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On a Bloch-type model with electron–phonon
interactions: modeling and numerical
simulations

B. Bidégaray-Fesquet, C. Jourdana, and K. Keita

Abstract In this work, we discuss how to take into account electron–phonon interac-
tions in a Bloch type model for the description of quantum dots. The model consists
in coupling an equation on the density matrix with a set of equations on quantities
called phonon-assisted densities, one for each phonon mode. After a description of
the model, we discuss how to discretize efficiently this non-linear coupling in view
of numerical simulations.

1 Bloch model

1.1 Quantum dot description

Quantum dots are usually described using electrons and holes. As detailed in [2], we
prefer a conduction and valence electron description, where valence electrons can be
seen as an absence of holes in a valence band. Due to the 3D confinement, energy
levels are quantized for each species of electrons and can be indexed by integers.
We denote respectively (εc

j ) j∈I c and (εv
j ) j∈I v the conduction and valence energy

levels.
To describe the time evolution of the energy level occupations, we define a global

density matrix by

ρ =

(
ρc ρcv

ρvc ρv

)
. (1)
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The matrices ρc and ρv are respectively the conduction and valence densities. Their
diagonal terms, called populations, are the occupation probabilities and their off-
diagonal terms, called coherences, describe the intra-band transitions. Finally, ρcv

and ρvc = ρcv∗ (A∗ denoting the Hermitian adjoint of a matrix A) describe the inter-
band transitions.

The time-evolution of ρ can be driven by a free electron Hamiltonian associated
to electron level energies and the interaction with an electromagnetic wave (see
e.g. [2] for details):

ih̄∂tρ = [E0 +E ·M,ρ], (2)

where [A,B] denotes the commutator AB−BA, E0 = diag({εc
j},{εv

j}), M is the dipo-
lar moment matrix (a matrix that can be expressed in terms of the wave functions
associated to each energy level) and E is a time-dependent electric field.

To study the interaction of the quantum dot with an electromagnetic field, equa-
tion (2) can be coupled with Maxwell equations:

∂tE = c2 curlB−µ0c2J, (3)
∂tB = −curlE, (4)

B being the magnetic field, c the speed of light in free space and µ0 the vacuum
permeability. The coupling is expressed via the current density J which is given by

J = na Tr(M∂tρ), (5)

where na is the quantum dot volume density.
Equation (2) is a Liouville equation and it confers a certain number of properties

to the solution that have already been extensively studied in the literature. Here, we
focus on the addition of electron–phonon (e–ph) interactions in such a model.

1.2 Electron–phonon Hamiltonian

As in [3] where the addition of Coulomb interactions is discussed, the starting point
is to use field quantification to write an e–ph Hamiltonian. We write it in the form
Hc−ph +Hv−ph. It reflects that e–ph interactions cannot lead the electron to change
species. In this work, only polar coupling to optical phonons is considered since it
usually leads to the fastest dynamics in low excitation regime. The corresponding
Fröhlich interaction Hamiltonian is given by (see e.g. [4, 6]):

Hc−ph=
1
|B|

∫
B

∑
α,α ′∈I c

Gc
q,α,α ′ c†

α

(
bq +b†

−q

)
cα ′ dq, (6)

Hv−ph=
1
|B|

∫
B

∑
α,α ′∈I v

Gv
q,α,α ′ v†

α

(
bq +b†

−q

)
vα ′ dq. (7)
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The operators c†
j and c j (resp. v†

j and v j) are creation and annihilation operators

for conduction (resp. valence) electrons and the operators b†
q and bq are those for

phonons, where the phonon mode q belongs to the Brillouin zone B of the under-
lying crystal. The volume of the Brillouin zone is denoted |B|. For e ∈ {c,v}, Ge

q is
a matrix whose coefficients are expressed in terms of the wave functions associated
to each energy level:

Ge
q,α,α ′ = Eq

∫
ψ

e∗
α (r)exp(iq · r)ψe

α ′(r) dr, (8)

Eq being the Fröhlich constant [6] defined such that Ge∗
q = Ge

−q.

