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Abstract—High-Resolution in synthetic aperture radar (SAR)
leads to new physical characterizations of scatterers which are
anisotropic and dispersive. These behaviors present an interesting
source of diversity for target detection schemes. Unfortunately,
such characteristics have been integrated and have been naturally
lost in monovariate single look SAR images. Modeling this
behavior as non-stationarity, wavelet analysis has been successful
in retrieving this information. However, the sharp-edge of the
used wavelet functions introduces undesired high side-lobes for
the strong scatterers present in the images. In this paper, a new
family of parametrized wavelets, designed speci�cally to reduce
those side-lobes in the SAR image decomposition, is proposed.
Target detection schemes are then explored using this spectro-
angular diversity and it can be shown that in High-Resolution
SAR images, the non-Gaussian and robust framework leads to
better results.

Index Terms—Synthetic Aperture Radar ; Wavelet Packets ;
Robust Adaptive Detection ; High-resolution

I. I NTRODUCTION

A. Motivations

RADAR systems play a major role in modern military
applications, air and ground traf�c control, autonomous

vehicles, observation of earth and other planetary systems,
monitoring of dynamic objects such as forests, glaciers, mete-
ors, etc. An intelligent operational radar vision system involves
self-tuned parameterization of the radar waveform emission
(pulse-width and repetition interval, transmitter power, etc.)
and optimal target detection/characterization for automatic
perception of a monitored environment. This requires self-
coordination of the transmitter and receiver which can operate
in open or close loops. This also requires integrating in
radar based machine intelligence frameworks, the capability
of learning new/unknown radar waveforms. On the contrary,
when considering earth observation from satellites using Syn-
thetic Aperture Radars (SAR), mainly arti�cial intelligence
frameworks are developed in order to process the data obtained
for various applications.

SAR are moving radars systems capable of producing high-
quality images of the earth's surface [1]. They consist in
emitting an electromagnetic wave that is re�ected on the
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earth's surface. The backscattered signal, which is affected
by the scatterers on the surface, is then processed to build an
image of the scene. SAR systems are known for their usability
in all weather and illumination situations. They are thus
capable to monitor all kind of areas of interest. Recent years
have seen an increase in the number of SAR systems.Missions
such as Sentinel-1 or TerraSAR-X have for example a global
coverage of the earth's surface with SAR electronic imaging
technology.

New missions in peculiar have a large bandwidth and an
increased spatial resolution. In this context, speci�c responses
of the scatterers have been observed. They are anisotropic
and dispersive [2], [3] in contrast to the usual isotropic and
whiteness assumption made in traditional SAR reconstruction
algorithms. When considering HR monovariate SAR images,
a dispersion of the energy is observed. A single scatterer
may have many side lobes on the reconstructed image. More-
over, the speci�c spectro-angular response of the scatterer is
naturally lost during the conventional SAR processing. This
information is of interest and can be exploited as an additional
source of diversity in many applications.

In SAR images processing, depending on the application,
three important techniques are usually relied upon: target
detection, segmentation and classi�cation. Target Detection
schemes [4] consist in deciding if a target of interest is present
at a given position of the image. Segmentation [5], [6], aim's
is to delimit the image into segments which are conceptually
meaningful such as the boundary between land and sea. Finally
classi�cation [7], [8], [9], [10] allows to label part of the
images with regards to an application of interest. This paper
focuses on target detection schemes and more speci�cally,
on schemes which respect the Constant False Alarm (CFAR)
property [11]. This property allows to detect targets while
guaranteeing a certain probability of false alarm.

B. Relation to prior works

Classic schemes usually rely on a diversity of some sort
to characterize the target and to separate it from the clutter.
Literature on the subject concerning SAR images is vast as
many kind of diversities can be exploited. For example, in
[4], a spatial template model of target is used in likelihood
ratio schemes to derive detectors. Polarimetric diversity has
been used in [12], [13] to detect vehicles under foliage, in [14]
to detect ship in sea clutter or in [15], [16] for segmentations
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purposes. In, [17] a diversity coming from successive pulses is
used to detect range-spread targets. In [18], [19], [20], a time-
division multiplexing of the antennas is exploited to create a
diversity for Ground Moving Targets Identi�cation (GMTI).
An extension to non Gaussian model has been explored in
[21], [22], [23].

In this paper, the spectro-angular behaviour mentionned
earlier as a source of diversity is considered. Several work
have investigated methods for retrieving the spectro-angular
diversity. For example, approach such as steerable pyramids
[24], [25], curvelets [26] or subspaces [27], [28] are possible.
However, they are usually heavy methods. For example, sub-
space methods have high-computational cost and are not adap-
tive. They also assume the knowledge of a physical model,
which makes them speci�c to an application. Time frequency
analysis is a simpler approach that allows to analyze SAR
data to retrieve non-stationary information such as spectral
and angular behaviors. This approach was used in [29], where
the azimuth bandwidth has been separated in two sub-bands
for ship detection. In the following we restrict only on the
Linear Time Frequency Distributions (LTFD) as they allow to
keep the phase information and the possibility to apply the
reconstruction property.

Wavelet decomposition of SAR images have been studied
for many applications. In [30], [31], wavelet frames have been
used in order to derive a measure of polarimetric texture
used in segmentation and target detection schemes. Wavelet
transforms on SAR images have been used in [32] to retrieve
wind �elds. In [33], wavelets have been used to reduce speckle
noise in interferometric SAR images. Fusion techniques on
wavelet coef�cients have been used in [34] in order to compute
a change detection map. Wavelet decomposition associated
with kurtosis statistics have been exploited in [6], [7] for both
segmentation and classi�cation purposes. In [35], [36], multi-
resolution information is used for target detection schemes in
Gaussian context. Retrieval of spectro-angular diversity using
wavelet decomposition have in peculiar been investigated in
work such as [37], [38]. More precisely, these methods have
been used for target detection applications in [39] or for
change detection in [40]. In those works, the spectro-angular
information has presented promising results. However, in those
works the decomposition induced side lobes on the sub images
which may decrease the performance.

This paper proposes a wavelet packet formalism (as a
generalization of LTFD) and designs a new family of wavelets
aimed at decreasing these side lobes. Then, the multivariate
image resulting from the wavelet decomposition is modeled
by a multivariate statistical framework. This framework allows
to retrieve the properties of the clutter through a covari-
ance matrix parameter. Using this modeling, classic adaptive
methods can be used in order to detect a target embedded
in clutter disturbances. The spectro-angular behaviour of the
target is assumed to be known through a steering vector.
These adaptive methods have been extensively studied in [41],
[42], where the disturbances are modeled as a realization
of a Gaussian random variable parametrized by an unknown
covariance matrix. Classically, secondary data, assumed to be
free of target, corresponding to surrounding pixels are used for

the estimation of the covariance matrix. Since in this paper
the images are the result of a wavelet decomposition, the
size of the vector is expected to be large. Clearly, when the
size of the vectors is large, the number of secondary data
needed increases. This is problematic in HR SAR images
where a heterogeneity of the data is naturally present. In
this case, the hypothesis of homogeneity of the surrounding
pixels is not evident and the Gaussian model re�ect poorly
the observations. Robust methods have been developed using
broader families of distributions than the Gaussian one [43],
[44]. In this paper, both Gaussian and robust methods will be
studied and compared.

