K. Alex and H. Geoffrey, Learning multiple layers of features from tiny images, 2009.

M. E. Houle, Local intrinsic dimensionality I: an extreme-valuetheoretic foundation for similarity applications, Similarity Search and Applications-10th International Conference, vol.10609, pp.64-79, 2017.

Y. Li, J. Yang, Y. Song, L. Cao, J. Luo et al., Learning from noisy labels with distillation, IEEE International Conference on Computer Vision, pp.1928-1936, 2017.

X. Ma, Y. Wang, M. E. Houle, S. Zhou, S. M. Erfani et al., Dimensionality-driven learning with noisy labels, Proceedings of the 35th International Conference on Machine Learning, vol.80, pp.3361-3370, 2018.

Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai et al., N-baiotnetworkbased detection of iot botnet attacks using deep autoencoders, IEEE Pervasive Computing, vol.17, issue.3, pp.12-22, 2018.

C. Reiss, J. Wilkes, and J. Hellerstein, Google clusterusage traces: format+ schema, pp.1-14, 2011.

A. Rosà, L. Y. Chen, and W. Binder, Failure analysis and prediction for big-data systems, IEEE Trans. Services Computing, vol.10, issue.6, pp.984-998, 2017.

N. Segata and E. Blanzieri, Sarah Jane Delany, and Padraig Cunningham. Noise reduction for instance-based learning with a local maximal margin approach, J. Intell. Inf. Syst, vol.35, issue.2, pp.301-331, 2010.

N. Vadim, M. V. Vagin, and . Fomina, Problem of knowledge discovery in noisy databases, Int. J. Machine Learning & Cybernetics, vol.2, issue.3, pp.135-145, 2011.

A. Vahdat, Toward robustness against label noise in training deep discriminative neural networks, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems, pp.5601-5610, 2017.