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PARTITIONS OF MINIMAL LENGTH ON MANIFOLDS

BENIAMIN BOGOSEL AND EDOUARD OUDET

Abstract. We study partitions on three dimensional manifolds which mi nimize the total geodesic
perimeter. We propose a relaxed framework based on a -convergence result and we show some
numerical results. We compare our results to those already present in the literature in the case of the
sphere. For general surfaces we provide an optimization algorithm on meshes which can give a good
approximation of the optimal cost, starting from the result s obtained using the relaxed formulation.

1. Introduction

In this article we propose a theoretical and numerical framevork for the study of the partitions
(!){L, of a surfaceS R2 which minimize the total geodesic perimeter while keeping arescribed
area for each cell. Thus, we are interested in minimizingd*([ 'L, @! i) or equivalently

Per(! 1)+ i+ Per(! )

in the class of partitions (! ;) of the surfaceS such that j! jj = ¢, with the compatibility constraint
Cc1+ i+ ¢, = |JS]. Here @! denotes the boundary of a set as a subset of the surfaces, Per(! )
denotes the geodesic perimeter df, i.e. the perimeter of! regarded as a subset of the surfacg and
j!' j is the area of the subsetl . General theoretical results concerning these minimal pditioning
problems are presented by Morgan in[[16]. This theoretical esult states that boundaries of a
minimal-perimeter partition are arcs of constant geodesiccurvature and the boundaries of the sets
meet in threes with angles of measure 2 3.

The more speci c case concerning the minimal perimeter paitions of sphere with cells of equal
areas was intensively studied from both theoretical and nurerical points of view. In the casen =2
the solution is the partition into two half-spheres. This was proved by Bernstein in 1905[[5]. In
the casen = 3 the optimal candidate is the partition of the sphere into t hree slices corresponding
to an angle of 2= 3. This was proved by Masters in [15]. The case& = 12 was solved by Hales in
[13] using methods similar to the ones involved in the proof bthe honeycomb conjecture([12]. The
casen = 4 was treated by Engelstein in [11] and the corresponding ofimal partition is the one
associated to the regular tetrahedron.

The case of the sphere has been studied numerically by Cox arfdikkema [9] using the Surface
Evolver software [7]. They perform computations forn 2 J2;32K and they con rm the natural
conjecture forn = 6: the optimal partition in this case is probably the one associated to the cube.
Their algorithm performs the perimeter optimization after choosing a topological structure for the
partition. Thus, the optimization algorithm has to know a priori the topological structure in order
to nd the corresponding local minimum. In the end we keep thecon guration which gives the best
optimal cost among the admissible combinatorial possibilies.

The algorithm we propose is a generalization of the ideas irll/] to the case of surfaces. First,
there is a theoretical result, similar to the theorem of Modica and Mortola, which we present in
Section[2. This theoretical result justi es the use of the functional

Je(uy=" jroupP+ g
s

Tu

s

as an approximation of the perimeter as" ! 0. The direct consgguence of the -convergence result

is that a sequence of minimizersu- for J- under the constraint ¢ u- = c converges to a minimizer
1
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of the geodesic perimeter under area constraint. For the pditioning case we prove that functionals
of the type

X

J-(ui)

i=1
approximate the perimeter as" ! 0, whereu; are functions associated to the setd ; which satisfy
some integral and non-overlapping constraints. We implemiet an optimization algorithm which is
able to solve the above problem on a large class of surfaceshis is an advantage over the methods
used in [9] which can be used only in the case of the sphere.

Working with the relaxed formulation does not provide an exect representation of the contours.
Thus, we cannot directly provide the associated cost once whave the relaxed optimal partitions.
The particular case of the sphere can be solved directly by riong that boundaries between two
cells have constant geodesic curvature [16] and are, thusyas of circles. We recover all the results
presented in [9] in the case of the sphere. On more complex gaces it is complicated to explicitly
work with curves of constant geodesic curvature. Neverthelss, we can extract the contours from
the density representation in order to compute the total perimeter. Since the extracted contours
are not smooth, we perform a constrained optimization stageon the triangulated surface preserving
the topology to obtain reliable approximations of the optimal costs.