C. Contributions of the present paper

The different contributions of the present paper are summa-
rized as follows:

� A parametrized wavelet family is proposed to analyze
SAR Images. The new family is an extension of Shannon
M-Band �lters that are adapted to take into account SAR
geometry. The new family is designed to reduce side
lobes on the wavelet coef�cients. A criteria is proposed
for the choice of its parameters.

� The spectro-angular diversity, obtained through wavelet
decomposition, is used in robust target detection schemes.
Target detection schemes are explored in both Gaussian
and elliptical noise assumption and are studied through
two alternatives CFAR detectors: the Adaptive Matched
Filter (AMF) and the Adaptive Normalized Matched
Filter (ANMF). The behaviour of those detectors in terms
of regulation of false alarm and performance of detection
are compared using two separate datasets.

D. Paper Organization

The paper is organized as follows: in section II, the acqui-
sition geometry of SAR is recalled and it is explained how the
information about anisotropy and dispersivity of scatterers is
lost in the processing of the single look monovariate image.
Then, in section III, Shannon M-band wavelets are adapted
for the purpose of retrieving spectro-angular diversity in SAR
images. In section IV, an application of wavelet decomposition
to target detection is presented and in section V, simulations
and results are presented. Finally, some conclusions are drawn
in section VI. Proofs are given in Appendices.

The following conventions are adopted: matrices are in bold
and capital, vectors in bold.RN and CN refer to the sets
of N-dimensional real and complex vectors.L n (C2) is the
set of the functions having values inC2 for which the n-
th power of the absolute value is integrable. For a given
complex scalar,� denotes the conjugate operator,j � j is
the module operator. For any given vector or matrix,� T

denotes the transpose operator,� H denotes the transpose
conjugate operator,k�k is the Euclidean norm. For any matrix
j � j denotes the determinant. Given a 2-dimensional (2D)
function g 2 L 1(C2) [ L 2(C2), the 2D Fourier transform
(resp. inverse Fourier Transform) is denoted byF g(! 1; ! 2) =R

R g(x 1; x2)e�i ! 1 x 1 e�i ! 2 x 2 dx1dx2 (resp.F �1 g) and de�ne
� [p;q ]g(x; y ) = g(x � p; y � q). For a function,h�; �i is the
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inner product onL 1(C2) [ L 2(C2) andk � k is theL 2 norm.
1lK denotes the indicator function of a given setK .

II. SAR IMAGE AND NON-STATIONARITIES

In this section, we describe the geometry of acquisition for
a SAR system and give the de®nition of relevant physical
parameters. We then explain how algorithms such as Range
Migration Algorithm (RMA) result in a loss of information
when considering HR SAR image.

A. SAR Acquisition Geometry

¯ig
ht

pa
th

x

y

� 2

� 1

k2

k1

Fig. 1. SAR acquisition geometry. A re¯ector is viewed at two different
angles of illumination� 1 and � 2 in a given frequency. This information is
summarizedthrough the wave vectorsk 1 , k 2 .

Figure 1 presents the geometry of acquisition for a SAR
system. The moving radar transmits an electromagnetic wave
represented by the wave vectork = [ kx ; ky ]T and recovers the
backscattering signal in order to obtain a map of the re¯ectors
of the scene.k is related to the emitted frequencyf by kkk =
K = 2f=c, c being the celerity of the light, and to the angle
of illumination � by � = arctan( ky =kx ).

The emitted signal is located in a certain range of frequen-
cies de®ned by:[f 0 ! B=2; f 0 + B=2], f 0 being the carrier
and B being the bandwidth of the radar. This translates in
terms of spatial frequenciesK to: [K0 ! KB =2;K0 + KB =2]
with K0 = 2f 0=c, KB = 2B=c. The angles� of illumination
lies in [! � B ; � B ] angular domain. The spatial SAR resolu-
tions are given respectively in azimuth by� y = c=(4f 0 � B )
and in radial range by� x = c=(2B ). We de®neD =
[K0 ! KB =2;K0 + KB =2]� [! � B ; � B ], andU S;] as the space
of functions having spectro-angular features inD.

B. Anisotropy and Dispersivity of Scatterers

In HR SAR Images, the hypothesis of isotropy and non-
dispersivity of the scatterers is no longer obvious. When a
target is illuminated using a large bandwidth and a large
range of angles, it is more reasonable to assume that its
response is dependent of the wave vector. Recent studies of the
spectral and angular behaviour of the scatterers have shown
the variation of the scatterers' response for several angles of
illumination and several frequencies [2], [45].

6

Sub-band 1 Sub-band 2

elevation 30¡                                            e

Fig. 2. An ONERA RGB color-coded SAR image acquired for three
consecutive frequency bands.

Figure 2 presents an ONERA SAR image in X-band. The
responses of the scene relative to three consecutive frequency
bands have been coded in RGB color-coding. Red points are
responding only on the ®rst band, green ones on the second
band and the blue ones on the third band. They are called
colored scatterers. Gray points are called white scatterers as
they are responding equivalently in the three sub-bands. This
image perfectly illustrates how some scatterers have different
behaviour given the band used. Similar results can be achieved
when looking the scene at different range of angles. This
diversity is of interest as it can be interpreted in terms of
target characteristic: given the spectro-angular behaviour of
an object of interest, one can adapt target detection schemes
on multivariate SAR images to this speci®c behaviour.

Unfortunately, for complex monovariate SAR images, this
information is lost during the processing. In algorithms such
as RMA [1], the aim is to collect a backscattering re¯ection
coef®cient ~I (k) and then perform Fourier based spectral
estimation in order to build the conventional complex single
look (monovariate) SAR imageI (r ) for each pointr = [ x; y]T

on the ground:

I (r ) =
Z

D

~I (k) exp
!
2 i � kT r

�
dk ; (1)

where the integration is performed on the whole spectral and
angular domains. When colored scatterers are present, their
spectro-angular behaviour is effectively lost.

