 2

%L?%?(ICXTH))E “ZT"“ ~ ¥ (Xx)| }
with L?(L(X7,)) being the set of all measurable functions f such that E[f(Xr,)?] < oco. The
real challenge comes from properly approximating the space L*(L(Xr,)) by a finite dimen-
sional space: one typically uses polynomials or local bases (see Gobet et al. [2005], Bouchard
and Warin| [2012]) and in any case it is always a linear regression. In this work, we use neu-
ral networks to approximate 1, in (). The main difference between neural networks and the
regression approaches commonly used comes from the non linearity of neural networks, which
also make their strength. Note that the set of neural networks with a fixed number of layers and
neurons is obviously not a vector space and not even convex. Through neural networks, this
paper investigates the effects of using non linear approximations of conditional expectations in
the Longstaff Schwartz algorithm.

Kohler et al.|[2010] already used neural networks to approximate American options but us-
ing equation (I]) instead of (3) leading to a Tsitsiklis and Roy| [2001]]-type algorithm. Moreover
they use new samples of the whole path of the underlying process X at each time step n to
prove the convergence. In our approach, we use a neural network modification of the pop-
ular Longstaff-Schwartz algorithm and we draw a set of M samples with the distribution of
(X1, X1y, ..., X7, ) before starting and we use these very same samples at each time step.
Therefore, we save a lot of computational time by avoiding a very costly resimulation at each
time step, which very much improves the efficiency of our approach. Deep learning was also
used in the context of optimal stopping by Becker et al. [2018] to parametrize the optimal policy.

The paper is organized as follows. In Section [2, we start with some preliminaries on neural
networks and recall the universal approximation theorem. Then, in Section [3 we describe our
algorithm, whose convergence is studied in Section [4]

2 Preliminaries on deep neural network

Deep Neural networks (DNN) aim to approximate (complex non linear) functions defined on
finite-dimensional space, and in contrast with the usual additive approximation theory built via
basis functions, like polynomial, they rely on composition of layers of simple functions. The rele-
vance of neural networks comes from the universal approximation theorem and the Kolmogorov-
Arnold representation theorem (see Arnold [2009], Kolmogorov| [1956]], Cybenko [1989]], Hornik
[1991]]), and this has shown to be successful in numerous practical applications.

We consider the feed forward neural network — also called multilayer perceptron — for the
approximation of the continuation value at each time step. From a mathematical point view, we
can model a DNN by a non linear function

r€XCR +— O(x;0) € R
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where @ typically writes as function compositions. Let L > 2 be an integer, we write
®=A,000A; 10---000A4, (5)
where for ¢ = 1,..., L, A, : R%-17E" are affine functions
Ay(x) =W + B, fora € R%1,

with W, € R%*d-1_and 5, € R%. In our setting, we have d; = r and d;, = 1. The function
o is often called the activation function and is applied component wise. The number d; of rows
of the matrix W, is usually interpreted as the number of neurons of the layer ¢. The parameter
6 embeds the parameters of all the different layers and we set § = (W, B¢)¢=1...;, € RV with
Ng=31 de(1+dpy).

Let L > 0 be fixed in the following, we introduce the set NN, of all DNN of the above
form. Now, we need to restrict the maximum number of neurons per layer. Letp € N, p > 1, we
denote by NN, the set of neural networks with at most p neurons per layer and L — 1 layers and
bounded parameters. More precisely, we pick an increasing sequence of positive real numbers
(7p)p such that lim,,_,, 7, = co. We introduce the set

.....

O, = {# € R x R? x (R? x RP*P)" 2 x RP x RP*? . |g] < 7,}. (6)
Then, N'V, is defined by
NN, = {D(~6) : 6 €0,

and we have NN, = U,enN'A,,. An element of NN, with be denoted by ®,(+; §) with § € ©,,.
Note that the space N/, is not a vector space, nor a convex set and therefore finding the element
of NN, that best approximates a given function cannot be simply interpreted as an orthogonal
projection.