2. Theoretical result

As in [I7] we would like to have a rigorous theoretical framewrk which justi es our numerical
method. In the euclidean case it was an adapted version of thdModica-Mortola theorem to the
case of partitions which provided the needed result. In the ase of surfaces we did not nd an
equivalent result in the literature. We did nd the results i n [4] which suggest that the relaxation
we consider is the right one on general manifolds. In the ab@/reference a the authors do not prove
a -convergence result, but only the convergence of minimisrs. We are concerned here only with
smooth manifolds of codimension one and in this particular ase it is possible to adapt classical
methods in order to prove a -convergence result.

We start by de ning the space of functions of bounded variations on ad 1 dimensional surface
in RY. Let S be a smoothd 1 dimensional manifold without boundary in RY. In the following we
consider the tangential gradient of a functionu de ned on S to be

rru=rua (rwn)n,

where u-is a regular extension ofu in a neighbourhood of S n denotes the normal vector to the
surface. In the same way we de ne the tangential divergencefa vector eld w 2 C1(S;RY) by

div w=tr( D w)

where the matrix D w contains on linei the tangential gradient of the i-th component of w, i.e.
r w;. Seel[14, Section 5.4] for further details.
We consider the space of functions with bounded variation ors

BV(S)= fu2 LYS): TV(u) < 1g
where Z
TV(u) =supf udiv g:jg1 1g:
s
Using the divergence theorem on manifolds (se%[m, Secti@nd4]), we obtain that if u is C1(S) then
TV(u)= jr uj:
s

If I is a subset ofS we de ne its generalized perimeter as Ped() = TV( ), where , represents
the characteristic function of ! . By mimicking the proof in the euclidean case we can prove thiathe
total variation is lower semi-continuous for the L1(S) convergence. We refer to[[6] for more details.
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Let (C;) is a set of local charts which coverS such that eachC; is di eomorphic to a connected
and bounded open subseD; of RY 1. We denote by ; : D; ! C; these di eomorphisms. Then it
is possible to transfer a functionu from C; to D; using the transformation &5 = u ;. These new
functions t, which lie now in Euclidean spaces, are functions of boundedariation. Therefore, it is
possible to transfer some of the theory of BV functions from Eiclidean spaces to manifolds of co-
dimension 1 by using local charts and partitions of unity. In particular, it is possible to approximate
nite perimeter sets ! S with smooth sets! ,  Ssuchthat!,! ! inthe L(S) topology and
Per(! n) ! Per(!).

We are now ready to state the relaxation result in the case of asingle phase, which will be
generalized later to the case of a partition. To derive the tlreorem below we follow the approach
provided by Buttazzo in [8] and Alberti in [1].

Theorem 2.1. Dene I;ZF (LY(S)! [0;+1 ] as follows:

1 R
< "; 2 2 2 H 1 . -—
jrouF“+ -us(l uw- d if u2 HX(S); u=-=c
Fe(uy = s S
T +1 otherwise.
(1P fu=1 if u2 BV (S;f0; 1 Rou=
F(U) — 3 er( u= g) T u ( 3 ’ g)1 IS u==C¢

+1 otherwise.
Then F- | F in the L(S) topology.

R
Proof: We dene (t) = C§js(1 s)jds. We consider a sequenceu¢) ! u in LY(S) such that
liminf-; gF-(u) < +1. SinceF-(u-) # cu?(l u-)? if we take a subsequence ofi- which
converges almost everywhere ta we ob%ain that

u’(l u)?=0;
s
and thus u 2 f 0; 1g almost everywhere inS. Note that truncating u- between 0 and 1 decreases
the value of F-(u-) while preserving the fact that u- ! u in L1(S). Also note that is Lipschitz
on [0;1] so we can conclude that  u- ! u in LY(S). By applying the classical inequality
a’+ ¥ 2abwe get that . .

Fe(u) 2 jr uj Quy=2 jr ( w)j
S S

Taking liminf in the above inequality and using the semi-cortinuity of the total variation with
respect to the L1(S) convergence we obtain that

Iir"qirgf Fe(u) 2TV( w=2 (DTV(u):

Sinceu is a characteristic function, it follows that the perimeter of fu = 1gis bounded and therefore
u2 BV (S;f0;1g). Note that (1) = 1=6 and thus we recover the desired constant in front of the
perimeter. It is obvious that the integral condition is also preserved in the limit. This concludes
the proof of the liminf part of the theorem.

