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NUMERICAL MINIMIZATION OF DIRICHLET-LAPLACIAN

EIGENVALUES OF FOUR-DIMENSIONAL GEOMETRIES

PEDRO R.S. ANTUNES AND ÉDOUARD OUDET

Abstract. We develop the first numerical study in four dimension of optimal

eigenmodes associated to the Dirichlet Laplacian. We describe an extension
of the Method of Fundamental Solutions adapted to the four dimensional con-

text. Based on our numerical simulation and a post processing adapted to the

identification of relevant symmetries, we provide and discuss the numerical
description of the 8th first optimal domains.

1. Introduction

Shape and design optimization problems involving eigenvalues of elliptic opera-
tors is a very active topic in spectral theory and arises in many physical applications.
A better understanding of this questions allows for example to tune and improve
the acoustic properties of musical instruments [8, 19, 30, 40, 42] or to find opti-
mal designs of composite materials (eg. [2]). A typical situation in engineering is
the identification of shapes or designs of structures to prescribe their mechanical
properties: being either as rigid or as soft as possible (e.g. [29]), avoiding torsional
oscillations (e.g. [11]), etc. Such problems appear also in the context of electromag-
netism when considering the design of optimal accelerator cavities (eg. [1]).

A prototype of these shape optimization problems is the minimization of Dirichlet
eigenvalues of the Laplacian, with a volume constraint. Whereas classical and
widely studied, this problem collects all the main computational difficulties of design
optimization: non-smoothness, local minima, high number of degrees of freedom
and a computationally expansive cost function.

Let Ω ⊂ Rd be a bounded open set, not necessarily connected, and consider the
Dirichlet eigenvalue problem,

(1)

{
−∆u = λu in Ω

u = 0 on ∂Ω,

defined in the Sobolev space H1
0 (Ω). We will denote the eigenvalues by 0 < λ1(Ω) ≤

λ2(Ω) ≤ ... where each λk(Ω) is counted with its multiplicity and the corresponding
orthonormal real eigenfunctions by ui, i = 1, 2, .... The shape optimization can be
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formulated as determining

(2) λ?k = Min
{
λk(Ω) : Ω ⊂ Rd, |Ω| = 1

}
, k = 1, 2, ....

The existence of minimizing domains among quasi-open sets was recently proved
(cf. [14, 37]) and some numerical studies allowed to suggest candidates to be mini-
mizers at the beginning of the spectrum and also to explore some properties such as
connectedness, symmetry and multiplicity of optimal eigenvalues (eg. [41, 6, 43]).

In this paper we address the solution of shape optimization problems for the
Dirichlet eigenvalues of the Laplacian of four-dimensional geometries. Besides the
fact that four-dimensional differential geometry may present interesting features
(eg. [21, 26, 48]), also the solution of 4D shape optimization problems and the
calculation of eigenvalues of 4D geometries are challenging from the computational
point of view. Indeed, to the best of our knowledge this is the first time that a
4D shape optimization related with eigenvalues is considered. For this purpose
we used the Method of Fundamental Solutions (MFS) as solver for the eigenvalue
problem. The MFS is a meshfree method and thus, in this context, it avoids meshing
4D domains which could be a difficult and time consuming task. Moreover, the
huge dimension of the matrices associated to classical mesh-type methods such as
finite element methods would probably be prohibitive for solving the eigenvalue
problem accurately in a reasonable time. On the other hand, the problem can be
circumvented using spectral methods, such as the MFS. We can prove that the
solution of the eigenvalue problem is also solution of an integral equation defined
on the boundary of a domain which can be seen as a space dimension reduction
and the problem of solving an eigenvalue problem with 4D domain is replaced by
the solution of an integral equation defined on a 3D hyper-surface.

The convergence of the MFS, when applied to smooth shapes is known to be
very fast, in some cases even exponential (cf. [33, 4, 10]), which ensures that this
integral equation can be solved accurately with relatively small dimension matrices.

The plan of the paper is the following. In section 2 we give a brief description of
some aspects of the numerical approach, namely we define a parameterization of a
general star-shaped domain in terms of 4D Hyper-spherical Harmonics, we present
an algorithm for the distribution of the collocation points and source-points for
the MFS and use Betcke-Trefethen subspace angle approach for the eigenvalue
calculation and describe an algorithm for the optimization. Section 3 describes
an algorithm for the visualization of the optimal shapes and present some of the
numerical results that we gathered. In Section 4 we discuss some of the results that
we obtained.