Works such as [37] or [38] have proposed to model the non-
stationarities of the scatterers of the imageI in the space of
spectral and angular features[K; � ]. Using this model, wavelet
analysis is a powerful tool for analyzing the behaviour of the
colored scatterers. For instance, an hyperimage representing
the re¯ectivity of the scene for any sub-spaceE � D is given
by:

~I E(r ) =
Z

E

~I (k) 	 S
E(k ; r ) dk ; (2)

where	 S
E(k ; r ) is a wavelet function with spectro-angular sup-

port E. When considering several subsetsE1;:::;M , a wavelet
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packetf	 S
Ei

(k; r)=i = 1; : : : ; M g can be de�ned. The prob-
lematic is then to choose the shape of the wavelets and a
relevant partition ofD in terms of Ei as to decompose the
image in separate frequency bands and range of angles for a
given purpose.

This approach was used in [39], [40] where good results in
both target detection and change detection have been obtained.
However, in those works, the problem of side lobes has not
been considered. We propose in the next section to design new
wavelets aimed at reducing the dispersion of energy on the sub
images.

III. N EW WAVELET DESIGN FORSAR ANALYSIS

In this section, new wavelet packets adapted to SAR ge-
ometry are developed. The particularity of this new packet
with regards to existing literature is the choice of polar
representation which better describes the data with regards
to the spectro-angular diversity of interest. To this end, we
use classic Shannon M-band �lters that we adapt to take into
account the spectral support of SAR Images and then we
correct the edge effects of those wavelets.

The adaptation of wavelet packets in this geometry can
be done using many classic wavelets packets (Gabor, De-
baucheries,etc.). However, Shannon M-band �lters have been
chosen as a basis of our design for the following reasons:

� They are separable with regards to the two dimensions
(K; � ) of the decomposition, which makes them ideal
when we want to choose the number of sub-bands and
sub-looks (as in looking angle) separately.

� Since we expect to exploit the decomposition in clas-
sic target detection scheme, there is a need for each
coef�cient to deliver a different information than the
others. Otherwise, correlations between sub-bands/sub-
looks would be introduced due to the shape of the
wavelets and may deteriorate detection performance. This
leads to a choice of an orthogonal wavelet packet.

� To better describe the behaviour of a possible target
as a function of the frequencies and looking angle, we
consider wavelets corresponding to a connected subset
of the frequency/angular domain.

A. Shannon M-band wavelets theory

Let M 1 and M 2 be natural numbers that are both greater
than or equal to 2. The Shannon 2DM 1 � M 2 multi-band
wavelet �lters used in this paper follow from a separable 2D
extension of 1D �lters presented in [46], [47]. These �lters
give a multi-resolution framework for decomposing any image.

We de�ne U S as the 2D Paley-Wiener (PW) space com-
posed by elements ofL 2(R2) whose Fourier transform is
supported within[��; � ]2. Any element of this space satis�es
Shannon's sampling theorem. Therefore, when theM 1 � M 2

multi-band decomposition concerns the PW spaceU S, the
input data for the decomposition of any elementg of this func-
tional space are the samplesfg [k; ` ]gk;`2Z of g (corresponding
to the pixels of the image to decompose).

The 2D Shannon wavelet packet function at resolution level
j and 2D shift parameters(n1; n2), with n" 2 f 0; : : : ; M j

" � 1g
for " 2 f 1;2g, is given by

	 S
j;[n 1 ;n 2 ] = M j=2

1 M j=2
2 1l� 0

j;G [1] (n 1 )
�� 1

j;G [2] (n 2 )
; (3)

where

� "
j;k =

�
�

(k + 1)�

M j
"

; �
k�

M j
"

�
[

�
k�

M j
"

;
(k + 1)�

M j
"

�
; (4)

and (G ["] )"2f1 ;2g are the permutation maps de�ned respec-
tively, for " 2 f 1;2g, by G["] (0) = 0 and by recursively
setting, fork = 0; 1; : : : ; M " � 1 and` = 0; 1;2; : : :

G["] (M` + k)

=
�

MG ["] (`) + k if G["] (`) is even;
MG ["] (`) � k + M � 1 if G["] (`) is odd:

(5)

De�ne � S
j;[n 1 ;n 2 ] = F �1 	 S

j;[m;n] . A 2D wavelet packet
subspace� S

j;[n 1 ;n 2 ] is generated as the closure of the space
spanned by the following translated versions of� S

j;[n 1 ;n 2 ]:

� S
j;[m;n] = Clos

D
� [M j

1 p;M j
2 q] �

S
j;[m;n] : p 2 Z; q 2 Z

E
: (6)

These subspaces are such that for any �xedj ,

U S =
M

m=0 ;1;:::;M j
1 �1

n=0 ;1;:::;M j
2 �1

� S
j;[m;n]

where� denotes the direct sum of functional subspaces.
As an illustration, the Shannon2 � 3 multi-band wavelet

packet tree is given by Figure 3 as a tree product resulting
from a 2-band and a 3-band 1D trees, where the tree-product
involves all combination of nodes given at a �xed resolution
level j . In this �gure, the positive part� ";+

j;k of � "
j;k is given

for each resolution levelj under consideration.
The ShannonM 1 � M 2 multi-band coef�cients of the

projection of g on a 2D wavelet packet subspace� S
j;[n 1 ;n 2 ]

de�nes the wavelet coef�cients:

CS
j;[n 1 ;n 2 ][p; q] =

ZZ

R2
g(z; t)� [M j

1 p;M j
2 q] �

S
j;[n 1 ;n 2 ](z; t)d zdt:

(7)

Proposition III.1. The coef�cients of the projection ofg on
a wavelet packet subspace� S

j;[n 1 ;n 2 ] is a discrete sequence
C j;[n 1 ;n 2 ] = ( CS

j;[n 1 ;n 2 ][p; q])p;q2Z where

CS
j;[m;n] [p; q] = M �j=2

1 M �j=2
2 F �1 Uj;[m;n] (M j p; M j q) ;

(8)
with

Uj;[m;n] = [ F g] � 1l� 0
j;G(m) �� 1

j;G(n)
: (9)

Proof. See Appendix A.

In practice,g is a discrete image to be decomposed. This
proposition shows how wavelet coef�cients can be easily
obtained in practice through a simple Fast Fourier Transform
(FFT). [p; q] are the pixels of the wavelet coef�cient for
shift parameters[n1; n2] at a �xed resolutionj . Note that, a
decomposition at a given resolutionj assume that the wavelets
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j; � are given at the right-side tree. The frequency tiles associated with the decomposition are the intervals� 1

j; � � � 2
j; � for every �xed j :

the whole tree involves all combination of nodes given at a �xed resolution levelj .
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j; [m;n] (K; � ) de�ned by Eq. (16) when considering[f 0 � B=2; f 0 + B=2] � [�� B ; � B ] = [1 GHz; 5GHz ] � [�45 deg ; 45 deg]. The intervals
represented are given for illustration.

coef�cients correspond to a decimated version of the image (by
a factor ofM j

1 andM j
2 ). This methodology allows to compute

ef�ciently the coef�cients with a low-complexity. Indeed,
since only a Hadamard product and a FFT is necessary, the
complexity is linear with regards to the number of coef�cients
desired.