For the limsup part we need to exhibit a recovery sequence for each such that F(u) < +1 .
By a classical argument it is enough to nd a recovery sequere only for functions u which are
characteristic functions of smooth sets inS. See [[6] for more details concerning the reduction to
regular sets and [[3, Theorem 3.42] for the BV approximation & nite perimeter sets with smooth
sets.

Let's consider nowu = | where! S is a set with smooth boundary relative to S. We consider
the signed distance functiond; : S! R de ned by

d(x)=dx;Snl) d(x!);
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where d is the geodesic distance or5. Note that d, is positive outside! and negative inside.
Consider the optimal pro le prolcz)lem

c=minf (W(\)+ jv§2:v(1 )=0; v(+1)=1g:
R

Any solution of this minimizing problem satises v° = P W(v) and we can impose the initial
condip?rbv(O) =1=2 in order to have a symmetric behaviour. We can see that the ojimal value is
1

c=2 , W(s)ds. In our problem we have chosen (s) = s?(1 s)2. In order to have a function
which goes from 0 to 1 in nite time we may choose

v =minfmaxfO;(1+2 )v g;1g
We see thatas ! 0 we have

c= (WH)+jwv)Jd)! cas ! O
R
All these considerations are inspired from[[6]. We can de ne

u-(x) = v (d (x)="):
We can see tha%

F)= U W)
A4 . .
. v ) 0= O L Ly @ =) dne 2ot
T d (x)=t
_ LH0O)%E2 + W (=) dHE 200t
T=" di ()=t
Z .
= Per(d (0= 70T+ WY (=)t
Zy

. Per(d: (x) = t")(j(v )Y1)i* + W (v (1)) dt

where we have applied the co-area formula and is chosen such that the support ofv is inside
[ T;T]. Since limg oPer(fdi (x) = sg) = Per(! ) we see that for" small enough there exists such
that Per(d, (x) = s) < Per(! )+ whenjsj<T". Therefore
Z1
limsupFe(us)  (Per(! )+ ) (v )Y)j?+ W(v (t)))dt=(Per(!)+ )c:
"0 T

Since this is true for any ; small enoughg by letting ; ! 0 we obtain the desired result.
In order to have a xed integral equalto ¢ | = citis enough to consider a shift in the de nition
of u-:

u(x) = v ((di (x) + s)="); R

wheres- 2 [ T";T"]: We can see that fors- = T" we haveu- =1 on ! and thus gu->c while
fors- = T" the support of u- is included in! and we hgye the opposite inequality. Thus, for each
" small enough we can change the de nition ofu- so that u- = c. The estimates presented above
are carried with no di culty in this setting.

We can now state the result in the partitioning case. We denoé by u an element in L1(S))". In
order to simplify the notations we introduce the space

z X
X =fu2((LYS)": wu=¢c; u=1g
s
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P
where ¢ satisfy the compatibility condition = [, ¢ = H9 1(S). It is easy to see thatX is closed
under the convergence in LX(S))".

Theorem 2.2. Dene F-;F : (LY(S)"! [0;+1 ] as follows:

8w Z
EX] 2 15 2 . 1 n
Fa(U) = . roujc+ ;uf(@ u)° d ifu2 HH(S)"\ X
> il
T +1 otherwise
P .
F () = I L Per(fui=1g) if u2 (BV(S;f0o;1g)"\ X
+1 otherwise

Then F+ ! F in the (L(S))" topology.

Proof: It is easy to see that the liminf part follows at once from Theorem 21 and from the
fact that X is closed under the topology of [L1(S))".

In order to construct the recovery sequence we reduce the pbbem to the case where the limitu
is consists of piecewise smooth parts its. In this case we de ne Up= V (di;(x)=") as in the one
phase case. Thus on each; we haveu; 1=2 which implies that in=1 uj 1=2. There are two
points which need to be addressed:

(1) The sum equal to 1 condition. Due to the symmetry of the opimal pro le we deduce that
there is only one zone where the sum condition is not satis e@nd that is in the neighborhood
of singular poiq_t,s. Since an"-neighborhood of the singular set is of ordet'd 1. Replacing
eachu;j by ui=(" L, uj) in these problematic regions we preserve the regularity obach u;
and we note that the functions have bounded gradient of orderO(1="). We immediately
nd that the correspondingzenergy

2

jrouj?+ %Uiz(l uj)
N-=
vanishes as'! 0.

