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Face perception influences the 
programming of eye movements
Louise Kauffmann1,2, Carole Peyrin2, Alan Chauvin  2, Léa Entzmann1, Camille Breuil1 & 
Nathalie Guyader1

Previous studies have shown that face stimuli elicit extremely fast and involuntary saccadic responses 
toward them, relative to other categories of visual stimuli. In the present study, we further investigated 
to what extent face stimuli influence the programming and execution of saccades examining their 
amplitude. We performed two experiments using a saccadic choice task: two images (one with a face, 
one with a vehicle) were simultaneously displayed in the left and right visual fields of participants who 
had to initiate a saccade toward the image (Experiment 1) or toward a cross in the image (Experiment 2)  
containing a target stimulus (a face or a vehicle). Results revealed shorter saccades toward vehicle 
than face targets, even if participants were explicitly asked to perform their saccades toward a specific 
location (Experiment 2). Furthermore, error saccades had smaller amplitude than correct saccades. 
Further analyses showed that error saccades were interrupted in mid-flight to initiate a concurrently-
programmed corrective saccade. Overall, these data suggest that the content of visual stimuli can 
influence the programming of saccade amplitude, and that efficient online correction of saccades can be 
performed during the saccadic choice task.

Faces are very salient visual stimuli for humans and our visual system has developed efficient mechanisms to pref-
erentially detect and process them. A particular status of face stimuli is supported by a large number of studies, 
which consistently showed that faces elicit fast and characteristic brain and behavioral responses, as compared 
to other categories of visual stimuli1–6. Eye-tracking studies for example showed that during free exploration of 
complex scenes containing faces, observers immediately direct their gaze toward them and spend a lot of the 
exploration time looking at them7–11.

Recent studies have adopted a paradigm in which eye movements are used as a behavioral response to inves-
tigate the speed of face processing. In this paradigm, called saccadic choice task, two images are simultaneously 
displayed on a screen in the left and right visual fields. One image contains a target stimulus (e.g., a face) and the 
other one a distractor (e.g., a vehicle). Participants have to perform a saccade as fast as possible toward the target 
stimulus (e.g., a face3,12–15). Although this task requires multiple processes (i.e. simultaneous processing of two 
images, a categorical decision, programming and execution of an eye movement toward the target), it has been 
shown that human observers are able to initiate accurate saccadic responses toward a face with extremely short 
latencies of just 100–110 ms3. Such latencies are barely above the earliest latencies observed for reflexive saccades 
elicited by the appearance of an image or a simple dot stimulus in the periphery (see for example3,15–17), high-
lighting the remarkable speed of face processing. Furthermore, these studies also reported that participants made 
more error saccades (i.e. saccades toward the distractor) when the distractor was a face than when it was another 
stimulus (e.g., a vehicle). This suggests that fast saccades toward faces tend to be automatic and can be beyond 
voluntary control4,18, see also19. Further studies using the same saccadic choice task revealed that the bias for face 
stimuli persists even if they are presented at large eccentricities (up to 80°)13 or if stimuli are filtered so that only 
coarse, low-spatial frequency information remains in the stimulus14.

Overall, these eye-tracking data suggest that faces contain specific information that influences the program-
ming of saccades by triggering extremely fast and automatic orienting responses toward them. However, these 
studies only focused on the analysis of saccade latency and accuracy. These parameters inform about the speed of 
processes involved in the task and the ability to select (suppress) an appropriate (inappropriate) response, respec-
tively. Yet, other saccade parameters would be relevant to further inform about saccade programming. For exam-
ple, studies investigating the programming of saccades also analyzed their precision (i.e. the distance between 
their ending point and the target point) or their amplitude (i.e. the distance between the starting and ending point 
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of a saccade). In the classical view, the amplitude of a saccade is thought to be programmed at its onset and would 
not be influenced by new visual information once initiated, thereby informing about saccade programming prior 
to its execution (although small online corrections can be observed based on internal feedbacks20. In the absence 
of a visual distractor, saccades toward a peripheral target stimulus are accurate in terms of spatial precision - 
although it is frequently observed that saccades land between the starting and target position21–23. However, when 
a distractor is presented on the saccade trajectory to a target, the saccade tends to land at an intermediate location 
between the two stimuli. More precisely, the saccade would land beyond (overshoot) or in front of (undershoot) 
the target if the distractor is also presented beyond or before the target, respectively e.g.24, see for a review 25,26. 
Furthermore, the landing position of the saccade – toward one stimulus or the other – can be modulated accord-
ing to stimulus characteristics, such as their size (e.g., saccades tend to land closer to the biggest stimulus27) or 
task constraints (e.g., saccades tend to land closer to one stimulus if it has been defined as the target but would 
land in between the two stimuli if there is no specific target to reach28,29). This phenomenon, known as ‘saccade 
averaging’, is interpreted as resulting from the weighted average of activity of neurons coding for each stimulus 
location on a common saccade map. These studies thus indicate that the presence and properties of a distractor 
stimulus can influence the programming of saccade amplitude toward a target. However, whether the content of 
the target and distractor stimuli in the context of a saccadic choice task can also impacts programming of saccade 
amplitude has, to our knowledge, never been addressed.

Other studies also reported a modulation of saccade amplitude according to the accuracy of the saccadic 
response30–33. For example, using a visual search task, in which participants were presented with a display of 
stimuli and had to initiate a saccade toward one of them based on its color, McPeek et al.30 observed that in a small 
proportion of trials, participants made error saccades which were characterized by small amplitudes. Similarly, 
using an anti-saccade task (i.e. perform a saccade in the direction opposite to the appearance of a target), Weber 
et al. (1997) observed that error saccades were often hypometric. Interestingly, in these studies, hypometric ini-
tial error saccades were generally followed by a second saccade bringing the gaze to the correct target location 
after a very short delay (0–100 ms), well below the range of normal saccade latencies (120–200 ms). These short 
inter-saccadic intervals between two consecutive saccades were taken as evidence that the programming of the 
second saccade occurred in parallel and interfered with the initial one, resulting in a reduction of the initial sac-
cade’s amplitude30,31,33,34, see also35. These studies led to propose that two saccades oriented toward different goals 
can be programmed concurrently on a common saccade map and that the different programs would compete 
with each other. The program winning the competition would be executed, but could still be influenced and 
even curtailed once initiated by a concurrent program, resulting in a reduction of the first saccade amplitude and 
the execution of a second saccade after a very short delay30,34,36–39. It is likely that the saccadic choice task also 
involves parallel programming of two saccades (i.e. one toward each image) competing and interfering with each 
other. The examination of saccade amplitude according to response accuracy, but also of the characteristics (e.g., 
latency, amplitude) of saccades following an error would thus allow to test this hypothesis. Importantly, it would 
also allow to test for potential differences between parallel programming of saccades according to the content of 
their target, which has never been investigated so far. It is for example possible that a saccade program toward a 
face stimulus interferes more strongly with a concurrently programmed saccade toward a vehicle than the other 
way around.