2. Numerical solution of the shape optimization problem

2.1. Brief description of the MFS. We will use the MFS as forward solver for
the eigenvalue problem. We take a fundamental solution of the Helmholtz equation
in Rd,

(3) Φλ(x) =
i

4

( √
λ

2π|x|

) d−2
d

H
(1)
d−2
2

(√
λ|x|

)
,
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where | · | denotes the Euclidean norm in Rd and H
(1)
d−2
2

is a Hänkel function defined

by Bessel functions (e.g. [38]),

H
(1)
d−2
2

(·) = J d−2
2

(·) + i Y d−2
2

(·).

The MFS approximation is a linear combination

(4) u ≈ ũ(x) =

M∑
i=1

βiφj(x),

where

(5) φj = Φλ(· − yj)
are M point sources centered at some points yj that are placed on an admissible

source set Γ̂ which does not intersect Ω̄. By construction, the MFS approximation
(4) satisfies the PDE of the eigenvalue problem (1) and the numerical accuracy
of the solution is related with the accuracy of the approximation of the boundary
condition. As proven in [5], given an admissible source set Γ̂, which can be a Jordan
curve surrounding ∂Ω, we have the following result,

Theorem 1. If Γ̂ is an admissible source set, then

S(Γ̂) = span
{

Φλ(· − y)|Ω : y ∈ Γ̂
}

is dense in Hλ(Ω) =
{
v ∈ H1(Ω) : (∆ + λ)v = 0

}
, with the H1(Ω) topology.

By the Sobolev regularity theorem (cf. [31]), assuming that Ω is C1,2, we know
that the eigenfunctions belong to the Sobolev space H2(Ω) and thus, the density
theorem 1 states that an eigenfunction can be arbitrarily well approximated by a
MFS linear combination (4).

2.2. Parametrization of domains. We will restrict the shape optimization (2)
to a similar problem defined in the class of sets that are finite unions of star-shaped
domains. This restriction is only related with the simplicity of parameterizing a
generic star-shaped domain and not to limitations of the MFS which can also be
applied for non-simply connected domains (cf. [16]). Moreover, using Wolf-Keller
theorem, if some optimizer for a given eigenvalue λk is a finite union of star-shaped
domains, then each of its connected components is a minimizer for a previous
eigenvalue. Thus, we can restrict our attention to star-shaped domains and study
the disconnected case using Wolf-Keller result ([49]).

A 4D star-shaped domain is isometric to the domain whose boundary is param-
eterized by

(6)


x = r(β, θ, φ) sin(β) sin(θ) cos(φ)

y = r(β, θ, φ) sin(β) sin(θ) sin(φ)

z = r(β, θ, φ) sin(β) cos(θ)

w = r(β, θ, φ) cos(β)

where r(β, θ, φ) > 0, for β ∈ [0, π], θ ∈ [0, π] and φ ∈ [0, 2π[.
The Laplace-Beltrami operator on S3 is defined by

∆S3 =
1

sin2 β

∂

∂β
sin2 β

∂

∂β
+

1

sin2 β
∆S2 ,
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where ∆S2 is the Laplace-Beltrami operator on the unitary sphere S2. We define
the family of 4D Hyper-spherical Harmonics (4D HSH), by
(7)

Smnl(β, θ, φ) = cn,l,m sinl(β)Cl+1
n−l (cos(β))Y ml (θ, φ)(β, θ, φ),

n = 0, 1, 2, ...

0 ≤ l ≤ n
−l ≤ m ≤ l

,

β ∈ [0, π]

θ ∈ [0, π]

φ ∈ [0, 2π[

,

where Y ml are 3D spherical harmonics, Cl+1
n−1 are Gegenbauer polynomials and

cn,l,m = 2l+
1
2

√
(n+ 1)Γ(n− l + 1)

πΓ(n+ l + 2)
Γ(l + 1).

The 4D HSH are eigenfunctions of ∆S3 ,

∆S3Smnl = −l(l + 2)Smnl,

and form an orthonormal basis defined on the hyper-sphere, satisfying the normal-
ization condition∫ 2π

0

∫ π

0

∫ π

0

Smnl(β, θ, φ)Sm
′

n′l′(β, θ, φ) sin2 β sin θdβdθdφ = δn,n′δl,l′δm,m′ .

Thus, the function r in (6), which maps the unitary hyper-sphere S3 to the
boundary of a generic domain will be approximated by the expansion,

(8) r(β, θ, φ) ≈ rN (β, θ, φ) =

N∑
n=0

n∑
l=0

l∑
m=−l

αn,l,mS
m
nl(β, θ, φ).