The wavelets presented here are designed for images re-
specting Shannon sampling theorem. The decomposition is
done on functions whose frequencies are contained in the
space[��; � ]2. We adapt hereafter Shannon wavelets from the
Cartesian space[��; � ]2 to the polar spaceD corresponding
to the physical diversity of interest for SAR images.

B. Adaptation of Shannon wavelets to SAR Geometry

De�ne

	 S;]
j;[m;n] (K; � ) = Rj=2 L j=2 1l� j;K m �� j;� n

(K; � ) ; (10)

where

� j;K m =K 0 � KB +
�

mKB

Rj ;
(m + 1)K B

Rj

�
; (11)

� j;� n =
�

n� B

L j ;
(n + 1)� B

L j

�
: (12)

From this, we de�ne the wavelet functions� S;]
j;[m;n] (x; y ) =

F �1 	 S;]
j;[m;n] (K; � ). Here, the variablesx andy correspond to

the range and cross-range position as in �gure 1. Note that
this de�nition requires computing the Fourier transform on
spectral and angular variables. Among the different possible
solutions of this problem, we will use interpolation from the
Fractional Fast Fourier Transform (FFFT or 3FT) in order to
�ll the Polar grid [K0 � KB =2;K0 + KB =2]� [�� B ; � B ] from
the Cartesian one corresponding to variableskx ; ky . Among
the 3FT implementations, we recommend using that of [48].

The wavelets thus de�ned constitute a wavelet packet as per
the following proposition;:

Proposition III.2 (Vanishing moments).For any non-negative
integersj; m; n; p; q , we have

ZZ

R2
xp yq � S;]

j;[m;n] (x; y ) dx dy = 0:

Proof. See Appendix B.

Functions � S;]
j;[m;n] de�ned above have thus an in�nite

number of vanishing moments. Since they are well localized
in space/frequency/angle, they are wavelet functions.

De�ne the wavelet subspaces� S;]
j;[m;n] similarly to eq. (6).

Then we have:

Proposition III.3 (Orthogonality of wavelet packet sub-
spaces).For any givenj and any(m; n) 6= (m0; n0) we have:

� S;]
j;[m;n] ? � S;]

j;[m 0;n 0] ;

where? denotes orthogonality symbol.

Proof. See Appendix B.

Proposition III.4 (Completion of wavelet packet subspaces).
For any givenj , and any(m; n), we have

[

m = 0; 1; : : : ; R j � 1
n = 0; 1; : : : ; L j � 1

� S;]
j;[m;n] = U S;;] :

Proof. See Appendix B.

Propositions III.2, III.3 and III.4 highlight
that wavelet subspaces � S;]

j;[m;n] : j >
1; m = 0; 1; : : : ; Rj � 1; n = 0; 1; : : : ; L j � 1 can thus
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be used to de�ne several multi-resolution frameworks
(speci�c sub-selection ofj; m; n) for analyzing SAR data.

Analyzing SAR data is done by computing the wavelet
coef�cients as previously stated in (2). We have:

Proposition III.5 (Wavelet coef�cients).In practice, at a res-
olution levelj , we obtain the wavelet coef�cients by computing
the following:

CS;]
j;[m;n] [p; q] = R�j=2 L �j=2 F �1 Vj;[m;n] (R j p; L j q) ; (13)

where Vj;[m;n] follows from the back-projection of the SAR
image with respect to spectral and illumination features:

Vj;[m;n] (K; � ) = eI (K; � ) 1l� j;K m �� j;� n
(K; � ) : (14)

Proof. Similar to proposition III.1.

Again, the complexity of this methodology is linear with
regards to the number of coef�cients (R� L) since coef�cients
are obtained from a Hadamard product and a 3FT. In practice,
any SAR data can ef�ciently analyzed using this methodology.

An example of a multi-resolution analysis is given
in Figure 4 for spectral features and angular illumina-
tion in [f 0 � B=2; f 0 + B=2] � [�� B ; � B ] = [1 ; 5]GHz �
[�45; 45] deg.

C. Bell-Shaped wavelets design for SAR Geometry

When considering Shannon wavelets, the decomposition is
subject to hard transition in the sense that each �lter is an ideal
band-pass �lter. When considering the wavelet coef�cients,
this results in a convolution with asinc function which has
high side lobes (see �g. 5 for an illustration). This dispersion
of energy is problematic in detection schemes when secondary
data, corresponding to the surrounding pixels, are needed.

Fig. 5. Example of bright point decomposition. Left: ImageI . Right:C S;]
1;[1;1]

with R = L = 2 .

To limit the side lobes on the wavelet coef�cients which
are due to the sharp-edge of the Shannon wavelets, we look
for alternatives that are subject to smooth transitions. We
derive hereafter, a new family of parametrizedR-band / L-
look wavelet functions including the Shannon wavelets as limit
case.

We propose the following criteria for the design of the new
family of wavelets:

� Well located in frequencies and angles (wavelet function).

Fig. 6. Bell-shaped function with widtha = 3 , centerc = 0 and different
slope parametersb 2 f 1; 3; 10; 50g.

� Similar behaviour to Shannon wavelets to preserve the
framework presented in III-B.

� Smooth transition with a parameter controlling the decay
(for adaptability purposes).

Many functions respect the two �rst criteria. However, Bell-
shaped membership functions appear to be a good choice as
they allow to control both center, extent and slope (and thus
smoothness). They are a family of one-dimensional functions
de�ned by:

gBell
a;b;c (x) =

1

1 +

�
�
�
�
x � c

a

�
�
�
�

2b : (15)

where the parametera stands for the width of the function,
where the parameterb controls the slope and the parameterc
is a location parameter.

Figure 6 gives an example of Bell function with different
slopes and shows that these functions are good candidates for
our problem. Using them as a basis, we de�ne:

	 [d1 ;d2 ];]
j;[m;n] (K; � ) = R

j
2 L

j
2 H [d1 ;d2 ];]

j;[m;n] (K; � )1lD ; (16)

whereH [d1 ;d2 ];]
j;[m;n] is de�ned as a product of two Bell functions:

H [d1 ;d2 ];]
j;[m;n] (K; � ) = H d1 ;]

j;m (K) H d2 ;]
j;n (� ) (17)

with:

H d1 ;]
j;m (K)= gBell

K B
2R j ;d1 ;K 0 � K B

2 + (2m+1)K B
2R j

(K) ;

H d2 ;]
j;n (� ) = gBell

� B
L j ;d2 ;�� B + (2n+1)� B

2L j

(� ) :

The de�nition is similar to that of eq. (10): the center
and width of Bell functions have been adapted to span
the SAR geometry domainD through Rj translations
alongK andL j translations along� . The slope parametersd1

andd2 are let open as a parametrization of the wavelet family.