The present study thus aimed to further investigate the extent to which the content of complex visual stimuli, 
in particular the face content, influence saccade programming and execution. To this end, we performed two 
experiments using a saccadic choice task in which images of faces and vehicles were presented simultaneously 
to participants in their right and left visual fields. In Experiment 1, we used the same saccadic choice task as in 
previous studies3,14. Participants were asked to perform saccades as fast as possible toward the side of the display 
containing the target stimulus (a face or a vehicle). Whereas previous studies only analyzed saccade accuracy and 
latency, we focused in the present one on the amplitude of saccades, as reflecting an aspect of saccade program-
ming prior to their execution allowing to better understand the mechanisms underlying saccadic choices. The 
amplitude of saccades was analyzed taking into account the target category (face vs. vehicle), and the accuracy 
of saccadic responses (correct saccades toward the target vs. error saccade toward the distractor). In Experiment 
2, we used the same design but this time, participants were explicitly asked to perform their saccades toward a 
fixation cross added in the center of the images. This allowed us to better estimate the precision of saccades with 
respect to the target cross to reach, and thus to quantify how saccade amplitude was modulated by the content of 
visual stimuli and the accuracy of saccadic responses.

Given previous reports suggesting that face stimuli elicit fast and involuntary saccades toward them, we 
expected that the presence of a face distractor would also impact amplitude of saccades directed toward another 
target stimulus. Furthermore, based on previous findings (e.g., McPeek et al.30, we expected error saccades to be 
shorter than correct saccades, suggesting their modulation by a concurrently programmed corrective saccade. 
Finally, we examined the possibility that concurrent programming of saccades was also influenced by the content 
of their targets.

Experiment 1
Materials and Methods. Participants. Twenty-four participants (three females; mean age ± SD =  
25.5 ± 6.26 years) with normal or corrected-to-normal vision, recruited from University Grenoble Alpes, took 
part in the experiment. They all came twice to complete two experimental sessions, one with faces as target 
stimuli and one with vehicles as target stimuli. All participants gave their informed written consent before 
participating in the study, which was carried out in accordance with the Code of Ethics of the World Medical 
Association (Declaration of Helsinki) for experiments involving humans and was approved by the ethic commit-
tee of University Grenoble Alpes.
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Stimuli. Stimuli were 240 colored images taken among the stimuli used by Crouzet et al.3 and chosen from 
Corel Stock Photo Libraries (Corel Photo stock library 1996. Ottawa, Ontario, Canada) widely used in literature 
for visual recognition. There were 120 images of human faces and 120 images of vehicles of various size and taken 
from different viewpoints. Out of the 120 images used for each category, there were 42 images of faces and 24 
images of vehicles for which the main object was symmetrical around the vertical midline. However, this differ-
ence did not impact our results (see Supplementary Analysis S1 and Table S1). Stimuli were carefully chosen so 
that faces and vehicles had on average the same spatial position and size. For each image, the main object, i.e. face 
or vehicle, was manually delineated using a rectangle box (size 8.35 × 7.96°). We then computed the center of the 
box and ensured that no significant difference was observed for the mean position or size of objects between faces 
and vehicles images (mean center Xface = 5.86°; mean center Xvehicle = 5.89°; t238 = −0.25; p = 0.8; mean center 
Yface = 5.86°; mean center Yvehicle = 5.83°; t238 = 0.21; p = 0.84; zero being the top left corner of the image). Stimuli 
(sized 300 × 300 pixels) subtended 11 × 11° of visual angle at a viewing distance of 60 cm. For each category, 10 
images were used for training and the remaining 110 images were used in the main experiment. It should be 
noted that some of these images were previously used in Guyader et al.14.

Procedure. Stimuli were displayed using the Softeye software40 against a gray background (luminance of 128 
on a 256 gray-level scale) on a 21-inch CRT monitor with a spatial resolution of 1024 × 768 pixels, a refresh 
rate of 85 Hz and a mean gray luminance of 68 cd/m2. Participants were seated 60 cm away from the display. 
Participants’ head was stabilized by a chin- and a forehead rest. Eye movements were recorded using an Eyelink 
1000 eye-tracker (SR Research) with a sampling rate of 1000 Hz and a nominal spatial resolution of 0.01 degrees of 
visual angle. Only one eye was recorded using the “pupil-corneal reflexion” mode (right eye in 16 out of 24 partic-
ipants). The Eyelink software automatically detected saccades with the following thresholds: speed >30 degrees/s, 
acceleration >8000 degrees/s2, and saccadic displacement >0.15 degrees. Fixations were detected when the pupil 
was visible, and no saccade was in progress. Blinks were detected during partial or total occlusion of the pupil. 
Each session was preceded by a calibration procedure during which participants had to orient their gaze toward 
nine separate targets appearing sequentially in a 3 × 3 grid that occupied the entire display. A drift correction was 
carried out every ten trials and a new calibration was done in the middle of the experiment and when the drift 
error was above 0.5°.

All participants underwent two experimental sessions on two different days (separated by less than two 
weeks), one session for which the targets were human faces (and the distractors were vehicle images) and the 
other one for which the targets were images containing vehicles (the distractors were human face images). The 
order of sessions was counterbalanced between participants. The procedure and task were exactly the same as in 
Crouzet et al.3 and Guyader et al.14. For each session, a trial started with a white fixation cross subtending 0.73° of 
visual angle, displayed centrally for 800 to 1600 ms (duration sampled from a uniform distribution) and followed 
by a gap (mean gray-level screen) of 200 ms. Following the gap, two images (a target and a distractor) were simul-
taneously displayed on the left and the right of the central fixation cross for 400 ms. The center of each image was 
lateralized at 7.6° from the center of the screen. The inter-trial interval was fixed at 1000 ms (Fig. 1). Participants 
had to make a saccade as fast as possible toward the target image. There were 240 trials in each session, each image 
being seen twice, on the left and the right side, randomly. Participants completed a training session comprising 
10 trials prior to the experiment in order to get familiarized with the stimuli and the task. The experiment lasted 
approximately 15 minutes in each session.