The use of DNN as function approximations is justified by the fundamental results of Hornik
[1991]

Theorem 2.1 (Universal Approximation Theorem) Assume that the function o is non constant
and bounded. Let i denote a probability measure on R”, then for any L > 2, NN, is dense in
LA(R", ).

Theorem 2.2 (Universal Approximation Theorem) Assume that the function o is a non con-
stant, bounded and continuous function, then, when L = 2, NN is dense into C (R™) for the
topology of the uniform convergence on compact sets.

Remark 2.3 We can rephrase Theorem (2.1) in terms of approximating random variables. Let
Y be a real valued random variable s.t. E[Y?| < oo. Let X be a random variable taking values

in R” and G the smallest o —algebra such that X is G measurable. Then, there exists a sequence
(Op)p>2 € 1,25 Oy such that lim,, , o E[[Y — &, (X; 0,)’] = 0. Therefore, if for every p > 2,
o, € O, solves

: 2
il B2,(X50) = VP,
then the sequence (P,(X; a,))p>2 converges to E[Y| X in L*(Q2) when p — oc.
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3 The algorithm

3.1 Description of the algorithm
We aim at solving the following dynamic programming equation on the optimal policy
{m:m ()
Ty = Tnl{ZTan[ZTn+1IFTn}} + TnHl{ZT <E[Zr o | Fral} forl<n<N-1
Then, the time—0 price of the Bermudan option writes
Up = max(Zy, E[Z7,]).

The difficulty in solving this dynamic programming equation comes from the computation of the
conditional expectation at each time step. The idea proposed by Longstaff and Schwartz| [[2001]]
was to approximate the conditional expectation by a regression problem on a well chosen set of
functions. In this work, we use a DNN to perform this approximation.

ﬂ:Tp (8)
Tl{ZT >0, (X }+Tn+11{ZT <@y (X, 00) forl1<n<N-1
where 62 solves the following optimization problem
2
P { p(X1,30) = Zov | ] : )

Since the conditional expectation operator is an orthogonal projection, we have

?| |

2
p(X1,;0) — Zr;‘jH‘ ] =E [

p(X1,:0) — E [Zfsﬂlfn}

2
+E |: Tn+1 —E [ZTSH“FT"} :| '
Therefore, any minimizer in (9) is also a solution to the following minimization problem
2
inf E { o(X7:0) —E [ZTp |an] } . (10)
0€O, ntl
The standard approach is to sample a bunch of paths of the model Xi(p?), Xél . X:(r?)
along with the corresponding payoff paths Z (m) Z (m ) A (m) ,form=1,..., M. To compute
the 7,,’s on each path, one needs to compute the cond1t10nal expectatlons IE[ o1 |Fr,] for n =
1,..., N — 1. Then, we introduce the final approximation of the backward iteration policy, in

which the truncated expansion is computed using a Monte Carlo approximation

p,(m
(m) _ P,(m) 1
{Tn =1, l{Z(m)>¢p(X(m) } + Tn+1 {Z(m)<q>(m)(X(m) i )}, for1<n<N-1

5



where §£,M solves the following optimization problem

M 2
L (m), (m)
ot MmZ:l p(X5"30) = Z 7% (11)
Then, we finally approximate the time—0 price of the option by
| M
UPM = max <ZO, i > ng’f()m)) . (12)
m=1

4 Convergence of the algorithm

We start this section on the study of the convergence by introducing some bespoke notation
following from Clément et al. [2002]].

4.1 Notation

First, it is important to note that the paths 7{ ) ,Tﬁ,’(m) for m = 1,..., M are identically

distributed but not independent since the computations of ¢? at each time step n mix all the paths.
We define the vector ¥ of the coefficients of the successive expansions ¥? = (67,... 6% ) and
its Monte Carlo counterpart 97 = (g0 /9\5’\,{41)

Now, we recall the notation used by |(Clément et al. [2002] to study the convergence of the
original Longstaff Schwartz approach.
Given a deterministic parameter t» = (¢ ... #% ) in ©,"" and deterministic vectors z =
21,...,zyinRY and x = (21, ..., zy) in (R")Y, we define the vector field F' = F}, ..., Fy by

Fy(tP,z,x) =2y
Fn(tp7z,$) = an{znzép(xn;tﬁ)} + Fn+1(tp7Z’x)l{zn<¢‘p(xn;tﬁ)}’ for 1 S n S N —1.