(2) We also need to modify the functionsu; so that they have the same integral overS. In order
to do this we apply a procedure found in [[2] where we consider gamily of balls in regions
whereu; 2 f 0;1g. On each such ball we can consider modi cations ofl; such that the sum
is preserved and the integrals have the right value. As abovethe sum of energies on these
balls will be negligible in the limit.

Once these points are addressed, the lim sup estimates foNg just like in the one dimensional case
and the proof of the theorem is completed.

3. Finite Element framework

We wish to use this relaxation by -convergence to perform numerical computations so we need
a framework which allows us to compute the quantity
z

. . 1
s s
in fast, e cient way. In order to do this we triangulate the su rface S and we compute the mass
matrix M and the sti ness matrix K associated to theP; nite elements on this triangulation. Then,
if for the sake of simplicity, we use the same notationu for the P1 nite element approximation of
u, we have 7
jr ujz=u"Ku
s
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and 7

u’(l u)®>=viMy;
s

wherev = u?2: (1 u):2. We have used the Matlab convention that adding a point befoe
an operation means that we are doing component-wise vectoromputations. Note that once the
matrices K; M are computed, we only have to perform matrix-vector multiplications, which is really
fast. In this setting we use the discrete gradients of the abee expressions given by:

r yu'Ku = 2Ku;

rov'Mv=2Mv: (1 2u):

The partition condition and the equal areas constraint are mposed by making an orthogonal
projection on the linear constraints as follows. We write the discrete vectors representing?; dis-
cretization of the density functions in the following matri x form

M=(12:0 ")

The partition constraint implies that the sum of the elements on every line ofM is equal to 1 and
the equal area constraint implies that for every column of the matrix M we have the relation

hv;' i = A=n; wherev=1; y M:

Here the constantA is the total area of the surface,N is the total number of points in the trian-
gulation and the notation 1, 4 represents thep g matrix whose entries are all equal to 1. These
conditions are discretizations in the nite element setting of the conditions that the integrals of the
density functions u; are ajt equal to A=n. Indeed, given a triangulation T of S and its associated

mass matrix M, we have 1 uj=1; v M ', where'' is the vector containing the values of

S
u; at the vertices of the triangulation. The projection routin e can be found in Algorithm .

Algorithm 1 Orthogonal projection on the partition and area constraints

Require: I{,\ =(&j)2RN n,C2Ry n,d2RyN 1,V

1 ()= pjd G (line sum error; N 1 column vector)

2: (fi)= ;viagj d; (column scalar product error;n 1 column vector)
3: De ne the matrix C of sizen( n by

o = kvk3=n if K6 |
ok = kvk3 k vk3=n

4: (q)=(fj) hviei=n(n 1 column vector)

5. Compute ( j) 2 Ry 1 with =0 such that Cji;, 1y (n 1)( j)in 1 = (G)in 1. The indices
indicate a sub-matrix with the rst n 1 lines and columns, or the sub-vector formed by the
rst B 1 components.

6: S= i

7. i=(g S vij)=n(N 1 column vector)

8 Aorth =( i) 11 nt Vv ( ,-)T, wherel, qisthe p g matrix with all entries equal to 1
9o A=A Ao

return A

Once we have this discrete formulation we use an optimized LBGS gradient descent procedure
[19] to compute the numerical minimizers. In order to avoid bcal minima where one of the phases
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' I'is constant, which arise often when the number of phases is gater than 5, we add a Lagrange
multiplier which penalizes the constant functions. In this way, we optimize
x £ _ 1Z . . :
e RS (2@ )P+ (std(' ') starget);
S S
where std( ') is the standard deviation of ' | and starget is the standard deviation of a characteristic
function of area Area(S)=n.

In order to have a good approximation of the optimal partition, we want do decreasé' so that
the width of the interface is small. We notice that if we chose" of the same order as the sides of
the mesh triangles the algorithm converges. Furthermore, \w cannot make" smaller, since then the
gradient term will not contain any real information, as the width of the interface is of size". In
order to avoid this problem, we consider re ned meshes ass@ted to each". At each step where
we decreas€ we interpolate the values of the previous optimizer on a re red mesh and we consider
these interpolated densities as starting point for the desent algorithm on the new mesh. In the
case of the sphere we make four re nements ranging from 1000 160000 points. Some optimal
con gurations, in the case of the sphere, are presented in gure[d. A detailed study of the case of
the sphere along with a comparison with the known results of ©x and Flikkema [9] are presented
in the next section.