Data analyses. The accuracy (% error), latency (in milliseconds from the onset of stimuli - also called saccadic 
reaction time, SRT) and amplitude (distance between the positions of the start and the end of saccades, in degrees 

Figure 1. Time course of a trial. Participants had to fixate a central cross (800–1600 ms). After a gap of 200 ms, 
two images were displayed in the left and right visual fields (image centers were at 7.6° of eccentricity) during 
400 ms, followed by a gray screen during 1000 ms. In each trial, participants had to perform a saccade toward 
the image containing the target stimulus (face or vehicle).
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of visual angle) of the first saccade were analyzed. Saccades were automatically detected by the Eyelink software. 
When applicable, we also examined the SRT and amplitude of the second saccade. We also extracted the peak 
speed of saccades. Trials in which a blink occurred during stimulus presentation or for which SRT was shorter than 
50 ms were discarded from the analysis, in order to avoid including express saccades not related to the processing 
of stimuli from the analysis (see also Supplementary Analysis S2, Supplementary Fig. S1 and Tables S2 and S3).  
This resulted in removing 1.49% of the trials. Analyses were performed using Matlab (MathWorks, Natick, MA) 
and Statistica 10.0 software (Statsoft, Tulsa, USA) after ensuring that the respective assumptions were met for each 
analysis (e.g., ANOVA, t tests). Effect sizes were estimated by calculating partial eta-squared (ηp

2). The signifi-
cance level of tests was set at α = 0.05 and Bonferroni-corrected p-values are reported for pairwise comparisons. 
Data and material can be made available upon request to the authors.

Results. Accuracy. We performed a paired t-test on mean error rates with Target Category (Face, Vehicle) as 
within-subject factor. Results revealed that participants made significantly more error saccades when the target 
stimulus was a vehicle (i.e. face distractor mER ± SD: 23.37 ± 10.62%) than when it was a face (i.e. vehicle distrac-
tor; 12.46 ± 6.40%, t23 = 5.17, p < 0.001).

Latency and Amplitude of the first saccade. ANOVAs with Target Stimulus (Face, Vehicle) and Saccade Accuracy 
(Correct, Error) as within-subject factors were performed on mean SRT of the first saccade (in ms) and saccade 
amplitude (in degrees).

The ANOVA performed on mean SRT (Fig. 2a) revealed a main effect of Target Category (F1,23 = 18.21, 
p < 0.001, ηp

2 = 0.442) and a main effect of saccade Accuracy (F1,23 = 34.37, p < 0.0001, ηp
2 = 0.599). Participants 

initiated saccades faster when the target stimulus was a face (183 ± 21 ms) than when it was a vehicle (201 ± 22 ms) 
and they were slower to initiate correct (200 ± 19 ms) than incorrect saccades (184 ± 21 ms). There was a mar-
ginally significant interaction between Target Category and Saccade Accuracy (F1,23 = 3.33, p < 0.08, ηp

2 = 0.126), 
suggesting that the difference in latencies according to the target stimulus was more pronounced for correct 
(25 ms difference with 187 ± 17 ms for Face target and 212 ± 26 ms for Vehicle target) than error saccades (14 ms 
difference with 175 ± 30 ms for Face target and 189 ± 21 ms for Vehicle target).

The ANOVA performed on mean Saccade Amplitude (Fig. 2b) revealed no significant main effect of Target 
Category (F1,23 < 1, ηp

2 = 0.007) but there was a main effect of Saccade Accuracy (F1,23 = 142.1, p < 0.0001, 
ηp

2 = 0.861). Error saccades (4.92 ± 0.99°) were shorter than correct saccades (6.33 ± 0.60°). We also observed 
a significant interaction between Target Category and Saccade Accuracy (F1,23 = 51.67, p < 0.0001, ηp

2 = 0.692). 
Pairwise comparisons showed that correct saccades were larger when the target was a face than when it was a 

Figure 2. (a) Mean saccadic reaction times (in milliseconds) and (b) mean amplitudes (in degrees) of correct 
(light grey) and error saccades (dark grey), according to the target category (face, vehicle). Error bars indicate 
standard error. (c) Mean ending points of correct (top) and error saccades (bottom) of each participant 
according to the target category (face, vehicle). The black boxes represent the edges of images, the central cross 
represents the fixation point and the dotted lines indicate the middle of images.
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vehicle (faces: 6.66 ± 0.62°; vehicle: 6.00 ± 0.79°, p < 0.001) but this difference was reversed for error saccades, 
which were larger when the target was a vehicle (i.e. face distractor: 5.20 ± 96°) than when it was a face (i.e. vehicle 
distractor: 4.64 ± 1.15°, p < 0.005). This therefore indicates overall larger saccades directed toward faces (either as 
target or distractor) than vehicles. Furthermore, error saccades were shorter than correct saccades for both Target 
Categories (both ps < 0.0001). Figure 2c illustrates the mean ending locations of correct and error saccades for 
all participants on the display, according to the target category. As can be seen on this figure, error saccades were 
closer to the central fixation cross than correct saccades. Furthermore, error saccades toward face distractors were 
also closer to the center of the display than error saccades toward vehicle distractors.

Analysis of corrective saccades. We also examined whether error saccades, which represented 16.6% of the trials, 
were followed by corrective saccades. Second saccades were considered as corrective if their ending point was 
on the side of the display where the target was present (i.e. if saccades crossed the central fixation point). Using 
this criterion, 90.93% of saccades following an error were considered as corrective, and were used in subsequent 
analyses. Thus, the majority of error saccades were followed by a corrective saccade moving the gaze to the target 
image. Critically, these corrective saccades had very short latencies with a median SRT of 82 ms (min = 21 ms; 
max = 675 ms; mean = 124 ms, SD = 118 ms; cf. Fig. 3a), indicating that more than half of corrective saccades 
had latencies below 100 ms. Furthermore, as can be seen on Fig. 3a, the distributions of SRT for the initial error 
saccades and of the second corrective saccades have very distinct peaks. Such extremely short inter-saccadic 
intervals thus suggest that the second saccade was programmed in parallel to the execution of the initial error sac-
cade30,33–35,38,41. We further investigated whether these corrective saccades were influenced by the Target Category 
(as observed for the first saccade in terms of proportion, latency and amplitude). To this end, we performed 
paired t-tests comparing the proportion, amplitude and latency of corrective saccades toward faces vs. vehicles. 
However, there was no significant difference between the proportion (t23 = 1.19, p = 0.25), latency (t23 = −0.58, 
p = 0.57) or amplitude (t23 = 1.25, p = 0.22) of corrective saccades.