Note that F,, (¢, z, ) does not depend on the first n — 1 components of ¢?, ie F,, (¢, z, =) depends
only t2, ... t% . Moreover,

F, (07, Z, X) = Z.p,
F,(9PM zm x )y — zm)

Moreover, we clearly have that for all ¥ € @pN -1



4.2 Deep neural network approximations of conditional expectations

Proposition 4.1 Assume that E[maxo<,<y | Z1,|’]. Then, lim, ,o B[Z»|Fr,| = E[Z,, | Fr,] in
L*(Q) forall1 <n < N.

Proof. We proceed by induction. The result is true for n = N as 7y = 7 = T'. Assume it holds
forn+1(0 <n <N —1), we will prove it is true for n.

ElZp — Z,,|Fr,]
=y, (1{ZTHZ%(X”;95)} - 1{ZTn2E[ZTnH\]’Tn]})
+E [Zfﬁ+11{zTn<q>p(Xn;az)} ~ Zrilzy, <siz,, ) Tn}
= (Zr, —E[Z.,,,|Fr.]) <1{zTn2<1>p(Xn;0£)} - 1{zTn21E[ZTn+1IFTn}}>

+ E |:Z75+1 - ZTn+1 |‘FTn:| 1{ZTn<(bp(XTL;07PL)}‘

By the induction assumption, the term E [ZTSH — Zy, 1| Fr, | goes to zero in L*(12) as p goes to
infinity. So, we just have to prove that

A} = (Zr, — ElZ;, | F1,]) (1{ZT,L2<I>p(Xn;e£>} - 1{ZT,L2E[ZMH|an}}>

converges to zero in L?(Q)) when p — oo.

|A¥| < ’ZTn - E[ZTW’FTJ} ‘1{ZTnz¢>p(Xn;eﬁ)} - 1{ZTn2E[ZTn+1|an}}‘

< ’ZTn - E[Zm+1|an” ‘1{IE[ZT7L_H\.FT,L]>ZT7L2<I>p(Xn;95’L)} - 1{<1>p(Xn;ez)>zTn21E[Zm+1Ian]}‘
<|Zr, = BlZe )| 1 2, 51z, 10| <[00 (50i82) 5121, Pl [}

< |@p(Xn; 1) — ElZr,, | 2|

O, (Xn; 07) — E[Zr | F7,]

< (14)

+ ‘E[ZT:+1 |FT7L:| - ]E[ZTn+1|‘FT7L] °

As the conditional expectation is an orthogonal projection, we clearly have that

B |[Bi22,,172] - ElZ, |7

2

1

Then, the induction assumption for n + 1 yields that the second term on the r.h.s of (14) goes to
zero in L*(2) when p — co.

To deal with the first term on the r.h.s of (14]), we introduce for any p € N, éﬁ € O, defined
as a solution to

jnf B [|<I>p(XTn;9) ~E[Z,,,.|Fr] ﬂ . (15)



As 0P solves (10), we clearly have that
2
?| |

<E [ D,(X,: 8) ~ ElZy | Fr]

O, (Xn; 0) — ElZr || F1,]

Tn+1

|

~ 2
0,06, 8) ~ ElZo | P | + 22 |[B12... 7] - Bl 172

<2E [ 1 (16)

Using the induction assumption for n + 1, the second term on the r.h.s of (16) goes to zero in
L(2)

2

| o

From the universal approximation theorem (see Theorem [2.2]and Remark (2.3)), we deduce that

lim E UE[ZWVTJ —E[Zy | Fr,]

p—0o0

. 2
lim E { O, (X, 07) — E[Z,, , | Fr,] } —0.
P—00
Then, we conclude that lim,,_,, E[|A?|*] = 0. |

Remark 4.2 Note that in the proof of Proposition there is no need for the sets ©, to be
compact for every p. We could have chosen v, = co. However, this assumption will be required
in the following section, so to work with the same approximations over the whole paper, we have
decided to impose compactness on ©, for every p.