We define the vector V ∈ RP , where P = 1
6 (N + 1)(N + 2)(2N + 3), containing all

the coefficients αn,l,m and the 4D shape optimization procedure will be performed
by searching for optimal vectors V. In this work we considered N = 10, which
implies that the vector V has 506 components.

2.3. Generation of points for the MFS. As mentioned in section 2.1, the MFS
approximation (4) satisfies the PDE of the problem, and thus we can focus on
the approximation of the boundary condition. We will consider a discrete set of
collocation points on the boundary where we will impose the boundary conditions
of the problem. Thus, we need to have an algorithm for distributing points on
the boundary of a 4D domain with boundary defined by (6). Our approach is to
define an almost uniformly distributed set of points on the 4D unitary hyper-sphere
and then map these points to the boundary of the domain taking into account the
function r.

We start with a 3D unitary sphere parameterized by

(9)


x = sin(θ) cos(φ)

y = sin(θ) sin(φ)

z = cos(θ)

with θ ∈ [0, π] and φ ∈ [0, 2π[.
A naive choice could be to consider the points generated with equally spaced

angles θ and φ but it is well known that this procedure does not produce a uniform
distribution of points. Instead, we define an integer number MC corresponding
to the number of collocation points that we would like to place and try to have
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locally the same variation of the angles θ and φ and that the product of these two
quantities is approximately equal to the average area of each point, i.e.

(10) ∆θ ≈ ∆φ, ∆θ∆φ ≈ 4π

MC
⇒ ∆θ ≈ ∆φ ≈

√
4π

MC
.

Next, we fix a meridian, for example corresponding to φ = 0 whose length is π.
Thus, in order to have (10), the number of divisions along this meridian is equal to

d
√

MCπ
4 e (Figure 1-left). Finally, each of the divisions on the meridian corresponds

to a parallel defined by θ = θi. This parallel is a circumference of radius sin(θi)
and, thus has perimeter equal to 2π sin(θi). Again, in order to have (12) we must

place d
√

MCπ
4 sin(θi)e points uniformly distributed on the parallel (Figure 1-right).

In Figure 2 we plot the points generated by our algorithm with MC = 500 (left)

Figure 1. Algorithm for distributing points on a 3D sphere.

and MC = 2000 (right). The extension of this algorithm for the 4D sphere is

Figure 2. Points on the sphere generated by our algorithm with
MC = 500 (left) and MC = 2000 (right).

straightforward. We take the 4D unitary sphere,

(11)


x = sin(β) sin(θ) cos(φ)

y = sin(β) sin(θ) sin(φ)

z = sin(β) cos(θ)

w = cos(β)
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with β ∈ [0, π], θ ∈ [0, π] and φ ∈ [0, 2π[. Again, we try to have locally the
same variation of the three angles and that the product of these two quantities
is approximately equal to the average area of each point, using the fact that the
surface area of a 4D unitary sphere is equal to 2π2,

(12) ∆θ ≈ ∆φ ≈ ∆β, ∆θ∆φ∆β ≈ 2π2

MC
⇒ ∆θ ≈ ∆φ ≈ ∆β ≈ 3

√
2π2

MC
:= C.

Now, the number of 4D parallels corresponding to division along the angle β is
equal to d πC e, and each of these 4D parallels defined by β = βi are 3D spheres of
radius sin(βi). Therefore, we can apply the previous algorithm for 3D spheres. The
surface area of a 3D sphere of radius R is given by 4πR2, and, thus, we use the

previous algorithm to place d 4π sin2(βi)
C e points on each of the 4D parallels.

This distribution of points on the sphere is not optimal and other possibilities
could be considered. Indeed, the problem of distributing N points on the sphere in
such a way that we maximize the minimum distance between any pair of points is
a classical problem known as Tammes problem ([46, 17]). The problem was already
solved for some particular small numbers N (eg. [25, 20, 39]). Another possible
criteria for determining optimal locations for the nodes is to calculate the Fekete
points xi, i = 1, ..., N that minimize the energy,

E(N) =
∑

1≤i<j≤N

1

|xi − xj |
.

In this case, the point xi correspond to charged particles which repel each other
according to Coulomb’s law. Several works addressed the numerical solution of
this problem for an arbitrary number N , even for high dimensional hyper-sphere
([22, 27, 47]). Other approaches for the distribution of nodes could be considered.
For example in [7] it was described an algorithm for distributing nodes on the
boundary of 3D shapes. However, from the computational point of view, all these
approaches are more expensive than the algorithm that was described, which allows
to obtain good distributions of arbitrary number of nodes in less than one second.