De�ne � [d1 ;d2 ];]
j;[m;n] = F �1 	 [d1 ;d2 ];]

j;[m;n] (K; � ), the wavelet func-
tion. We have the following properties:

Proposition III.6 (Vanishing moments).For any non-negative
integersj; m; n; p; q , we have

ZZ

R2
xp yq � [d1 ;d2 ];]

j;[m;n] (x; y ) dx dy = 0:

Proof. Similar to III.2. The null derivative in(0; 0) is assured
by the indicator 1lD .
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Proposition III.6 indicates that the functions presented by
eq. (16) de�ne wavelets.

Proposition III.7 (Convergence to Shannon wavelets).TheR-
bandL-look wavelet transform obtained by using Eq.(16) is
associated with the Shannon wavelet transform whend1; d2 !
+1:

lim
d1 !+1

lim
d2 !+1

	 [d1 ;d2 ];]
j;[m;n]

�= 	 S;]
j;[m;n] : (18)

where equality holds true almost everywhere (æ).

Proof. See Appendix C.

Proposition III.7 highlights that the Bell-shaped wavelets
have similar behaviour than Shannon wavelets for high value
of d1 andd2 and can thus be used for analyzing SAR images.
For convenience purposes, we use alternatively the notation
	 [1;1] ;]

j;[m;n] = 	 S;]
j;[m;n] .

A problem rises in the choice of these slope parameters. One
can intuit that given their value, the properties of orthogonality
and completion of wavelet packet subspaces are not assured.
Unfortunately, given the expression of the wavelets, �nding an
interval of values using orthogonality or completion properties
is not possible to our knowledge. As such, we propose to
consider the wavelet packet in terms of frames (see [49]
for details) which relax the conditions of orthogonality and
completion. As suggested in [50], a wavelet packet have good
reconstruction property if the energy of the signal is preserved
when doing the decomposition and reconstruction. In practice,
this can be ensured if the following condition is respected [51]:

Q(K; � ) =
X

m;n

jH [d1 ;d2 ];]
j;[m;n] (K; � )j2 � 1; 8K; 8�: (19)

This criterion can be used to grasp qualitatively how the
decomposition will treat the frequencies present in the image.
If Q > 1, the energy increase which means that the packet
is redundant. WhenQ < 1, there is a loss of energy and
thus information. We propose to use this criterion to select
the values ofd1; d2 which preserve energy the most.

Since the expression in eq. (17) is separable inK and� , we
can treat both separately and solve the problems:8(K; � ) 2 D ,
�nd d1 subject toQK (K) =

P
m;n jH d1 ;]

j;[m;n] (K)j2 � 1 and

�nd d2 subject toQ� (� ) =
P

m;n jH d2 ;]
j;[m;n] (� )j2 � 1.

Figure 7 gives the values ofQ for several values ofd1 and
d2 for a given set of(j; R; L; f 0; B; � B ). We notice that for
small values ofd�2f1 ;2g , there is a loss of energy at the tran-
sitions between the �lters. For values ofd�2f1 ;2g 2 [10;1[,
this loss is acceptable. Indeed, since the wavelet packet is
developed for target detection schemes, there is a need to know
the spectro-angular behaviour in a vector of a �xed size. This
means that if the energy of most of each bands are preserved
in the coef�cients, this will not impact much the detection
scheme.

Finally we can compute the wavelets coef�cients simply
by taking expression at eq. (13) and usingVj;[m;n] (K; � ) =
eI (K; � ) H [d1 ;d2 ];]

j;[m;n] .

Fig. 7. Redundancy of wavelet packet forf 0=9.6GHz,B =640MHz,� B =0.25
rad, j =1, R=L=2.

IV. A PPLICATION TO TARGET DETECTION

In this section, we propose to use the wavelet decomposition
of the previous section in order to detect a target in a noisy
SAR image. First, we give a statistical model for noise
disturbances. Then we present the target detection problem.

A. Data Model

In the following, each pixel location(p; q) of the SAR
image will be represented,at a resolution levelj , by a set
of R-radius andL-look wavelets features encapsulated in the
random complex vector

cj [p; q] ,
n

C [d1 ;d2 ];]
j;[m;n] [p; q]

o
m = 0; 1; : : : ; R j � 1
n = 0; 1; : : : ; L j � 1

2 CN ;

whereN = Rj � L j .
In standard applications, the vectorcj [p; q] is modeled as

a multivariate Gaussian vector:cj [p; q] follows a Gaussian
distribution CN(0; R) where R is the unknown covariance
matrix of the data. This model is accurate for SAR images
where each pixel is the sum of the contributions of all the
scatterers inside its range.

However, when considering HR SAR images, the number of
scatterers present in any pixel of the image is small, meaning
that the Central Limit Theorem may no longer be applicable.
Moreover, there are many non-stationarities inherent to this
kind of images where the backscattered power can vary greatly
spatially inside the analysis windows. Thus, the Gaussian
hypothesis may no longer be applicable. To generalize the
Gaussian statistic, we assume thatcj [p; q] follows a CES dis-
tribution CE(0; g; R) where the scatter matrixR is unknown
and whereg stands for any characteristic function generator
[52]. This model extends the Gaussian distribution and better
characterizes HR SAR images.

In both models, the matrixR characterizes the angular
and the spectral behaviour of each scatterer. To estimate this
matrix, the following K secondary vectors surrounding the
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pixel (p; q) under test (supposed homogeneous in terms of
angular and spectral behaviour) are used:

fc j [p � `1; q � `2]g ` 1 = �K 1 ; : : : ; K 1
` 2 = �K 2 ; : : : ; K 2
( ` 1 ; ` 2 ) 6= (0;0)

with K = (2 K 1 + 1)(2K 2 + 1) � 1.
We consider two covariance matrix estimators on wavelet

feature vectors: the standard Sample Covariance Matrix (SCM)
which can be written, under zero-mean wavelet coef�cient
assumption, in the form

R̂ SCM;j [p; q] =
1
K

�
X

` 1 =�K 1 ;:::;K 1
` 2 =�K 2 ;:::;K 2
(` 1 ;` 2 )6=(0;0)

cj [p � `1; q � `2] cH
j [p � `1; q � `2]; (20)

and, as alternative to SCM (which can have poorer perfor-
mance under generalized CES model assumption), the Tyler's
Estimator (TE) which has proven some robustness in both
Gaussian and non-Gaussian cases and which is de�ned as the
solution of the �xed point equation [53]:

R̂ TE;j [p; q] =
N
K

�

X

` 1 =�K 1 ;:::;K 1
` 2 =�K 2 ;:::;K 2
(` 1 ;` 2 )6=(0;0)

cj [p � `1; q � `2] cH
j [p � `1; q � `2]

cH
j [p � `1; q � `2] R̂ �1

TE;j [p; q] cj [p � `1; q � `2]
:

(21)

The TE estimator is robust to non-stationarities that are
naturally present in HR SAR images.