4.3 Convergence of the Monte Carlo approximation

In the following, we assume that p is fixed and we study the convergence with respect to the
number of samples M. Before studying the convergence of our algorithm, we recall some im-
portant results on the convergence of the solution of a sequence of optimization problems whose
cost functions converge.

4.3.1 Convergence of optimization problems

Consider a sequence of real valued functions (f,,), defined on a compact set K C R?. Define,

Up = inf fn(x)

zeK

and let x,, be a sequence of minimizers
From [Rubinstein and Shapiro, 1993, Chap. 2], we have the following result.

8



Lemma 4.3 Assume that the sequence ( f,,),, converges uniformly on K to a continuous function
f. Let v* = inf,cx f(x) and S* = {x € K : f(x) = v*}. Then v, — v* and d(z,,5*) — 0

a.s.

In the following, we will also make heavy use of the following result, which is a restatement
of the law of large numbers in Banach spaces, see [Ledoux and Talagrand,|1991, Corollary 7.10,
page 189] or [Rubinstein and Shapiro, |1993, Lemma Al].

Lemma 4.4 Let (£;);> be a sequence of i.i.d. R™-valued random vectors and h : R4 x R™ — R
be a measurable function. Assume that

o as., e R W0, &) is continuous,
e VC >0, E [sup‘g‘éc 1h(0,&)]] < +o0.

Then, a.s. 0 € RY — L3577 h(0,&;) converges locally uniformly to the continuous function
0 € R E[h(0,&)], ie

n

lim sup lZh(e,g,»)—E[h(@,gl)] = 0a.s.

n—oo |0|§C n i1

4.3.2 Strong law of large numbers

To prove a strong law of large numbers we will need the following assumptions.

(H-1) Forevery p € N, p > 1, there exist ¢ > 1 and x,, > 0 s.t.
Ve eR", VO €O, |Py(x,0) <ry(l+|z|%).

Moreover, forall 1 < n < N — 1, a.s. the random functions 6§ € ©, — ®,(Xr,,6)
are continuous. Note that as ©,, is a compact set, the continuity automatically yields the
uniform continuity.

(H-2) For ¢ defined in|(H-1), E[| X1, |*] < co forall 0 < n < N.
(H-3) ForallpeN,p>1landalll <n<N—1,P(Zs, = ®,(Xyg,;67)) =0.

We introduce the notation

SP =arg inf E {
06,

2
q)P<XTn; 9) - ZT£+1‘ :| :

Note that S? is a non void compact set.
(H-4) Foreveryp € N,p > landevery 1 <n < N, forall §*,6* € SP,

O,(Xp,;0") = @,(X71,;0%)  as.

9



Remark 4.5 Assumption is clearly satisfied for the classical activation functions ReLU
o(z) = (x),, sigmoid o(x) = (1 4+ e *)"! and o(z) = tanh(z). When the law of X7, has a
density with respect to the Lebesgue measure, the continuity assumption stated in is even
satisfied by the binary step activation function o(z) = 1;>0.

Remark 4.6 Considering the natural symmetries existing in a neural network, it is clear that
the set SP will hardly ever be reduced to a singleton. So, none of the parameters 0" or 6P
is unique. Here, we only require the function described by neural network approximation to be
unique but not its representation, which is much weaker and more realistic in practice. We refer
toAlbertini et al.| [ 1995, Albertini and Sontag| [ 1994|] for characterization of symetries of neural
networks and to \Williamson and Helmke| [1995|] for results on existence and uniqueness of an
optimal neural network approximation (but not its parameters).

