G. Alberti, Variational models for phase transitions, an approach via gamma-convergence, 1998.

L. Ambrosio and A. Braides, Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization, J. Math. Pures Appl, vol.69, issue.9, pp.307-333, 1990.

L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, 2000.

S. Baldo and G. Orlandi, Cycles of least mass in a Riemannian manifold, described through the "phase transition" energy of the sections of a line bundle, Math. Z, vol.225, issue.4, pp.639-655, 1997.

F. Bernstein, ¨ Uber die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene, Math. Ann, vol.60, issue.1, pp.117-136, 1905.

A. Braides, Approximation of Free-Discontinuity Problems, 1998.

K. A. Brakke, The surface evolver, Experiment. Math, vol.1, issue.2, pp.141-165, 1992.

G. Buttazzo, Gamma-convergence and its Applications to Some Problems in the Calculus of Variations. School on Homogenization ICTP, 1993.

S. J. Cox and E. Flikkema, The minimal perimeter for N confined deformable bubbles of equal area, Electron. J. Combin, vol.17, issue.1, 2010.

P. Manfredo and . Do-carmo, Differential geometry of curves and surfaces, 1976.

M. Engelstein, The least-perimeter partition of a sphere into four equal areas, Discrete Comput. Geom, vol.44, issue.3, pp.645-653, 2010.

C. Thomas and . Hales, The honeycomb conjecture, Discrete & Computational Geometry, vol.25, issue.1, pp.1-22, 2001.

C. Thomas and . Hales, The honeycomb problem on the sphere, 2002.

A. Henrot and M. Pierre, Variation et optimisation de formes, Mathématiques & Applications, vol.48

. Springer, Une analyse géométrique, 2005.

J. D. Masters, The perimeter-minimizing enclosure of two areas in S 2, Real Anal. Exchange, vol.22, issue.2, p.97, 1996.

F. Morgan, Soap bubbles in R 2 and in surfaces, Pacific J. Math, vol.165, issue.2, pp.347-361, 1994.

E. Oudet, Approximation of partitions of least perimeter by ?-convergence: around Kelvin's conjecture, Exp. Math, vol.20, issue.3, pp.260-270, 2011.

T. Shifrin, Differential geometry-a first course in curves and surfaces

L. Stewart, Edouard Oudet) Laboratoire Jean Kuntzmann, Université Grenoble Alpes, Bâtiment IMAG, 700 avenue centrale, 38400 Saint Martin d'H` eres France E-mail address, Beniamin Bogosel: beniamin.bogosel@univ-savoie.fr E-mail address, Matlab lbfgs wrapper