As shown in the analysis of the amplitude of initial saccades, error saccades were smaller than correct saccades 
(Fig. 2b). This is also illustrated in Fig. 2c where the ending points of error saccades appear to be much closer to 
the center of the display, relative to correct saccades. This could suggest that error saccades were interrupted, to 
initiate a corrective saccade toward the target. In order to test this hypothesis, we first examined whether the cor-
rective saccade compensated for the amplitude of the initial error saccade. Indeed, it is possible that two saccades 
toward each image are prepared in parallel at the beginning of each trial and both would be executed consecu-
tively. In this case, the amplitude of the second saccade should not be linked to the amplitude of the first saccade 
because both the first and the second saccades would be planned from the fixation point. Alternatively, the second 
saccade could be programmed in order to compensate for the amplitude of the initial error saccade. In this case, 
its programming and hence its amplitude should compensate for the fact that the first saccade brought the eyes 
away from the target. This would be reflected by a positive correlation between the amplitudes of the error and 
corrective saccades. Results suggested the latter case, as we observed significant correlations between the mean 
amplitudes of initial and second saccades for both target conditions (Face as target: r = 0.74, p < 0.0001; Vehicle 
as target: r = 0.80, p < 0.0001), indicating that the higher the amplitude of error, the higher the amplitude of the 
corrective saccade toward the target (Fig. 3b,e).

Analysis of saccade kinematics. The previous analyses revealed that error saccades were hypometric relative to 
correct saccades, and followed by corrective saccades with very short latencies, suggesting their programming 
occurred in parallel with the first saccade. Furthermore, these analyses showed that the amplitude of saccades fol-
lowing an error increased with the amplitude of the error, suggesting that they were programmed to compensate 
for the error. We thus further tested whether the corrective saccade could also have interrupted the initial error 
one, which could explain the reduced amplitude of error relative to correct saccades. To this end, we examined 
saccades kinematics. Saccade kinematics are known to follow regularities characterized by an increase of peak 
speed with increasing amplitude of saccade. The relation between peak speed and saccade amplitude has been 
called the main sequence42. Simple two-parameter functions have been proposed to model the main sequence. If 
a saccade programmed to achieve a certain amplitude is interrupted in mid-flight, its kinematics should exhibit 
a violation of the main sequence, with a higher peak speed than the one predicted by its main sequence for a 
particular amplitude30,43. In order to address this question, we first extracted the main sequence (i.e. peak speed 
as a function of saccade amplitude) of correct saccades for each participant. We then compared the peak speed 
observed for error saccades to the peak speed predicted by the main sequence of correct saccade, given the sac-
cade amplitude (see Fig. 3c and Supplementary Fig. S2). Predicted peak speed was calculated as follows: an expo-
nential function was fitted (using EzyFit toolbox; Moisy, F http://www.fast.u-psud.fr/ezyfit/ V 2.45) to the main 
sequence (i.e. observed peak speed as a function of observed amplitude) of correct saccades for each participant 
irrespective of the Target category. The fitted function was:

= − −PS a c e( ) (1 )
a
c1 2

With PS the peak speed (in degrees/s), a the amplitude (in degrees) and c1 and c2 the parameters of the model (in 
degrees/s and in degrees, respectively). For each participant, a classical least-square fitting procedure was used 
to estimate the two parameters (mean R² = 0.69, SD = 0.21). For each trial, the 2-parameters function was used 
to estimate the predicted peak speed based on the saccade amplitude observed at this trial. This predicted peak 
speed was then used to normalize the observed peak speed of correct saccades and of error saccades followed by a 
corrective saccade (see Buonocore et al.43 for a similar procedure). Normalized peak speed higher than 1 indicates 
higher peak speed than what is predicted by the observed amplitude.

http://www.fast.u-psud.fr/ezyfit/
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We then performed an ANOVA on normalized peak speed with Target Category (Face, Vehicle) and Saccade 
Accuracy (Correct, Error) as within-subject factors (see Fig. 3d). It should be noted that two subjects were 
excluded from this analysis due to aberrant fit parameters leading to biased estimation of predicted peak speed. 
Results revealed a main effect of Saccade Accuracy (F1,21 = 6.09, p < 0.05, ηp

2 = 0.225), suggesting a violation of 
the main sequence for error saccades: normalized peak speed of error saccades (1.08 ± 0.13) were higher than 
that of correct saccades (1.04 ± 0.07). There was no main effect of Target Stimulus, nor interaction with Saccade 
Accuracy (both Fs =<1, ηp

2 < 0.050).

Discussion. Results of Experiment 1 replicated previous findings showing that participants make less errors 
and are faster to initiate saccades toward faces than toward vehicles3,12–14. Importantly, our results additionally 
revealed that saccades toward faces were also larger than saccades toward vehicles. As the position of target stim-
uli within the images was controlled for and given that all images were presented once in each visual field, this 
result cannot be explained by an overall larger eccentricity of faces relative to vehicles in the images. Furthermore, 
the average amplitude of correct saccades toward faces (6.66°) did not exceed the distance between the central fix-
ation point and the center of lateral images (set at 7.6° of eccentricity), suggesting that they were not abnormally 

Figure 3. (a) Distributions of saccadic reaction times (SRT) of initial error saccades (dark grey) and of ensuing 
corrective saccades (light grey). (b) Correlations between the amplitude of error saccades and the amplitude of 
ensuing corrective saccades. (c) Example of main sequence for correct and error saccades of a participant. The 
red line corresponds to the exponential function fitted to correct responses. (d) Mean normalized peak speed of 
correct and error saccades, according to the category of the target stimulus. Error bars indicate standard error. 
(e) Mean ending points of corrective saccades of each participant according to the target category (face, vehicle). 
The black boxes represent the edges of images, the central cross represents the fixation point and the dotted lines 
indicate the middle of images.
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large but rather that saccades toward vehicles (mean amplitude: 6°) were short. This is illustrated in Fig. 2c in 
which the mean ending points of saccades on the display are plotted for all participants. This result therefore sug-
gests that the content of the target/distractor image influences programming of saccade amplitude in the saccadic 
choice task. However, as the task did not involve any constraint on the ending point of saccades (i.e. participants 
were asked to perform a saccade “toward the image containing the target” and not toward a particular location 
in this image), the extent to which saccade amplitude is affected by the content of the target/distractor stimulus 
could not be precisely estimated. Indeed, it has been shown that when participant freely explore complex scenes 
containing faces, they preferentially look at them and tend to fixate at their center10,11. However, when faces are 
absent, the location of fixations is rather predicted by low-level salient features within the image10. It is thus pos-
sible that when the target was a face, participants preferentially directed their saccade toward the center of the 
face, whereas they did not necessarily reach the center of vehicles in images when this stimulus was defined as the 
target and ended their saccades before.