1.3 Phonon-assisted densities and time evolution

We first recall that the commutation relations between conduction and valence elec-
tron operators are the following

∀ j,k ∈I c, {c†
j ,ck}= δ jk, {c†

j ,c
†
k}= {c j,ck}= 0, (9)

∀ j,k ∈I v, {v j,v
†
k}= δ jk, {v j,vk}= {v†

j ,v
†
k}= 0, (10)

∀ j ∈I c and k ∈I v, [c†
j ,v

†
k ] = [c†

j ,vk] = [c j,v
†
k ] = [c j,vk] = 0, (11)

where δ jk is the Kronecker delta function. Contrarily to electrons, phonons are
bosons and they obey the following commutation rules

∀ q,q′ ∈B, [bq,b
†
q′ ] = |B| δ (q−q′), [bq,bq′ ] = [b†

q,b
†
q′ ] = 0, (12)

where δ is the Dirac delta function. Indeed, we do not consider here a quantization
of phonon modes (even if in order to perform numerical simulations we will dis-
cretize in Section 2 the Brillouin zone and use a quadrature formula to approximate
integrals over q).

As in [5], we introduce phonon-assisted density matrices

Sq =

(
Scc

q Scv
q

Svc
q Svv

q

)
(13)

where Se f
q,α,α ′ = 〈 f

†
α ′bqeα〉, e, f ∈ {c,v}. Then, using intensively the commutativity

rules (9)-(12), the time evolution of the density matrix due to e–ph interactions can
be cast in a very compact form as

ih̄∂tρ|e−ph =
1
|B|

∫
B
[Gq,Sq +S∗−q]dq≡ P(S), (14)

where we have introduced the notations
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Gq =

(
Gc

q 0
0 Gv

q

)
and S = {Sq, q ∈B}. (15)

We have P(S)∗ =−P(S) independently of the structure of S. Therefore ρ , which is
initially Hermitian, remains Hermitian through time evolution via (14). This equa-
tion is also trace preserving since the right-hand side is a combination of trace-free
commutators.

To close the system, we now look for the time evolution of phonon-assisted den-
sities. First, using again the commutativity rules (9)-(12), we make explicit the com-
mutators between the e–ph interaction Hamiltonian and the other Hamiltonians in-
volved in the system: the free electron Hamiltonian, the electromagnetic interaction
Hamiltonian and the free phonon Hamiltonian. For instance, the free phonon Hamil-
tonian is given by

Hph =
1
|B|

∫
B

Eqb†
qbq dq

and the involved commutator [c†
α(bq+b†

−q)cα ′ ,Hph] is equal to Eqc†
α(bq−b†

−q)cα ′ .
Then, we use the Wick theorem [8] to approximate the means involving four opera-
tors by sums and products of densities. It closes the system at the cost of rendering
it non-linear. After computations, we finally obtain, for each q ∈B, the following
equation

ih̄∂tSq|e−ph = EqSq +
1
2
{G∗q,ρ}+(

1
2
+nq)[G∗q,ρ]+C(ρ,G∗q)

≡ EqSq +Qq(ρ). (16)

The term {A,B} denotes the skew-commutator AB+BA, nq = 〈b†
qbq〉 is the phonon

density expressed in terms of the phonon energy Eq by the Bose–Einstein statistics,
and C(ρ,G∗q) is a non-linear term expressed as

C(ρ,G∗q) =−ρ̃G∗qρ̃ +Tr(G∗qρ̃)ρ̃ (17)

where ρ̃ = ρ

(
Ic 0
0 −Iv

)
, Ic and Iv being the identity matrices for the conduction and

valence spaces.