In the context of the application of MFS, the most important issue to have highly
accurate results is the choice for the location of the source points yj (eg. [4, 3, 10, 7]).
In this work we will follow the choice proposed in [4, 7]. We take MC collocation
points xi, i = 1, ...,MC on the boundary of the domain and for each of these points
we calculate the outward unitary vector ni, which is normal to the boundary at xi.
The source points are defined by

yi = xi + δ ni,

where δ is a parameter chosen such that the source points remain outside Ω̄. The
numerical results that we will present in Section 3 were obtained with MC ≈ 7000
and δ ≈ 0.2.

2.4. Eigenvalue calculation. The MFS approximation satisfies the PDE of the
eigenvalue problem and thus the approximation for an eigenvalue is determined
searching for the values λ such that there exists a (non zero) MFS function ũ
fitting the null boundary conditions. We used Betcke-Trefethen subspace angle
approach for the eigenvalue calculation (cf. [13]). We distribute randomly some
points zi ∈ Ω, i=1,...,MI , define the matrices AB(λ), AI(λ), where

[AB(λ)]i,j = Φλ(xi − yj) [AI(λ)]i,j = Φλ(zi − yj)
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and

A(λ) :=

[
AB(λ)
AI(λ)

]
and calculate the QR decomposition of the matrix A(λ),[

AB(λ)
AI(λ)

]
=

[
QB(λ)
QI(λ)

]
R(λ).

Then, we study the evolution of the eigenvalue of QB(λ) with smallest magnitude,
which will be called σ(λ). The approximations for the eigenvalues of the Dirichlet-
Laplacian are the local minima of σ(λ) (cf. [13]). In Figure 3 we plot σ(λ) for
λ ∈ [5, 10] obtained for the 4D ball with unit volume and we can locate three
eigenvalues in this interval. The method is not much sensitive to the choice of
interior points MI and in all the numerical simulations we fixed MI = 50. In

20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3
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0.5

0.6

0.7

0.8

0.9

1

λ

σ
(λ

)

Figure 3. Plot of σ(λ) for the 4D ball with unit volume.

Figure 4 we show some results for the convergence to the first eigenvalue, as a
function of the number of collocation points MC , and three different choices of
δ. We can observe that the method has fast convergence and with MC = 3500 we
obtain relative errors close to machine level precision. Moreover, the best results are
obtained for larger parameter δ, which typically happens for the ball (eg. [4, 10, 7]).

2.5. Optimization algorithm. A very useful mathematical tool for solving shape
optimization problems involving Dirichlet eigenvalues of the Laplacian is the Hada-
mard formula of derivation with respect to the domain (eg. [31]). Consider an
application Ψ(t) such that Ψ : t ∈ [0, T [→ W 1,∞(Rd,Rd) is differentiable at 0
with Ψ(0) = I, Ψ′(0) = V , where W 1,∞(Rd,Rd) is the set of bounded Lipschitz
maps from Rd into itself, I is the identity and V is a deformation field. Following
the notation of [31], we will denote by Ωt = Ψ(t)(Ω), λk(t) = λk(Ωt) and by uk an
associated normalized eigenfunction in H1

0 (Ω). The domains considered are smooth
(see section 2.2), thus, if we assume that the eigenvalue λk(Ω) is simple then

(13) λ′k(0) = −
∫
∂Ω

|∇uk|2 V.ndσ.
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Figure 4. Convergence results for the first eigenvalue of the 4D ball.

We also know the derivative of the volume. Define the function V ol(t) = |Ωt|, then,
we have

(14) V ol′(0) =

∫
∂Ω

V.n dσ.

Now we note that we know that given an homothety of ratio t, we have,

λk(tΩ) =
λk(Ω)

t2

and

|tΩ| = t4|Ω|,
thus, instead of the optimization problem (2), we can study an equivalent problem
which avoids the geometrical constraint

(15) λ?k = Min
{
λk(Ω)|Ω| 12 : Ω ⊂ R4

}
, k = 1, 2, ....