Another interesting finding of Experiment 1 was that amplitude of saccade was also modulated by the 
accuracy of the saccadic response, error saccades being much shorter than correct saccades (see Fig. 2b,c). 
Furthermore, these hypometric error saccades were generally followed by a second saccade bringing the gaze to 
the target image with extremely short inter-saccadic intervals from just 20 ms. This pattern of results was previ-
ously observed in eye-tracking studies involving a saccadic response such as visual search tasks, anti-saccade tasks 
or double-step paradigms30,31,33,34. They were taken as evidence that the programming of two saccades occurred 
in parallel and that the development of the second saccade program could curtail or even interrupt the initial 
one, resulting in a smaller amplitude. In order to disambiguate this question, we examined the kinematics of 
saccades, which revealed that error saccades deviated from the main sequence of correct saccades, with higher 
peak speed than what was predicted by their amplitude. This latter result thus rather supports the idea that error 
saccades were interrupted by the development and execution of a concurrent saccade program toward the target 
image. Critically, the amplitude of error saccades was also modulated by the content of their target, error saccades 
directed toward vehicle distractors being even shorter than error saccades directed toward face distractors. This 
could thus indicate that when an initial error saccade was made toward a distractor stimulus, the programming of 
a corrective saccade toward a face developed and interrupted the initially executed saccade earlier than corrective 
saccades toward a vehicle. However, we did not find evidence for a difference in the corrective saccade parameters 
according to the content of their target. Importantly, analyses of the amplitude of error and corrective saccades 
indicated that the amplitude of saccades following an error increased with the amplitude of the error. This sug-
gests that they were programmed to compensate for the error saccade amplitude while it was being executed. 
However, as the task did not involve a specific location to reach that could serve as basis to estimate the precision 
of the corrective saccade, this question could not be further addressed in the present experiment.

Experiment 2 was thus designed to disambiguate the extent to which saccade amplitude was affected by the 
content of the target and distractor stimuli, as well as the extent to which saccades following an error compen-
sated for the amplitude of the error, by constraining the ending location of saccadic responses. Design and pro-
cedure were the same as in Experiment 1 with the difference that this time, a white cross was added in the center 
of each image and participants were asked to perform their saccades toward the white cross in the center of the 
lateral image containing the target stimulus.

Experiment 2
Materials and Methods. Participants. Fourteen participants (eight females; mean age ± SD = 24.6 ± 4.9 
years) with normal or corrected-to-normal vision, recruited from University Grenoble Alpes, took part in the 
experiment. They all came twice to complete two experimental sessions, one with faces as target stimuli and one 
with vehicles as target stimuli. All participants gave their informed written consent before participating in the 
study, which was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration 
of Helsinki) for experiments involving humans and was approved by the ethic committee of University Grenoble 
Alpes.

Stimuli and Procedure. Stimuli and procedure were exactly the same as in Experiment 1. The right eye was 
recorded in 11 out of the 14 participants. The only difference was that a white fixation cross subtending 0.73° of 
visual angle was added in the center of each lateral image (Fig. 4a), displayed at 7.6° of eccentricity from the cen-
tral fixation point, and participants were instructed to perform saccades as fast as possible toward the cross in the 
center of the image containing the target stimulus.

Data analyses. We extracted saccade parameters detected by the Eyelink software and did the same analyses as 
in Experiment 1. Trials where SRT was inferior to 50 ms or where a blink occurred during stimulus presentation 
were discarded from the analysis. This resulted in removing 1.21% of the trials.

Results. Accuracy. We performed a paired t-test on mean error rates with Target Stimulus (Face, Vehicle) as 
a within-subject factor. Results revealed that participants made significantly more errors when the target stimulus 
was a vehicle than when it was a face (Vehicle as target: 26.59 ± 11.45%, Face as target: 11.29 ± 5.87%, t13 = 7.29, 
p < 0.001).

Latency and Amplitude of the first saccade. ANOVAs with Target Category (Face, Vehicle) and Saccade Accuracy 
(Correct, Error) as within-subject factors were performed on mean SRT of the first saccade (in ms) and saccade 
amplitude (in degrees).

The ANOVA performed on mean SRT (Fig. 4b) revealed a main effect of Target Category (F1,23 = 17.36, 
p < 0.005, ηp

2 = 0.572) and a main effect of saccade Accuracy (F1,23 = 7.76, p < 0.05, ηp
2 = 0.374). Participants 
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initiated saccades faster when the target stimulus was a face (200 ± 37 ms) than when it was a vehicle (220 ± 30 ms) 
and they were slower to initiate correct (220 ± 24 ms) than error saccades (200 ± 43 ms). There was no interaction 
between the two factors (F1,23 = 1.68, p = 2.22, ηp

2 = 0.115).
The ANOVA performed on mean Saccade Amplitude (Fig. 4c) revealed a significant main effect of Target 

Category (F1,23 = 6.44, p < 0.05, ηp
2 = 0.331) and a main effect of Saccade Accuracy (F1,23 = 86.13, p < 0.0001, 

ηp
2 = 0.868). Saccades were overall larger when the target stimulus was a vehicle (5.98 ± 0.87°) than when it 

was a face (5.68 ± 1.42°) and error saccades (5.23 ± 0.96°) were shorter than correct saccades (6.51 ± 0.74°). 
Furthermore, there was a significant interaction between these two factors (F1,23 = 59.74, p < 0.0001, ηp

2 = 0.822). 
Pairwise comparisons showed that correct saccades were larger when the target stimulus was a face than a vehicle 
(face: 6.75 ± 0.65°, Vehicle: 6.26 ± 0.89°, p < 0.005) but this difference was reversed for error saccades which were 
larger when the target stimulus was a vehicle (i.e. face distractor: 5.70 ± 0.77°) than when it was a face (i.e. vehicle 
distractor: 4.61 ± 1.14°, p < 0.001), suggesting overall larger saccades directed toward faces (either as target or 
distractor) than toward vehicles. Finally, error saccades were shorter than correct saccades for both target cate-
gories (both ps < 0.005).