As underlined before, our approach allows a direct treatmehof any surface, as long as a qual-
itative triangulation is found. We perform some numerical computations on various shapes like
a torus, a double torus, and a more complex surface called Baho -Chmutov of order 4. A few
details about the de nitions of these surfaces are providedbelow:

We consider a torus of outer radiusR = 1 and inner radius 0:6 (see Figurd2). This torus is
de ned as the zero level set of the function

Fay;2)= (P +y2+ 22+ R2 197 4R+ y?):
The double torus used in the computation (see Figur€13 is give by the zero level set of the
function
f(y;z)=(x(x 1)2%x 2)+yd)?+ 2> 003
The complex Bancho -Chmutov surface (see Figure[#) is given B the zero level set of the
function
f(X1y;2) = Ta(X) + Ta(y) + Ta(2);
where T4(X)=8X* 8X2+1 is the Tchebychev polynomial of order 4.

4. Refined optimization in the case of the sphere

The costs associated to the relaxed functional do not provid a good enough approximation of
the total length of the boundaries. In this section we propog a method to approximate the optimal
cost in the case of the sphere. The results of [16] state thatdundaries of the cells of the optimal
partitions have constant geodesic curvature. In the case othe sphere the only such curves are the
arcs of circle. See for exampleé_[18, Exercise 2.4.9] for a mfo The results of Cox and Flikkema
[9] show that optimal con gurations are not made of geodesicpolygons. In order to perform an
optimization procedure which captures this e ect they choseto make an initial optimization in
the class of geodesic polygons and then divide each geodeait into 16 smaller arcs and restart
the procedure with more variable points. They manage to appoximate well enough the general
optimal structure but they still work in the class of geodesic polygons with additional vertices.
Our approach presented below is dierent in the sense that we ansider general circle arcs (not
necessarily geodesics) which connect the points.

The rst step is to extract the topology of the partition from the previous density results, i.e.
locate the triple points, the edge connections and constructhe faces. In order to perform the
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Figure 1. Minimal perimeter partitions on the sphere into n equal area cells for
n2f2;3::; 24 329.
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Figure 2. Minimal perimeter partitions on the torus with outer radius R =1 and
inner radius r = 0:6 together with their associated attenings for n 2 [2;11]. The
center rectangle is represents the torus, while periodic atinuations are made to

easily see the topological structure.

COGI0o

Figure 3. Minimal perimeter partitions on a double torus for n 2 f 2; 4; 6g.

> Jad o

Figure 4. Minimal perimeter partitions on a Bancho -Chmutov surface f or
n 2 f 2;4;6;8g.
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re ned optimization procedure we need to be able to compute he areas of portions of the sphere
determined by arcs of circles. This is possible using the Gas-Bonnet formula. If M is a smooth
subset of a surface then Z Z
KdA + ky=2 (M), (4.1)
M @m
where K is the curvature of the surface,kq is the geodesic curvature and (M) is the Euler char-
acteristic of M . This result ex%ends to pi%ewise smooth curves and in thisase we have
X
KdA + Kg + i=2 (M); (4.2)
M @m

where ; are the turning angles between two consecutive smooth parts of the boundary. In thecase
of a polygon the turning angles are the external angles of th@olygon. The formula (4.2) allows the
computation of the area of a piece of the sphere bounded by ascof circle. In this case the Euler
characteristic is equal to 1, the curvature of the unit sphee isK =1 and the geodesic curvature is
piecewise constant. For more details we refer ta_[10, Chapted].

A rst consequence of the Gauss-Bonnet theorem in connectio to our problem is noting the fact
that, apart from cases where we have a certain symmetry liken 2 f 3;4;6;12g the optimal cells
are not geodesic polygons. This is made clear in cases where Wwave a hexagonal cell. If the arcs
forming the boundary of such a hexagonal cell would be geodespolygons then its area would be
equalto 6 2=3 4 = 0. Thus a spherical shape bounded by six arcs of circle can wer be a
geodesic polygon without being degenerate.

In order to perform the optimization we take the vertices as \ariables and we add one supple-
mentary vertex for each edge. This is enough to contain all te necessary information since an arc
of circle is well de ned by three distinct points on the sphere. In the sequel we denotd, the set of
partitions of the sphere into n cells and with A, the partitions in P,, having equal areas. In order
to have a simpler numerical treatment of the problem we can iorporate the area constraints in
the functional by de ning for every partition ( ! ;) 2 P, the quantity de ned for every "> 0 by

X 1X 11X
G(('i)=  Per(li)+ (Area(! ) Area(! )%
i=1 i=1 j=i+1
If we denote )
(1 1)) = ", Per(ly) |.f(!i)2An |
1 if ('i{)2PnnAgp:
then we have the following -convergence result.