To start, we prove the convergence of the neural network approximation.

Proposition 4.7 Assume that Assumptions (H-1){(H-4) hold. Then, for every n = 1,..., N,
@(X%L); 0P M) converges to (IDP(X;U; 6°) a.s. as M — oc.
}>

n

Lemma 4.8 Foreveryn=1,...,N —1,

N N-1
|Fn(a'> Z> X) - Fn<b> Z> X)| < (Z |ZTZ|> <Z 1{|ZTZ.—<I>p(XTi;b¢)

Proof (Proof of Propositiond.7). We proceed by induction. Forn = N — 1, @\ﬁ}% solves

< ’q)p(XTi 1a:)—Pp(X,3b:)

o, (X4

inf 10) — 2z ‘2
—1? TN N

0cO,
m

We aim at applying Lemma to the sequence of i.i.d. random functions h,,(0) =
2
@,(X{) ;60) - 207)|

. From Assumptions |(#-1)|and [(H-2), we deduce that

E {sup |hm(9)]} < 2/<p]EHXTN_1|2q] + E[(ZT)Q] < 00.
0cOp

Then, Lemma[.4]implies that a.s. the function
1 & 2
00, — 2> (@p(Xg;)_l;g) _ zm
m=1

converges uniformly to E[|®,(Xr,_,;6) — Zr, }2] Hence, we deduce from Lemma that
d(O%M, S ) — 0as. when M — oo. Hence, there exists a sequence of random variables

10



/Q\p,M M

(€%M )5/ taking values in S%_, such that B7 | — 0. a.s when M — oo. Using that

a.s. the random functions CD(X%V)f

¥ -) are uniformly continuous |(#-1), we deduce that

(XL M) —d(XE) M) =0 as.

Tn-1’

Then, we conclude from Assumption [(H-4), that @(X}A? Hp MYy = o(X W ;0% 1) as.

Tn-1’

Choose n < N — 2 and assume that the convergence result holds forn + 1,..., N — 1, we
aim at proving this is true for n. We recall that 62 solves

M
inf

2
00, ‘

p(XE30) = Fopa (09, 207, x ()

We introduce the two random functions for § € ©,

M 2

M (0) = = > @ (X[150) = B (97, 207, X))

=1

2
X(m — Fpp (07, Z(m)7X(m))‘ )

The function v clearly writes as the sum of i.i.d. random variables. Moreover, by combin-

ing and Assumptions [(F-1)| and [(%-2), we obtain

E | sup |®,(X7,:60) — Fpyr (0P, Z, X)|?

0cO, 2

< 25E[l 4 |X7,[*] + E {max(ZTz) } < 00.

M

Then, the sequence of random functions v a.s. converges uniformly to the continuous function

v defined for 0 € ©,, by
0(0) = E [|2p(Xr,; 6) = Fua (97, Z, )]
It remains to prove that supyeg |0 (6) — v (6)| — 0 a.s. when M — .
|[0M(0) — v (0)]
<1 f: ‘2@ (X, 0) — Fppy (9PM, 200 XY _ B, (9P, 207, X ™)
= 2 P n+1 ; ; n1 (07, ;

‘Fnﬂ(;’\p,l\/f’ Z(m)’ X(m)) — Fppq (07, Z(m)’ X(m))‘

M
1
< —
< 37 222 (<0 1 + o 1721 )

Fppa (0PM, 200 X0 _ L (gp 70m) X<m>)‘

11



where we have used (I3) and Assumptions [(H-1)| and [(7{-2)] Then from Lemma §.8 we can
write

M
1 (m)
< q
_A[§12<MP+M}!)+gﬁgwn0

(X(m) 917)

2

)