It should be noted that the mean amplitude of correct saccades (6.75° for saccades toward faces, 6.26° for 
saccades toward vehicles) were below the amplitude of the target crosses added in the center of images (7.6°, see 
Fig. 4c,d). In order to test whether correct saccades significantly undershot the targets, we computed the mean 

Figure 4. (a) Illustration of the display used in Experiment 2. Participants were instructed to perform their 
saccades toward the white cross in the center of the image containing the target category. (b) Mean saccadic 
reaction times (in milliseconds) and (c) mean amplitude (in degrees) of correct (light grey) and error saccades 
(dark grey), according to the target stimulus. Error bars indicate standard error. (d) Mean ending point of 
correct (top) and error saccades (bottom) of each participant. The black boxes represent the edges of lateral 
images, the central cross represents the fixation point and the red crosses represent the white cross added at the 
center of lateral images.
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gain of correct saccades (i.e. ratio of observed amplitude on the amplitude required to reach the target cross, based 
on the starting point of the saccade) for each participants and compared it against 1 (i.e. equivalence between the 
amplitude of the saccade and the eccentricity of the target) using one-sample t-tests. Results revealed that the gain 
of correct saccades toward faces and vehicles were significantly below 1, suggesting that they undershot the targets 
by 10 and 16% respectively (Face as target: mean gain ± SD: 0.90 ± 0.09, t13 = −4.13, p < 0.05; Vehicle as target: 
0.84 ± 0.12, t13 = −5.24, p < 0.05, Fig. 5b,e).

Analysis of corrective saccades. As for Experiment 1, we examined whether error saccades (representing 18.2% 
of the trials) were followed by a corrective one. A second saccade was considered as corrective if its ending point 
was on the side of the display where the target was present (i.e. if they crossed the central fixation point). This 
represented 88.81% of the saccades following an error. Again, these corrective saccades had very short latencies 
with a median of 96 ms (min = 21 ms; max = 1010 ms; mean = 147 ms, SD = 140 ms), suggesting that more than 
half of corrective saccades had latencies below 100 ms (see Fig. 5a). In order to test whether corrective saccades 
differed according to their target, we performed paired t-tests comparing the proportion, amplitude and latency 
of corrective saccades for Face and Vehicle. However, as in Experiment 1, there was no significant difference 
between the proportion (t13 = −0.19, p = 0.85), latency (t13 = 1.42, p = 0.18) or amplitude (t13 = 0.89, p = 0.39) of 
corrective saccades according to their target stimulus.

Figure 5. (a) Distributions of latencies of initial error saccades (dark grey) and of ensuing corrective saccades 
(light grey). (b) Mean gains of correct first saccades and second corrective saccades according to their target. 
The dotted line indicates a gain of 1, suggesting a perfect match between the amplitude of saccades and the 
amplitude of the target. * indicates significant difference from 1. (c) Main sequence of correct and error 
saccades of a participant. The red line corresponds to the exponential function fitted to the main sequence of 
correct saccades. (d) Mean normalized peak speed of correct and error saccades, according to the category of 
the target. Error bars indicate standard error. (e) Mean ending point of corrective saccades of each participant. 
The black boxes represent the edges of lateral images, the central cross represents the fixation point and the red 
crosses represent the white cross added at the center of lateral images.
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We also examined whether saccades following an error compensated for the amplitude of the error by first 
examining the correlation between the mean amplitudes of the error and corrective saccades. As in Experiment 1, 
we observed significant correlations between the mean amplitudes of initial and second saccades for both target 
conditions (Face as target: r = 0.70, p < 0.01; Vehicle as target: r = 0.70, p < 0.01), indicating that the higher the 
amplitude of error, the higher the amplitude of the second saccade toward the target. Furthermore, as this experi-
ment involved a specific location to reach, we also compared the amplitude of corrective saccades with the ampli-
tude that would have been required to reach the target (i.e. distance to the target after an error saccade). This was 
done by computing the gain of corrective saccades. A gain of 1 indicates a perfect precision of saccades, whereas 
gains inferior/superior to 1 indicate an under/overshooting of the target, respectively. Thus, if the corrective sac-
cade did not accurately compensate for the amplitude of the error, its gain should be inferior to 1 and to the gain of 
correct saccades. One-sample t-tests comparing the gain of corrective saccades against 1 revealed no significant dif-
ference (Face as target: mean gain ± SD: 1.00 ± 0.09, t13 = 0.20, p > 0.99; Vehicle as target: 0.97 ± 0.07, t13 = −1.59, 
p = 0.53), Critically, paired t-tests further showed that the gain of corrective saccades was higher than that of cor-
rect saccades for both target conditions (Face as target: t13 = 3.02, p < 0.05; Vehicle as target: t13 = 4.73, p < 0.05), 
indicating that corrective saccades were more accurate than initially correct saccades in terms of spatial precision.

Analysis of saccade kinematics. As for Experiment 1, we tested whether hypometric error saccades also deviated 
from correct saccades in terms of their main sequence, by examining normalized peak speed of saccades (see 
Fig. 5c and Supplementary Fig. S3). Here again, results revealed a main effect of Saccade Accuracy (F1,13 = 5.07, 
p < 0.05, ηp

2 = 0.280), suggesting a violation of the main sequence for error saccades: normalized peak speed of 
error saccades (1.11 ± 0.16) were higher than that of correct saccades (1.03 ± 0.04). There was no main effect of 
Target Category (F1,13 = 2.38, p = 0.15 ηp

2 = 0.155), and no interaction between this factor and Saccade Accuracy 
(F1,13 = 3.63, p = 0.08, ηp

2 < 0.218).

Discussion. Results of Experiment 2 replicated the main findings of Experiment 1, indicating that (1) sac-
cades toward vehicles are shorter than saccades toward faces and (2) error saccades are shorter than correct sac-
cades. Critically, these effects persisted even though participants were explicitly asked to perform their saccade 
toward a specific location on the target image, suggesting they reflect an influence of target/distractor content 
and response accuracy on saccade programming that is beyond voluntary control. As in Experiment 1, we also 
observed that hypometric error saccades deviated from the main sequence of correct saccades, suggesting their 
interruption by concurrently programmed saccades. Critically, although initially correct saccades toward faces 
and vehicle both undershot the target, corrective saccades following an error did reach it with high precision. 
Furthermore, hypometria observed for correct saccades toward vehicles, relative to faces was not observed for 
corrective saccades. These results therefore suggest that saccades following an error were programmed to com-
pensate for the amplitude of error and were no longer influenced by the content of the target/distractor images. 
Overall, results of Experiment 2 support a strong influence of face stimuli on saccade programming but also 
suggest that online correction of error saccades can occur during the saccadic choice task.

It can be noted that in comparison to Experiment 1, latencies of saccades in Experiment 2 were slightly longer, 
with an increase of ~20 ms in all experimental conditions. As the only difference between Experiment 1 and 2 was 
that Experiment 2 required the programming of the saccade endpoint in addition to saccade direction, the mean 
difference between saccade latencies in the two experiments therefore suggests that the programming of saccade 
endpoint, relative to the programming of its direction only, comes with a processing cost that takes about 20 ms. 
This cost is comparable to what has been observed in previous studies44,45. For example, using an anti-saccade 
task, Evdokimidis et al.44 found that when participants were asked to perform anti-saccades in a mirror position 
relative to the target, latencies were 19 ms longer than when they were simply asked to perform anti-saccade in 
the opposite direction of the target. The present data therefore support the view that programming of saccade 
amplitude and direction may rely on different processes.