Theorem 4.1. We have thatG- ! G for the L1(S?) convergence of sets.

Proof: For the (LI) property consider a sequence [;) P » which convergence inL(S?) to (! ).
It is clear that we have Area(! ;) ! Area(! ;) and the perimeter is lower semicontinuous for thel?
convergence. Thus we have two situations. If(;) 2 P,nA, thenlim-, oG-((u;))= 1 . 1f (1) 2A,
then the lower semicontinuity of the perimeter implies that liminf-; ¢G-((! {))  G((! i)).

The (LS) property is immediate in this case. Choose(j) 2 A, or else there is nothing to prove.
We may choose the recovery sequence equal tb;j for every " > 0. Thus the property is veri ed
immediately.

Remark 4.2. We note that in the above proof the simplicity of the proof of the (LS) property is
due to the fact that the functionals G- are well de ned on the spacef G < 1g , which makes possible
the choice of constant recovery sequences. This is not the & in the results proved in Sectiori .

This -convergence result proves that minimizers of G+ converge to minimizers ofG. As a
consequence, in the numerical computations, we minimiz&- for " smaller and smaller in order to
approach the minimizers of G, which are in fact the desired solutions to our problem.
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Since the parameters are of two types: triple points and edgeoints, we prefer to use an opti-
mization algorithm which is not based on the gradient. The aborithm is described below.

For each point P consider a family of m tangential directions (v;)2; chosen as follows:
the rst direction is chosen randomly and the rest are chosenso that the angles between
consecutive directions are 2Zm .

Evaluate the cost function for the new partition obtained by perturbing the point P in each
of the directions v; according to a parameter”.

Choose the direction which has the largest decrease and upt#athe partition accordingly.
Do the same procedure for each edge point by performing the tw possible orthogonal
perturbations of the point with respect to the edge.

If there is no decrease for each of the points of the partitionthen decrease’.

This algorithm converges in each of the test cases and the reks are presented in Table[1. In
the optimization procedure we start with " = 1 and we reiterate the optimization decreasing" by a
factor of 10 at each step until we reach the desired precisioon the area constraints. We are able
to recover the same results as Cox and Flikkema fon 2 [4;32]. Furthermore, unlike in the case
of geodesic polygons, all triple points consist of boundaeis which meet at equal angles of measure
2 =3. In Figure[H you can see the results fon = 9 and n = 20. The red arcs are geodesic connecting
the points and are drawn to visually see that not all the boundaries of the optimal structure are
geodesic arcs.

our results Cox-Flikkema our results Cox-Flikkema

N || non-geo.| area tol. non-geo. N || non-geo.| area tol. non-geo.
4 || 114637 |5 10 7 11:464 19 2827352 10 7 28274
5| 1343042 10 ° 13:430 20] 289992 |1 10 7 28999
6 || 1477152 10 ° 14772 211 2977482 10 7 29775
7 || 1635193 10 ° 16:352 221 305094 |2 10 7 30:509
8 || 176927 |3 10 ° 17:692 23] 312260 |2 10 7 31:226
9|l 188504 |2 10 ° 18:850 241 319117 |3 10 7 31:912
10 199997 |4 10 7 20:000 251] 3261728 108 32617
111 21:1398 (4 10 7 21:140 26 3326752 10 7 33268
12 21:8918 |5 10 7 21:892 271 3389689 10 8 33897
13 230953 |4 10 7 23:095 281 3455214 10 7 34552
141 239581 |3 10 7 23958 291 3520656 10 ’ 35:207
151 248821 |2 10 7 24:882 30| 358199 |5 10 7 35:820
16| 257269 |2 10 ' 25727 31] 3639414 10 ° 36:394
17 266365 |3 10 ' 26:.637 32] 3693104 10 °® 36:931
18| 274647 |2 10 ' 27:465

Table 1. Comparison between our results and the results of Cox and Htkema in
the case of the sphere.