N
<z:zn;rl‘ ) (zzn;r1 {‘Zm) o, (X5; 9?‘ ‘@ (X7
1 M N 9
—=>.C (ml FIXEE + S |2 )

i=n-+1

IN

N-1
{‘z“’“ (X 9@)‘ ‘@ (X80 M )~ (X407 )
i=n+1 Z

where C'is a generic constant only depending on x,, n and V.
Let ¢ > 0. Using the induction assumption and the strong law of large numbers, we have

limsup sup 0" (0) — v™(6)|
M 0eo,

1y
§hm];upMZC<1+\X Z‘Z ’)

=1 i=n-+1

Z;rl {’Z(m) — 0, (X{ 07 ’<z—:}>
i=n

N N-1
2
< CE <(1+ ’XTn|2q) + Z | Z,| ) (Z 1{|ZT1,_<1>1,(XT2,;?L? < >]
i=n-+1 i=n-+1
From we deduce that lim,_ o1 {25, ~ @ (X, 07 = 0 a.s. and we conclude that a.s.
@M _ M

" converges to zero uniformly. As we have already proved that a.s. v* converges
uniformli to the continuous function v, we deduce that a.s. 9™ converges uniformly to v. From

Lemma , we conclude that d(@i’M ,SP) — 0 as. when M — oo. Hence, there exists a

%M—QM‘%O.M

when M — oo. Using that a.s. the random functions (I)(X(Ti;fﬁ -) are uniformly continuous |(H-

[0

sequence of random variables (¢7:M),, taking values in S? such that

(P(X(l) gp, ) — O( ;}L);ggvM) — 0 a.s. when M — oo.

Tn_17/n

Then, we conclude from Assumption |(#H-4), that @(X;?;@';M ) — (ID(X%);HQ) a.s. when
M — oo. |
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Now that the convergence of the expansion is established, we can study the convergence of
UPM to UY when M — oo.

Theorem 4.9 Assume that Assumptions |(H-1){(H-4) hold. Then, for o« = 1,2 and every n =
1,...,N,

Proof. Note that E[(Z,»)*] = E[F, (97, Z, G)®| and by the strong law of large numbers

lim — ZF (0P, ™ XMY> = B[E, (0P, Z, X)*]  a.s.

M—soco M

Hence, we have to prove that

AFy = — Z ( (P, 2 xmye _ F (9P, Z<m>,X<m>)a> SEENG)

M—oo

Forany z,y € R, and o = 1,2, |[2® — y*| = |z — y| |z97! + y?~!|. Using Lemma[4.8|and that
|Fn(’7,Z,g) = , WE have

Fﬂ(@p,M’ Zm X mye _ g (g z0m) Glm)ye

IA
=) =
NE
Mz

22,

max ‘Z;@
n<j <N J

)

— 0 when

N-1
1 m m m m
(Z {|Z50 —@p(x{0360) | <[ @0 (X80~ (X360
=n

O, (X000 — @, (X107

Using Proposition 4.7} for all i = n, ... N — 1,
M — oo. Then for any € > 0,

lim sup |AF)|

Zm
z+1

< 2lim sup — Z Zn@fg\f ’Z%n) (Z 1 ‘Z(m> @, (X407 ‘<E}>
N - N—-1
> max | Zn,| |75, | (; 1{‘ZTi—¢p(X§T);9f)\S€}>]

i=n

< 2E

where the last inequality follows from the strong law of larger numbers as E[max,,< J<N ‘ ZTj ‘2] <
oo. We conclude that lim sup,, |AF)| = 0 by letting £ go to 0 and by using |(#-3) [ |
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The case a« = 1 proves the strong law of large numbers for the algorithm. Considering
that all the paths are actually mixed through the neural network approximation, it is un-
likely that the estimators —- Zm 1 Ap (m) for 1 < n < N are unbiased. We recall that

UpM = L Zm . (ﬁpM Zm) Gm )) and Z» = F, (97, Z, X). Then,

n

M

Z < 19PM m),X(m)) — F, (07, Z(m)7X(m)))]

=1

:E[Fn(ﬁp’M,Z“)X ) = Fufo7, 20, X))

where we have used that all the random variables have the same distribution.