For both SCM and TE estimators, the numberK has to be
aroundK � 2N for a good estimation [41]. For high values of
R or L, the vectors become very large. Sometimes, it would be
impossible to have suf�cient number of secondary samples for
the estimation of covariance matrix. In those cases, regularized
versions of SCM and TE exist in the literature and have shown
good results for many applications [54], [55], [56].

Note that both estimators are used to estimate the covariance
matrix of the clutter around a target. Hence, the test pixel
(namely(` 1; `2) 6= (0; 0)) is excluded in the process.

B. Detection Schemes

We assume that a target with a known steering vector
p 2 CN could be present in some pixels in the SAR image1.
We have for each pixelI [p; q] to solve the standard binary
hypothesis test:

�
H0 : cj [p; q] = n; ck = nk 8k 2 [1; K ]
H1 : cj [p; q] = a p + n; ck = nk 8k 2 [1; K ] ;

(22)
where (n; nk ) both represent a noise with the same distri-
bution, a is an unknown complex amplitude of the potential
target with spectro-angular steering vectorp to be detected
and fc k gk2[1;K ] being theK secondary data.

1Note that when the steering vector is not known, it is possible to develop
Bayesian target detection schemes using works such as [57], [58].

In this detection issue, we decide to test different adaptive
detectors like the well-known Adaptive Matched Filter which
corresponds to a two-step Generalized Likelihood Ratio Test
(GLRT) in homogeneous Gaussian noise [41]):

AMF
� j [p; q] =

�
�
�pH R̂ �1

SCM;j [p; q] cj [p; q]
�
�
�
2

pH R̂ �1
SCM;j [p; q] p

H 1

?
H 0

� ; (23)

where� is the detection threshold.
For partially homogeneous Gaussian noise or for CES

distributed noises [52], the derivation of the detection problem
leads to the Adaptive Normalized Matched Filter [59], [60]:

ANMF
� j [p; q] =

�
�
�pH R̂ �1

TE;j [p; q] cj [p; q]
�
�
�
2

�
pH R̂ �1

TE;j [p; q] p
� �

cH
j [p; q] R̂ �1

TE;j [p; q] cj [p; q]
�

H 1

?
H 0

� :

(24)
The AMF detector has the Constant False Alarm (CFAR)

property relative to the Gaussian distribution, while the ANMF
is CFAR for both Gaussian and CES distributions. This is an
important property since it allows to select a detection thresh-
old to ensure a probability of false alarm (PFa ) independently
of the data being tested.

Concerning the complexity of these methods, the limiting
factor is the need to compute the inverse of the covariance
matrix for both AMF and ANMF schemes. Then, if the number
of coef�cient is high, this operation becomes time-consuming
(typically O

�
(R � L) 3

�
).

As for the implementation, the target detection schemes
can be implemented using parallel computation: by splitting
the image in several sub-images and treating each one by a
given thread, the computation time is greatly reduced. The
simulations presented in section V were done using a machine
with two Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz
processors, that makes 24 cores in total, and 32Gb of RAM,
the computation time for an image of size2510� 1638 and
R = 5 , L = 5 , was 3.35 seconds for the AMF algorithm and
28.34 seconds for the ANMF one.

V. SIMULATION AND RESULTS

Some simulation results and discussions on several aspects
of wavelet analysis and target detection are presented here.

A. Dataset

Two dataset have been used to test the wavelet decomposi-
tions and their impact on target detection schemes:

� SANDIA Dataset, available at http://www.sandia.

gov/radar/complexdata/. The image referenced as
MiniSAR20050519p0010image002is selected.

� SDMS Dataset [61], available athttps://www.sdms.afrl.af.mil/

index.php?collection=ccdchallenge. The image referenced as
FP0120is selected.

Table I summarizes the information on both datasets.
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Fig. 8. Coef�cients for Shannon and Bell-Shaped wavelets on SDMS Image withR = 2 , L = 2. The improvement in terms of linear patterns (side lobes
of bright points) ford1 = d2 = 3 are highlighted using dashed boxes.

TABLE I
Description of Dataset

Dataset Band Frequency Resolution Scene description

SANDIA Ku 16.8 GHz 0.10 m Stationary aircraft, trees
SDMS X 9.6GHz 0.20 m Foliage, buildings, vehicles

B. Simulation description

For a given SAR image, an arti�cial target with a given
steering vector (representing its spectro-angular behaviour) is
embedded. This allows to control both position and Signal
to Noise Ratio (SNR) of the target to be detected. For a
given imageI , steering vectorp 2 CR �L , a pixel [i t ; j t ]T

corresponding to positionr t = [ x(i t ); y (j t )]T and a given
SNR in dB, an image with the target is obtained through:

I t = I +
T

kTkl 2

� 10

SNRdB

20 (25)

with:
T =

X

m=0 ;:::;R j �1
n=0 ;:::;L j �1

F �1
n

p[m; n] 1l� j;K m �� j;� n
ei 2 � k T r t

o
and

� 2 =
X

i=�10;:::; 10

I (i t + i; j t + i) 2, the variance of the noise on

a window around the target.
This process is done as follows:
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� Choose a steering vectorp.
� Build spectrum according to the steering vector and create

image of the targets using eq. (25)
� Perform the wavelet decomposition and create the hyper-

image using eq. (13).
� Apply the detectors (23), (24) with the given steering

vector.

C. Results

1) Spectro-angular behaviour:Figure 8 shows a 2-Band 2-
Look decomposition of a portion of SDMS Image. First, the
spectro-angular behaviour of the data can be analysed: given
the sub-image considered, different patterns emerge. Indeed,
for example the object in the bottom-right corner (0> x >
100 and �50 < y < 0), is not present in the coef�cients
C1;[1;2] andC1;[2;2] .

2) Quality of decomposition:Next, the wavelet decompo-
sition is compared with two parametersd1 and d2. When
comparing both Shannon and Bell decomposition in �gure 8,
we observe for Shannon wavelets linear patterns (side lobes for
the strong scatterers present in the scene). When considering
d1 = d2 = 3, the undesired linear patterns are less prominent.
This result was expected as Bell-shaped wavelets make a more
concise decomposition in spatial domain.

Fig. 9. PF A -� curves.d1 = d2 = 1 . Left: AMF, Right: ANMF. Top:
SANDIA dataset, Bottom: SDMS dataset.