Thus we can conclude that the relaxed formulation presentedin the previous section is able
to match the best known con gurations in the literature. Fur thermore for n 2 [5;25][f 329 the
algorithm nds the good con guration without much e ort, whi le for n 2 [26; 31] multiple tries with
di erent initial conditions were needed in order to nd the be st con guration. The fact that the
structure of the partition is not xed is a great advantage o e red by our method.

5. Computing the optimal cost - general surfaces

The approach used in the previous section cannot be appliedotother surfaces than the sphere.
Indeed, the general expression of curves of constant curvatte is not known explicitly for other types
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Figure 5. The di erence between optimal con guration (black) and the geodesics
connecting the points (red).

of surfaces. One way to approximate the total perimeter of tle partition would be to extract the
contours of the optimal densities and evaluate the length okach discrete contour. A natural way to
extract a contour corresponding to a density function would be taking a level set, for example the
level 0.5. It is possible to extract such level sets by looking at whib triangles contain values which
are both above and below the level set. On each triangle whicls cut by the contour we make a
linear interpolation which determines a segment in the conbur of the level set.

Once we have an idea on how to extract the contours, the rst geestion arises: how to make sure
that the level sets extracted form a partition of S? We denote by T a triangulation of S. If we
think of extracting the 0:5 levels of each density, the shapes determined by these canirs will not
overlap, but around triple points there will be some free spae left. One way to make sure that we
have extracted a partition is to take the 0:5 levels of the function de ned on the triangulation T by

1 ifui(x) max;j uj(x)
0 otherwise

i(X) = (5.1)

where u; are the optimal densities obtained numerically. These corur levels of the functions
almost realize a partition of S with the following issues:

(1) There is a small void space around each triple point, but tis void is included in one of the
triangles of the mesh, and can be dealt with.

(2) Since we extract the level sets of a function which is eiter 0 or 1 on the vertices of the
triangulation, the contour lines will pass through the middle of the edges of the triangles
situated at the border between two phases. This creates someontours which are quite
zigzagged and whose length is signi cantly larger than the ptimal total perimeter.

We illustrate these two issues in Figure[®.

Nevertheless, once we have extracted these contours it is psible to make a direct optimization
of the total length of the boundaries with the constraint of xed area of the cells. This optimization
is made directly on the triangulated surface. We describe tle optimization algorithm below.

Variables and representation of the partitions. We denote (xi)ih=1 a generic family of
variable points situated each on an edge of the triangulatia T such that each edge contains exactly
one variable point. To these points we associate a family of grameters ( i)ih=1 which gives the
position of each pointx; on the corresponding edges. We take this global parametricproach since
each of these points belongs to at least two cells and we'll el to evaluate its contribution in the
gradient of the area and the for all the cells that contain it. Having a global sets of points avoids
having to match points between di erent contours.
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Figure 6. A small space left around triple points (left) and the non-regular initial
extracted contours (right).

Each cell of the partitions is represented by a structure of mirs of edges of triangles off which
determine, along with the parameters ( j), the segments which form the discrete contour of the cell.
The pairs of edges is ordered so that the contour is continuaal Contours may have one or more
connected components.

Computation of the perimeters of the cells. The perimeter of a cell is computed by following
the segments forming the contour and incrementally adding heir lengths to the total length. If the
vertices of the segment are given by, = jv; + (1 i)vo and x; = jva3+(1 j )v4 then the
length of the segment k;; x;] is

(XisxgD =k jva+ (@ i)va jva (1 j)vak;

expression which is di erentiable if the length is not zero. The derivatives with respect to ; and
j are then added to the gradient vector. Note that for the points which are not vertices of some
contour the gradient is zero.

Computation of the areas of the cells. In order to compute the area of a cell we use the
information given by the functions ; de ned in (&.I). The function ; shows, among other things,
what is the position of each triangle in T with respect to the celli. Indeed, denoting by T a triangle
in T, we have the following cases:

(1) All the vertices v of the triangle T satisfy j(v) =1. Then T is completely inside the celli
and we add its area to the total area of the cell.

(2) Two vertices vq; Vv, of T satisfy (vi.2) =1 and the third satises (v3) = 0. Thus we only
add a portion of the area of T to the total area of cell i. Note that this value of the area
depends linearly of one parameter ¢ and of another parameter |. The derivatives of these
contributions are added to the vectors containing the gradent of the area of the celli.