To summarize, the e–ph Bloch model consists in coupling an equation on ρ

ih̄∂tρ = [E0 +E ·M,ρ]+P(S) (18)

with a set of equations on Sq (one for each q)

ih̄∂tSq = EqSq +[E0 +E ·M,Sq]+Qq(ρ). (19)
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2 Numerical scheme

For simulations, we consider a collection of quantum dots which are scattered in
a one dimensional space along the z direction and interact not directly but through
the interaction with the electromagnetic field. Therefore, densities depend on time
and space and the e–ph Bloch model (18)-(19) is coupled with Maxwell equations
(3)-(4).

First, we introduce a uniform discretization of the Brillouin zone B using Nq
points. The integral over q in (14) is approximated by a simple quadrature for-
mula and consequently the global phonon-assisted density S = {Sql

, l = 1, · · · ,Nq}
is computed solving Nq independent equations (19).

We fix a time step δ t > 0 and we discretize uniformly the time using Nt + 1
points: tn = nδ t for n ∈ {0, ...,Nt} with δ t = T

Nt
, T being the final time. Analo-

gously, we fix a space step δ z > 0 and we discretize uniformly the space using
Nz + 1 points: z j = jδ z for j ∈ {0, ...,Nz} with δ z = L

Nz
, L being the length of the

quantum dot collection.

A finite difference Yee scheme is used for Maxwell equations (3)-(4): for all
n ∈ {0, · · · ,Nt −1},

B
n+ 1

2
y, j+ 1

2
= B

n− 1
2

y, j+ 1
2
− δ t

δ z
(En

x, j+1−En
x, j), ∀ j ∈ {0, · · · ,Nz−1}, (20)

En+1
x, j = En

x, j− c2 δ t
δ z

(B
n+ 1

2
y, j+ 1

2
−B

n+ 1
2

y, j− 1
2
)−µ0c2

δ tJ
n+ 1

2
x, j , ∀ j ∈ {1, · · · ,Nz}, (21)

with J
n+ 1

2
x, j = − ina

h̄
Tr
(

Mx

[
E0,ρ

n+ 1
2

j

]
+MxP(Sn

j)
)

. In (20), we use the convention

B
− 1

2
y, j+ 1

2
= 0 for all j ∈ {0, · · · ,Nz− 1} and (21) is initialized by E0

x, j and S0
j = 0 for

all j ∈ {0, · · · ,Nz}. Finally, a time dependent incident wave Einc is injected in the
left part of the device by the boundary condition

En+1
x,0 = En

x,1 +En+1
inc −E

n− δ z
c

inc +
1− c δ t

δ z

1+ c δ t
δ z

(
En

x,0−En+1
x,1 +E

n+1− δ z
c

inc −En
inc
)
,

for all n ∈ {0, · · · ,Nt −1}. Notice that the discretization steps δ t and δ z are chosen
in order to satisfy the stability condition imposed by this numerical scheme (see
e.g. [1]).

We consider a weak coupling between the Maxwell and Bloch equations. It
means that E and ρ are not discretized at the same time to avoid a fixed point pro-
cedure. Equations (18)-(19) are discretized on a staggered grid in time and each
equation is solved using a Strang splitting method:
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for all l ∈ {1, · · · ,Nq}, for all n ∈ {0, · · · ,Nt −1}, for all j ∈ {0, · · · ,Nz},

Sn+1
ql , j

= A3

(
δ t
2
,Eql

I
)
A2

(
δ t
2
,E0 +

En
x, j +En+1

x, j

2
Mx

)
(22)

A1

(
δ t,Qql

(ρ
n+ 1

2
j )

)
A2

(
δ t
2
,E0 +

En
x, j +En+1

x, j

2
Mx

)
A3

(
δ t
2
,Eql

I
)

Sn
ql , j

,

ρ
n+ 3

2
j = A2

(
δ t
2
,E0 +En+1

x, j Mx

)
A1

(
δ t,P(Sn+1

j )
)
A2

(
δ t
2
,E0 +En+1

x, j Mx

)
ρ

n+ 1
2

j .