3) PF A -� curves: Next, we plot in �gure 9, thePF A -
� (probability of false alarm versus threshold of detection)
plots for both AMF and ANMF detectors to study the CFAR
behaviour of the detectors on the datasets. We choose a random
steering vector and apply detectors on the image without
any target. It can be observed that the ANMF detector fares
a lot better in terms of regulation of false alarm than the
AMF. When compared to the theoretical relationship, the AMF
detector has an experimental threshold higher at lowPF A

whereas the ANMF detector stays close to its theoretical
performance. This can be interpreted by the heterogeneous
nature of the datasets which is not well modeled by Gaussian
assumption.

4) Detection near bright point:We chooseR = L = 5
and j = 1 and we place the target to be detected, with a
SNR of 20 dB, near a synthetic bright point with Gaussian

spectro-angular behaviour. Figure 10 gives the steering vector
of the target to detect, the spectre of both targets and the image
obtained by the procedure presented at V-B. The dataset used
here is the SANDIA one.

Fig. 10. A target near a bright point. Dataset is SANDIA,R = L = 5 . The
target has an amplitude of -60 dB when compared to the bright point

Then we apply both detectors on the wavelet coef�cients
characterized byd1 = d2 = 1 and d1 = d2 = 10.
Figure 11 shows the result of the detection atPF A = 10 �3 .
The threshold guaranteeing thePF A was taken from the
experimental curves of �gure 9.

Fig. 11. Results atPF A = 10 �3 . Top: d1 = d2 = 1. Bottom: d1 = d2 =
10. Dataset is SANDIA,R = L = 5 . The target has an amplitude of -60 dB
when compared to the bright point.

Discussion: We focus �rst on the test of detection with
d1 = d2 = 1 (top of the �gure). It can be observed that
that for both detectors, the target is not detected. The AMF
detector gives a false alarm at the position of the bright point,
which is expected given that this detector is mostly a power-
based detector. Whereas, the ANMF detector does not detect
the bright point as it does not have a similar spectro-angular
behaviour as the steering vector. However, a false alarm is
still present which can be explained by a similar of the scene
signature than the steering vector. If we take a look at detection
tests ford1 = d2 = 10 (bottom of the �gure), we observe that
the target is detected with the ANMF detector but not the AMF
one. This can be explained by the fact that withd1 = d2 = 10,
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we have reduced the side lobes of the bright point which does
not pollute the pixel of the target any more resulting in better
detection. The AMF detector does not yield better results for
the same reason as previously.

These results are interesting since they con�rm that the
parametrization of the wavelet decomposition impacts the
performance of detection.

5) PD -SNR Curves:By randomizing the spatial location of
the target for Monte Carlo trials, we obtainPD -SNR plots for
both detectors presented in �gure 12. The steering vector is
set to a �xed values for all the trials.

Discussion: We �rst observe that, the ANMF detector
performs better in terms of detection than the AMF one for
both datasets: if we look atPD = 0:7, a gain of almost 7 dB
is observed for the ANMF for SDMS dataset and 10 dB for
SANDIA Dataset. This can be interpreted by the non-Gaussian
nature of the data which makes regulation of false alarm
dif�cult for the AMF detector and by the fact that ANMF
is better suited for heterogeneous data.

The plots for the SANDIA dataset show overall lower
performance than the SDMS dataset. This can be explained
by the different nature of the datasets: the SANDIA image is
more heterogeneous than the SDMS one and the speckle noise
is more important.

Next, the different plots for eachd1 = d2, lead to a
signi�cant gain when consideringd1 = d2 = 3 or 10
compared tod1 = d2 = 1 for the SDMS dataset (about 8 dB
at PD = 0:6). This result is coherent with the observations
done previously in V-C4. Indeed, the side lobes are contained
in the secondary data that is used for the estimation of the
covariance matrix. These outliers lead to a loss of accuracy
in the estimation which in turn decrease the performances
of detection. It can be also observed a loss in detection for
d1 = d2 = 1. This is coherent with the analysis of the previous
section.

The gain using the new wavelet is lower on the SANDIA
image (about 1 dB atPD = 0:6). It is to be expected since
the SANDIA dataset contains few bright points spread over
the scene.

6) Impact of the steering vector:In order to assess the
impact of the steering vector, another Monte-Carlo simulation
has been done by setting the SNR to 0 dB and randomizing
the target signature at each trial. For each trial, the target has
been set to 100 different location to compute a probability of
detection. Table II gives the performance of detection for two
values ofd1 = d2 and for both datasets. The same conclusions
as previously can be drawn: the ANMF detector performs
better than the AMF one on both datasets and using a bell-
shaped wavelet with a parameterd1 = d2 = 10 allows to
improve the detection rate.

VI. CONCLUSION

This paper presented an adaptation of Shannon wavelet
packets to SAR geometry in order to retrieve a physical diver-
sity of interest. To reduce the side lobes, which are inherent to
wavelet decomposition, a new family of parametrized wavelets
has been proposed. These wavelets have the Shannon wavelets
as a limit case and are tuned using a redundancy criterion.

This wavelet decomposition has been used in target de-
tection schemes. It has been shown that the spectro-angular
diversity, inherent to HR SAR Images, can be used in classic
adaptive detection framework. First, the robust framework has
proven to be more effective over the Gaussian one in both
false alarms regulation and performance of detection. Then,
the reduction of side lobes with the new family of wavelets,
yields signi�cantly gain in the performance of detection when
the image contains numerous bright points.

In this paper, we restrained ourselves to a �xed resolution-
level for the statistical analysis. It may be interesting to use
the multi-resolution framework to selection a decomposition
which yields the best possible diversity of a given image while
keeping the size of vector low. To this end, a solution can be
for example the use of an entropy-based criterion when doing
the decomposition.

APPENDIX A
PROOF OF PROPOSITIONIII.1

Proof:
De�ning the wavelet coef�cients from the following integral

CS
j;[n 1 ;n 2 ][p; q] =

ZZ

R2
g(z; t)� [M j

1 p;M j
2 q] �

S
j;[n 1 ;n 2 ](z; t)d zdt:

we have (through Parseval):

CS
j;[m;n] [p; q]=

1
4�

�
ZZ

F g(! 1; ! 2) F � [M j
1 p;M j

2 q] �
S
j;[m;n] (! 1; ! 2) d! 1d! 2):

As (Fourier transform property on the translation)

F � [M j
1 p;M j

2 q] �
S
j;[m;n] (! 1; ! 2) = ei (M j

1 p ! 1 ) ei (M j
2 q ! 2 ) �

F � S
j;[m;n] (! 1; ! 2) ;

we obtain:

CS
j;[m;n] [p; q] =

1
4�

�
ZZ

ei (M j
1 p ! 1 ) ei (M j

2 q ! 2 ) F gF � S
j;[m;n] (! 1; ! 2) d! 1d! 2:

The integral corresponds to the 2D inverse Fourier transform
of [F g] 	 S

j;[m;n] .