(3) Two vertices vi;vp of T satisfy (vi.2) = 0 and the third satises (v3) = 1. Again, we
only add a portion of the area of T to the total area of cell i which again depends linearly of
one parameter  and of another parameter ;. The derivatives of these contributions are
added to the vectors containing the gradient of the area of tle celli.

(4) If all the vertices of T satisfy (v) = 0 then the triangle is outside the cell and we move on.

The empty spaces around triple points. As we have noted above and seen in FigurEl 6,
around triple points we have some empty spaces determined bthree points which belong to the
three sides of some of the triangles inT . In each con guration of this type we add a Steiner tree
corresponding to the three variable points. Each of the thre area regions which are formed are added
to the corresponding cell while the perimeter is modi ed with the length of two adjacent segments
in the Steiner tree. See Figurdl7 for further details. In orde to nd the gradient corresponding to
the lengths and area changes due to the addition of these Steér points we use a nite di erences
approximation.
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Figure 7. Treatment of empty space around triple points. We consider he
Fermat point X of the empty triangle ABC and we add corresponding area and
perimeters to the corresponding cells. For example the areaf ABX is added to

Cell 3 and the quantity AX + BX  AB is added to the perimeter of Cell 3.

Figure 8. Contours after the constrained optimization algorithm. You can also
see a zoom around the triple points: the segments which joinhte Fermat points
align themselves with the rest of the contour.

Constrained optimization algorithm. We have the expressions and the gradients of the
perimeters and areas of the cells as functions of the parameits ( i)ihzl' This allows us to use the
algorithm fmincon from the Matlab Optimization Toolbox in order to implement t he constrained
optimization algorithm. We use the interior-point algorithm with a low-memory hessian approxi-
mation given by an LBFGS algorithm. The initial values of the parameters ( i)ih=1 are all set to
0:5. The algorithm manages to satisfy the constraints at machme precision while minimizing the
perimeter and thus smoothing the zigzagged initial contous (like the ones in Figure[®). An example
of result may be seen in Figurd B.

It may be the case that some vertices of the contour would "lik" to switch to another side. This
can be the case if at the end of the optimization one of the panmeters ; is close to 0 or 1 or a
triple point in one of the constructed Steiner trees is on theboundary of the corresponding mesh
triangle. In this cases we modify the initial contours taking into the account these results and we
restart the optimization procedure. The modi cation is don e in the following way.
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| n | Minimal length || n | Minimal length |

2 15.07 7 4712
3 2261 8 50:77
4 30:15 9 5337
5 37:25 10 56:80
6 41:93

Table 2. Approximation of the optimal costs for minimal partitions o f a torus
into equal area cells. These partitions are represented inigure[2

(1) If one of the ; is equal to O or 1 then we add the corresponding point to the adjcent cell
and restart the algorithm.

(2) If one of the triple points arrives on the edge of its corresponding mesh triangle then we
allow it to move to the adjacent triangle.

After a nite number of switches the con guration stabilize s and a local minimum is found.

We test the presented algorithm on the results obtained in pevious sections. In the case of the
sphere we obtain the same values found in Tablgl1l. The appromiations of the optimal costs for
partitions presented in Figure[2 for a torus of radiiR = 1;r = 0:6 in Table [2.

6. Conclusions

We propose an algorithm for nding numerically the partitio ns which divide a surface into cells of
prescribed areas and minimize the sum of the correspondinggpimeters. This algorithm is rigorously
justi ed by a -convergence result which is a generalization of the Modica-Mortola theorem in the
case of smooth § 1)-dimensional manifolds.

In the case of the sphere we are able to recover all the resulisresented in the article of Cox
and Flikkema [9]. The optimal costs of the spherical partitions are precisely evaluated by using
the qualitative results in [16], which imply that the boundaries of the cells are arcs of circles. We
recover the same optimal costs as the ones presented i [9].eMinderline that one of the advantages
of this relaxed method is the fact that we do not need to set thepolyhedral con guration of the
partition a priori. The cells emerge from random density con gurations and plae themselves in
the best positions.

The -convergence method is not limited to the case of the splere. Once we have triangulated a
surface the same algorithm applies. We present a few test cas of more complex surfaces. While the
relaxed optimal partitions can easily be obtained, computng the optimal costs is not straightforward
since the relaxed costs are not precise enough. In order to keble to compute an approximation of
these optimal costs we extract the contours of the optimal dasities and we perform a constrained
optimization on the triangulated surface.
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