(23)

Equations (22)-(23) are initialized by S0
ql , j

= 0 and ρ
1
2
j = A2

(
δ t
2 ,E0 +E0

x, jMx

)
ρ0

j .
In these expressions, A1, A2 and A3 are three semigroups defined by

A1(t,B)A = A− it
h̄

B, A2(t,B)A = e−
itB
h̄ Ae

itB
h̄ and A3(t,B)A = e−

itB
h̄ A.

They can be computed exactly using matrix exponential formulas. The advantage of
this splitting is that it numerically preserves positiveness for each equation.

3 Numerical simulations

We now perform numerical simulations in order to assess the capability of the
Bloch model to describe the interaction of quantum dots with an electromagnetic
field. More precisely, we study a Self-Induced Transparency (SIT) case. It is a phe-
nomenon that allows to obtain an exact population inversion with an unchanged
electric field, using a light pulse resonant with the electron energy levels.

The propagating field Einc that we inject is a pulse with a specific envelope and a
center frequency ω0. First, we recall some results obtained without e–ph interactions
for two 3-level test cases with a conduction level and two valence levels (see [3] for
more details). The energy between the conduction level and the first valence level
corresponds to the field frequency ω0. In the first case (dashed line on the schematic
representation Fig.1), the transition between the two valence levels is 2h̄ω0. It is
instead h̄ω0 in the second case (solid line).

Fig. 1 Energy level description for the two 3-level test cases.
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In Fig.2, we represent at the top the time evolution of the electric field Ex
for a given quantum dot and at the bottom the corresponding time evolution of
populations for the two test cases. In the left picture (corresponding to the case
εv

2−εv
1 = 2h̄ω0), we observe a complete population inversion due to the light pulse.

Instead, when the transition between the two valence levels is resonant with the field
(right picture), the SIT phenomenon is destroyed.
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Fig. 2 Time evolution of Ex (at the top) and populations (at the bottom) without e–ph interactions.
Left: εv

2 − εv
1 = 2h̄ω0 ; Right: εv

2 − εv
1 = h̄ω0.

Now, we add the e–ph interactions. For simplicity, we assume that optical
phonons are almost dispersionless and take a constant phonon energy Eq for the
Nq = 100 phonon modes that we consider. The time evolution of populations is pre-
sented in Fig.3 for the test case in which εv

2 − εv
1 = 2h̄ω0. We observe that e–ph

interactions destroy the SIT phenomenon, even for valence levels far apart enough.
In addition to a relaxation behavior, fast oscillations are generated for the two va-
lence levels and persist after the electromagnetic pulse (as emphasized in the zoom
presented in the right picture of Fig.3) .
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Fig. 3 Time evolution of populations for εv
2 − εv

1 = 2h̄ω0 and Nq = 100 (left) and zoom inside the
rectangle (right).

4 Conclusion

To study the interaction of quantum dots with an electromagnetic field taking into
account e–ph interactions, we proposed an efficient discretization for the coupling
appearing between the equation on the electron density ρ and the set of equations on
the phonon-assisted densities Sq. For a better modeling, it will be now interesting
to investigate how to take into account, via a kinetic equation, the quantum-well
wetting layer into which quantum dots are embedded.
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4. H. Fröhlich. Electrons in lattice fields. Advances in Physics, 3(11):325–361, 1954.
5. E. Gehrig and O. Hess. Mesoscopic spatiotemporal theory for quantum-dot lasers. Phys. Rev.

A, 65(033804):1–16, 2002.
6. H. Haug and S.W. Koch. Quantum theory of the optical and electronic properties of semicon-

ductors. World Scientific, fifth edition, 2009.
7. T. Stauber, R. Zimmermann, and H. Castella. Electron-phonon interaction in quantum dots: A

solvable model. Phys. Rev. B, 62(11):7336–7343, 2000.
8. G. C. Wick. The evaluation of the collision matrix. Phys. Rev., 80:268–272, 1950.