APPENDIX B
PROOFS OFIII-B

Proof of Proposition III.2: Function� S;]
j;[m;n] (x; y ) being

separable with respect tox andy, we have:
ZZ

R2
xp yq � S

j;[m;n] (x; y ) dx dy =

�i p+q d
dKp

d
d� q 	 S;]

j;[m;n] (K; � )
.

K=0 ;� =0

Proposition III.2 follows by noting that	 S
j;[m;n] has null

derivatives.
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Fig. 12. Pd-SNR plots for several values ofd1 = d2 . Top: AMF Detector. Bottom: ANMF Detector.

SDMS SANDIA

mean min max mean min max

AMF d1 = 10 0.81 0.67 0.91 d1 = 10 0.04 0 0.11

d1 = 1 0.55 0.42 0.70 d1 = 1 0.02 0 0.10

ANMF d1 = 10 0.95 0.89 1 d1 = 10 0.50 0.34 0.71

d1 = 1 0.79 0.68 0.92 d1 = 1 0.46 0.22 0.66

TABLE II
Results of detection when randomising steering vector. SNR=0 dB, 100 different signatures have been tested for 100 different target positions on each image.

Proof of Proposition III.3:

D
� S;]

j;[m;n] ; � S;]
j;[m 0;n 0]

E
=

ZZ

R2
� S;]

j;[m;n] (x; y ) � S;]
j;[m 0;n 0](x; y ) dx dy

By using Parseval formula, we derive
D

� S;]
j;[m;n] ; � S;]

j;[m 0;n 0]

E
=

1
4� 2

ZZ

R2
F � S;]

j;[m;n] (K; � ) F � S;]
j;[m 0;n 0](K; � ) dK d�:

which reduces to
D

� S;]
j;[m;n] ; � S;]

j;[m 0;n 0]

E
=

Rj L j

4� 2

ZZ

R2
1l� j; K m �� j;� n

(K; � )1l � j; K m 0 �� j;� n 0
(K; � )dKd�:

For m 6=m0 or n 6=n0, intersection� j;K m � � j;� n \ � j;K m 0 �
� j;� n 0 of the supports ofF � S

j;[m;n] andF � S
j;[m 0;n 0](K; � ) are

either disjoint, or reduce to a null set. This ends the proof.

Proof of Proposition III.4: The proof is a conse-
quence of Shannon band-limited function representation and
the fact that for anyj > 1, the sets� j;K m � � j;� n ,
for m = 0; 1; : : : ; Rj � 1 and n = 0; 1; : : : ; L j � 1, are con-
structed so as to form a partition ofD.

APPENDIX C
PROOFS OFIII-C

Proof of Proposition III.7:
It suf�ces to show that lim

d1 ;d2 !+1
	 [d1 ;d2 ];]

0;[0;0] = 	 S;]
0;[0;0] . From

Eq. (17), we have

H [d1 ;d2 ]
0;[0;0] (K; � ) =

1

1 +

�
�
�
�

2
KB

(K � K0)

�
�
�
�

2 d1

1

1 +

�
�
�
�

�
� B

�
�
�
�

2 d2
;(26)

As a consequence, ifjK � K0j <
KB

2
and j� j < � B , then:

lim
d1 ;d2 !+1

H [d1 ;d2 ]
0;[0;0] (K; � ) = 1 :
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In contrast, ifjK � K0j >
KB

2
or j� j > � B , then:

lim
d1 ;d2 !+1

H [d1 ;d2 ]
0;[0;0] (K; � ) = 0 ;

which ends the proof.
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[50] A. Cohen, I. Daubechies, and J. Feauveau, “Biorthogonal bases of
compactly supported wavelets,”Communications on Pure and Applied
Mathematics, vol. 45, no. 5, pp. 485–560, Jun 1992.

[51] J. Kovacevic, P. L. Dragotti, and V. K. Goyal, “Filter bank frame
expansions with erasures,”Information Theory, IEEE Transactions on,
vol. 48, no. 6, pp. 1439–1450, Jun 2002.

[52] E. Ollila, D. E. Tyler, V. Koivunen, and H. V. Poor, “Complex Elliptically
Symmetric distributions: Survey, new results and applications,”Signal
Processing, IEEE Transactions on, vol. 60, no. 11, pp. 5597 –5625, nov.
2012.

[53] F. Pascal, Y. Chitour, J.-P. Ovarlez, P. Forster, and P. Larzabal, “Covari-
ance structure maximum likelihood estimates in compound Gaussian
noise: Existence and algorithm analysis,”Signal Processing, IEEE
Transactions on, vol. 56, no. 1, pp. 34–38, January 2008.

[54] Y. Chen, A. Wiesel, and A. O. Hero, “Robust shrinkage estimation
of high-dimensional covariance matrices,”Signal Processing, IEEE
Transactions on, vol. 59, no. 9, pp. 4097–4107, 2011.

[55] F. Pascal, Y. Chitour, and Y. Quek, “Generalized robust shrinkage esti-
mator and its application to STAP detection problem,”Signal Processing,
IEEE Transactions on, vol. 62, no. 21, pp. 5640–5661, Nov 2014.

[56] E. Ollila and D. E. Tyler, “Regularized M-estimators of scatter matrix,”
Signal Processing, IEEE Transactions on, vol. 62, no. 22, pp. 6059–
6070, Nov 2014.

[57] O. Besson, A. Coluccia, E. Chaumette, G. Ricci, and F. Vincent,
“Generalized likelihood ratio test for detection of Gaussian rank-one
signals in Gaussian noise with unknown statistics,”Signal Processing,
IEEE Transactions on, vol. 65, no. 4, pp. 1082–1092, Feb 2017.

[58] A. Coluccia and G. Ricci, “Adaptive radar detectors for point-like
Gaussian targets in Gaussian noise,”Aerospace and Electronic Systems,
IEEE Transactions on, vol. 53, no. 3, pp. 1284–1294, June 2017.

[59] S. Kraut, L. Scharf, and L. M. Whorter, “Adaptive Subspace Detector,”
Signal Processing, IEEE Transactions on, vol. 49, no. 1, pp. 1–16, Jan
2001.

[60] M. S. Greco and A. De Maio, Eds.,Modern Radar Detection Theory.
SciTech Publishing, Jan 2016.

[61] S. M. Scarborough, L. Gorham, M. J. Minardi, U. K. Majumder, M. G.
Judge, L. Moore, L. Novak, S. Jaroszewksi, L. Spoldi, and A. Pieramico,
“A challenge problem for SAR change detection and data compression,”
in Proc. of SPIE, Algorithms for Synthetic Aperture Radar Imagery XVII,
vol. 7699, 2010.

Ammar Mian (S' 18) received the Master's de-
gree in Signal Processing from the Grenoble-INP
University, France in 2016. He is currently work-
ing toward the Ph.D. degree in Signal Processing.
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