References

F. Albertini and E. D. Sontag. Uniqueness of weights for recurrent nets. MATHEMATICAL
RESEARCH, 79:599-599, 1994.

F. Albertini, E. D. Sontag, and V. Maillot. Uniqueness of weights for neural networks. Artificial
Neural Networks for Speech and Vision, pages 115-125, 1993.

V. 1. Arnold. On functions of three variables. Collected Works: Representations of Functions,
Celestial Mechanics and KAM Theory, 1957—-1965, pages 5-8, 2009.

V. Bally and G. Pages. A quantization algorithm for solving multidimensional discrete-time
optimal stopping problems. Bernoulli, 9(6):1003—-1049, 2003.

S. Becker, P. Cheridito, and A. Jentzen. Deep optimal stopping. arXiv preprint
arXiv:1804.05394, 2018.

B. Bouchard and X. Warin. Monte-carlo valuation of american options: Facts and new algorithms
to improve existing methods. In R. A. Carmona, P. Del Moral, P. Hu, and N. Oudjane, editors,
Numerical Methods in Finance, volume 12 of Springer Proceedings in Mathematics, pages
215-255. Springer Berlin Heidelberg, 2012.

M. Broadie and P. Glasserman. A stochastic mesh method for pricing high-dimensional american
options. Journal of Computational Finance, 7:35-72, 2004.

A. L. Bronstein, G. Pages, and J. Portes. Multi-asset american options and parallel quantization.
Methodology and Computing in Applied Probability, 15(3):547-561, 2013.

J. F. Carriere. Valuation of the early-exercise price for options using simulations and nonpara-
metric regression. Insurance: mathematics and Economics, 19(1):19-30, 1996.

E. Clément, D. Lamberton, and P. Protter. An analysis of a least squares regression method for
american option pricing. Finance and Stochastics, 6(4):449-471, 2002.

14



G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303-314, Dec 1989.

E. Gobet, J. Lemor, and X. Warin. A regression-based Monte Carlo method to solve backward
stochastic differential equations. Annals of Applied Probability, 15(3):2172-2202, 2005.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4
(2):251 — 257, 1991.

M. Kohler, A. Krzyzak, and N. Todorovic. Pricing of high-dimensional american options by
neural networks. Mathematical Finance: An International Journal of Mathematics, Statistics
and Financial Economics, 20(3):383-410, 2010.

A. Kolmogorov. On the representation of continuous functions of several variables as superpo-
sitions of functions of smaller number of variables. In Soviet. Math. Dokl, volume 108, pages
179-182, 1956.

M. Ledoux and M. Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse der Math-
ematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-
Verlag, Berlin, 1991. ISBN 3-540-52013-9. Isoperimetry and processes.

F. Longstaff and R. Schwartz. Valuing American options by simulation : A simple least-square
approach. Review of Financial Studies, 14:113-147, 2001.

G. Pages. Numerical Probability: An Introduction with Applications to Finance. Springer, 2018.
doi: 10.1007/978-3-319-90276-0.

R. Y. Rubinstein and A. Shapiro. Discrete event systems. Wiley Series in Probability and Math-
ematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Ltd., Chich-
ester, 1993. ISBN 0-471-93419-4. Sensitivity analysis and stochastic optimization by the
score function method.

J. A. Tilley. Valuing american options in a path simulation model. Transactions of the Society of
Actuaries, 45(83):104, 1993.

J. Tsitsiklis and B. V. Roy. Regression methods for pricing complex American-style options.
IEEE Trans. Neural Netw., 12(4):694-703, 2001.

R. C. Williamson and U. Helmke. Existence and uniqueness results for neural network approxi-
mations. IEEE Transactions on Neural Networks, 6(1):2—-13, 1995.

15



	Introduction
	Preliminaries on deep neural network
	The algorithm
	Description of the algorithm

	Convergence of the algorithm
	Notation
	Deep neural network approximations of conditional expectations
	Convergence of the Monte Carlo approximation 
	Convergence of optimization problems
	Strong law of large numbers