General Discussion
The present study investigated how the content of simultaneously displayed visual stimuli can influence saccade 
programming during a saccadic choice task, with a particular focus on face stimuli. Our study replicated previous 
findings indicating that, relative to vehicle stimuli, face stimuli elicit faster saccades, but also more involuntary 
error saccades when they are defined as distractors3,4,12–14,18. Critically, the examination of saccade amplitude 
during this task additionally revealed two new main findings. First, we observed that amplitude of saccades was 
modulated by the content of the target/distractor stimuli: Saccades toward vehicles (faces as distractor) were 
shorter than saccades toward faces (vehicle as distractor). Second, we observed that error saccades were shorter 
than correct saccades suggesting their interruption to initiate a corrective saccade. In the following, we discuss 
the significance of these results and their potential underlying neural mechanisms, as well as their implication for 
studies on eye movements.

Saccade amplitude is modulated by the content of the stimuli. Throughout two experiments, we 
consistently observed that saccades toward faces were larger than saccades toward vehicles. This effect persisted 
even if participants were explicitly required to perform their saccades toward a specific location within the images 
(Experiment 2) indicating it could not be voluntarily controlled. Results of Experiment 2 revealed that all sacca-
des actually tended to undershoot the target point, but to a greater extent when they were directed toward vehicle 
than face stimuli, suggesting that saccades toward vehicles were rather hypometric relative to saccades toward 
faces. These results therefore indicate that the content of visual stimuli influences the programming of saccade 
amplitude in a saccadic choice task.
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Previous studies proposed that when a task involves multiple potential targets (e.g., as in saccadic choice 
task or visual search task) or the potential execution of eye movements toward different locations (e.g., as in the 
anti-saccade task), saccade programs oriented toward these different goals could be developed in parallel and 
compete with each other through mutual inhibition on a common saccade map representing the location of the 
saccadic goals30,34,36–39,46,47. It is generally agreed that such a map would be represented in intermediate layers of 
the superior colliculus (iSC) which integrate external signals (e.g., visual inputs from occipital visual areas) and 
internal/goal-related signals (e.g., related to task instructions, via inputs from the frontal eye fields and dorso-
lateral prefrontal cortex) to select among possible saccadic goals30,34,36,48–52. The saccade program developing the 
fastest (i.e. reaching a threshold for activation first) would win the competition and be executed while the concur-
rent program would be cancelled. However, if a competing program develops fast enough, it might still influence 
and interfere with the programming and execution of the winning program. This would arise through increased 
activity of neurons coding for the alternative saccade goal, thereby weakening activity of neurons coding for the 
goal of the winning program49, resulting in the reduced amplitude of the executed saccade30,46. Within this frame-
work, the general undershoot observed for correct saccades could be interpreted as resulting from the interfering 
influence of a competing saccade program directed toward the distractor image.

In our saccadic choice task, the face and vehicle images were displayed simultaneously on the left and right 
visual fields, thus involving the generation of two potential saccade programs, toward the left and right crosses, 
interfering with each other. Critically, the fact that saccades toward vehicles were even shorter than saccades 
toward faces suggests that (1) the content of the images played a critical role in these competitive interactions 
and (2) the saccade program toward a face stimulus interfered more strongly (through greater weight/stronger 
inhibition) with the saccade program toward a vehicle stimulus than the other way around. A greater weight of 
saccade programs toward face stimuli would also be consistent with the higher error rate of saccadic responses 
toward face than vehicle distractors observed in both experiments, suggesting that the saccade program toward 
faces actually won the competition in a substantial amount of trials. This is also in line with previous studies 
showing that eye movements toward faces cannot be easily inhibited4,18,19. Overall, our results therefore suggest 
for the first time that the characteristics of visual stimuli, such as their behavioral relevance can come into play in 
the interactions underlying the parallel programming of saccades, by modulating the relative weight of competing 
programs for saccade target selection.

Recent studies suggested that this bias for face stimuli could be mediated by rapid processing of visual 
information via a subcortical retino-tectal pathway, through which part of visual information exiting gan-
glion retinal cells directly projects to the superficial layers of the superior colliculus (sSC) before reaching the 
pulvinar and the amygdala53–56. Nakano et al.53 for example argued that the speed of processing along in the 
main retino-geniculo-cortical pathway (the earliest visual response latencies observed in human visual cortical 
areas are of 56 ms in V1, and 70–80 ms in V3 and V457 cited in53, together with the time required to generate 
a saccade (20–30 ms) is too slow to account for the fast saccadic responses toward faces in just 100–110 ms, as 
previously observed by Crouzet et al.3 However, electrophysiological recordings in monkeys54,56 showed that 
neurons in the sSC and in the pulvinar exhibit distinct response to face-like stimuli within the first 25 ms and 
50 ms following stimulus onset, respectively. As the pulvinar directly projects to the lateral intraparietal cortex, 
involved in saccade generation with latencies of 30 ms, such timings would be more compatible with the speed 
of face processing previously observed. Interestingly, the retino-tectal pathway is thought to be particularly 
involved in the detection of behaviorally-relevant stimuli such as faces See for a review55. However, exactly how 
fast detection of faces via the sSC in turn modulates the weight of a saccade program toward this stimulus in 
the iSC remains to be addressed.

Another remaining question pertains to the nature of visual information rapidly extracted from face stimuli 
which could underlie these effects. In a recent study, Guyader et al.14 examined the role of low-level properties of 
stimuli such as color and spatial frequencies for fast detection of faces during a saccadic choice task. In this study, 
stimuli were either colored, gray-scaled, filtered in low spatial frequencies or in high spatial frequencies. They 
observed faster saccadic reaction times (SRTs) toward face than other target categories in all viewing conditions, 
but SRTs toward face targets were faster when the images were unfiltered (colored and grey-scaled) and filtered 
in LSF than when they were filtered in HSF. These results suggested that rapid detection of faces could be partly 
mediated by fast processing of their LSF content. However, previous research supports the idea that the bias for 
faces during saccade programming cannot be totally accounted for by low-level properties of visual stimuli. For 
example, using an anti-saccade task, a couple of studies showed that participants made more errors and were 
slower when they had to perform saccades in the direction opposite to upright faces than to inverted faces18 or 
phase-scrambled versions of faces4 sharing the same low-level properties. These results therefore additionally 
suggest that the orienting bias toward faces rather reflects an influence of high-level processing on saccade pro-
gramming. Further studies manipulating both low- and high-level properties of stimuli during a saccadic choice 
task would be needed to disambiguate that question.

It should be noted that we cannot totally rule out that the difference in saccade amplitude toward faces and 
vehicles simply results from a general tendency to make larger saccades toward faces than vehicles, irrespective 
of the presence of a distractor or a concurrent saccade program. Indeed, results of a control experiment (see 
Supplementary Data) in which participants had to perform a saccade toward a central cross in a face or vehicle 
image displayed without a distractor suggested that saccades toward faces are still slightly but significantly larger 
than saccades toward vehicles, albeit to a lesser degree than what was observed in our Experiments. This therefore 
further supports the idea of an influence of stimulus processing on saccade programming. Interestingly, this bias 
appeared to be abolished under particular circumstances as we observed that corrective saccades following an 
error could reach the target, with no significant difference according to the content of the target stimulus. This 
indicates that participants were in some cases able to perform spatially accurate saccades toward the target point, 
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irrespective of the image contents. Furthermore, this suggests that after an error saccade toward the distractor was 
inhibited, saccade toward target were no longer interfered and could reach the target point with high precision 
(see also our discussion below).

Error saccades are corrected on-line. In comparison to previous studies using a saccadic choice task 
which mainly focused on the analysis of correct saccades, the present study further examined the characteristics 
of error saccades. First, we observed in both experiments that error saccades were hypometric relative to correct 
saccades. This finding echoes previous reports of hypometric erroneous saccades in tasks involving saccadic 
responses such as the visual search task30,33,34,41 or the anti-saccade task31,46,47. Second, these error saccades were 
followed in the large majority of trials by a second corrective saccade bringing the gaze to the target location after 
a very short delay (median < 100 ms), well below the range of saccade latencies observed for the first correct and 
error saccades (median around 200 ms). Such extremely short inter-saccadic intervals were previously reported 
in studies involving the execution of two consecutive saccades and were taken as evidence that the programming 
of the second saccade occurred in parallel to the execution of the initial one30,31,34,35,38,58. At the neurobiological 
level, this would translate into a rise in activity of neurons in the iSC and frontal eye fields coding for the second 
saccade goal, while (or even before) the first saccade is being executed36,52,59,60.

Finally, the examination of saccade kinematics revealed that, on average, error saccades deviated from the 
main sequence of correct saccades, with higher peak velocities than what was predicted from the observed ampli-
tude. Overall, these results suggest that error saccades toward a distractor image were interrupted while they were 
being executed, to initiate a concurrently-programmed corrective saccade toward the target. Only a few studies 
have reported mid-flight interruption of saccades, in which the brief appearance of a distractor (e.g., a flash) 
resulted in hypometric saccades toward a target, with abnormal speed profiles given their amplitude43,61. However, 
the interruption of an erroneous saccadic response to initiate a corrective saccade in a different direction has, to 
our knowledge, not been reported. For example, using a visual search task, McPeek et al.30 observed that, although 
error saccades were hypometric and followed by concurrently programmed corrective saccades, they did not 
deviate from the main sequence and were interpreted as reflecting diminished neural activity corresponding 
to the first saccade goal, due to the competing saccade program toward the second goal. It should however be 
noted that in most studies reporting hypometric error saccades associated with short-latency corrective saccade, 
kinematics of error saccades were not examined e.g.31,31,34,41,46,47. Thus, whether mid-flight interruption of error 
saccades occurred in these studies could not be addressed. Interestingly, the fact that error saccades toward vehi-
cle distractors were even shorter than error saccades toward face distractors suggests their interruption occurred 
earlier when a concurrent saccade was programmed toward a face than toward a vehicle stimulus, respectively. 
In that sense, results on error saccades support the above-mentioned assumption of a greater weight for saccade 
programs directed toward faces to interrupt a saccade program toward another stimulus.

Finally, the examination of concurrently-programmed saccades following an error revealed that they compen-
sated for the amplitude of the initial error saccade and reached the target location, irrespective of the content of 
stimuli. This contrasts with the relatively lower precision of correct saccades, which were found to systematically 
undershoot the target and to a higher degree when it was a vehicle. We previously proposed that undershoot 
of correct saccades could be explained by the influence of the distractor image on the programming of saccade 
toward the target. In this context, the higher gain of corrective saccades suggests that after the interruption of an 
error saccade program, this program did no longer influence the amplitude of the concurrently-programmed 
corrective saccade toward the target. It is generally agreed that sensitivity to visual information is reduced and 
non-motion information suppressed while a saccade is being performed62–64. Therefore, the relative distance to 
the target could not be computed based on visual information during the execution of the initial error saccade. 
Furthermore, the latencies of corrective saccades were too short to allow (1) the computation of the target’s dis-
tance based on the new eye position and (2) the programming of a saccade toward it. Therefore, it can be assumed 
that the target location, relative to the eye position, was computed before the initiation of the first error saccade 
(i.e. while fixating on the central cross) and was updated at the end of the error saccade. This proposal is sup-
ported by neurophysiological and behavioral studies showing that the oculomotor system generates predictions 
based on pre-saccadic information, in order to facilitate processing of post-saccadic information30,34,65–67.

Overall, the data obtained in the present study point to the ability for the oculomotor system to efficiently 
perform an online correction of saccadic response, through the development of a saccade program while a first 
erroneous saccade is being executed, resulting in its interruption, and then the execution of an accurate saccade 
toward the target. It should be noted that the notion of ‘correction’ does not necessarily imply that participants 
were aware of an error and voluntarily corrected for it. On the contrary, a couple of studies indicated that hypo-
metric error saccades followed by short-latency corrective saccades were more likely to be observed when partic-
ipants were unaware of the initial error47,68.

Conclusion
The present study provides new insights on the interactions between the oculomotor system and the properties 
of visual stimuli, by showing for the first time that the programming of saccades during a saccadic choice task is 
influenced by the content of the saccadic goal(s). These findings further support previous studies showing that faces 
constitute particular stimuli for the visual system and elicit characteristic behavioral responses, relative to other 
categories of visual stimuli. Additionally, analysis of saccade amplitude and saccade kinematics in the present study 
allowed us to further precise the processes at hand during the saccadic choice task, by showing that efficient online 
correction of error saccades can occur at least during this task. Overall, these findings emphasize the importance of 
using ecological and behaviorally-relevant stimuli but also the relevance of examining oculomotor parameters such 
as saccade amplitude to better characterize and understand the functioning of the visual and oculomotor systems.
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