It is well known that typically the minimizers correspond to domains for which the
optimal eigenvalue is multiple and we must deal with the non-smoothness of the
cost function,

Fk(V) = λk(Ω)|Ω| 12 ,
where Ω is obtained from V, by using (6) and (8). Note that the directional deriva-
tives of the eigenvalues with respect to a given perturbation field exist even in
the case of multiple eigenvalues (eg. [31]). We will denote by gk ∈ RP , the shape
gradient of Fk, that is a vector whose i-th component is the shape derivative of
Fk with respect to the i-th component of the vector V and split the optimization
procedure in two steps. At first stage, we apply the quasi -Newton method LBFGS
to the minimization of Fk (eg. [36]). Once we are close to a multiple eigenvalue,
that is Fk-Fk−1 is small enough, we switch the way we calculate a search direction
for performing a line search. For a given (unitary) vector v ∈ RP and small t we
have

Fk(V + tv) ≈ Fk(V) + t(gk.v),
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where (gk.v) is the directional derivative of Fk on the direction defined by v. In a
similar fashion we have

Fk−1(V + tv) ≈ Fk−1(V) + t(gk−1.v).

We want to decrease both Fk and Fk−1, thus, v must be such that (gk.v) and
(gk−1.v) and both negative and the corresponding absolute values are as large as
possible. Thus, it is natural to define the search direction v∗ as the solution of the
optimization problem

(16) min
v∈RP :‖v‖=1

max (gk−1.v, gk.v) .

The generalization for an eigenvalue with multiplicity m is straightforward and
instead of (16), the optimal search direction v∗ solves

(17) m∗ = min
v∈RP :‖v‖=1

max (gk−m+1.v, gk−m+2.v, ..., gk.v)

Another approach would be to use the formula for the derivative of a multiple
eigenvalue (eg. [28, 45]). The optimization procedure is summarized in Algorithm 1.

3. Numerical results

Analyze geometrical properties of 4D shapes requires a special attention. In this
spectral theory context, we focus on the identification of symmetries. Actually, the
question of the existence of one or many symmetries of optimal profiles minimizing
eigenmodes is one of the crucial issue in spectral optimization. This interest is
motivated by the fact that symmetries are strongly connected to the multiplicity of
eigenvalues in a non trivial way. We describe below a simple numerical approach
that we developed to deduce symmetries of computed optimal shapes by algorithm
1. The following post processing is completely independant of previous optimization
and could be used in a different context to identify orthogonal symmetries.

Due to the spherical parametrization (6), all the obtained profiles are star-shaped
This fact makes the identification of symmetries easier: consider a sampling of
the unite sphere S3 associated to a finite collection of parameters (βi, θi, φi). For
every optimal domain Ω, we computed an analytic radius function rΩ(β, θ, φ) which
associates to (βi, θi, φi) by (6) a list of points (Pi) of ∂Ω. Actually, since Ω is star-
shaped, this map XΩ from S3 to ∂Ω defined by the system (6) is one to one.
Consider now sH the symmetric transformation with respect to an hyperplane H.
That is sH(x) = x+ 2 ∗ (pH(x)− x) where pH stands for the orthogonal projection
on H. If H is an hyperplane of symmetry of Ω, we must have

(18) ||sH(XΩ(β, θ, φ))|| = rΩ(X−1
Ω (sH(XΩ(β, θ, φ)))).

We used previous equality to identify numerically the hyperplane of symmetries
of a given shape. Actually, we define a simple cost function on the set of hyperplanes
of R4, associated to the sampling (βi, θi, φi), by

(19) F (H) =
∑
i

[
||sH(XΩ(βi, θi, φi))|| − rΩ(X−1

Ω (sH(XΩ(βi, θi, φi))))
]2
.

We parametrize the space of hyperplanes by their implicit equations. Thus, every
vector ν ∈ [−1, 1]5\{0} represents an hyperplane and two such vectors represent
the same hypeprplan if and only if their coordinates are proportional. Notice that
problem (19) is of course not convex but has a few parameters. Thus, it is possible
to obtain a reasonably good approximation of an optimal H by a global direct
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Algorithm 1 Optimization procedure

1: Require V, tol1 ∈ (0, 1), tol2 ∈ (0, 1), imax ∈ N, jmax ∈ N
2: i← 0
3: Calculate Fk and gk
4: Repeat
5: i← i− 1.
6: Do a step of the LBFGS algorithm, do a linesearch and update V and Fk
7: Calculate gk
8: if ‖gk‖ < tol1
9: then stop

10: else
11: Calculate Fk−1

12: if Fk −Fk−1 < tol2
13: then go to step 2
14: end if
15: end if
16: Until i < imax
17:

18: step 2:
19: j ← 0
20: m← 2
21: Calculate gk−1

22: Repeat
23: F prev ← Fk.
24: j ← j − 1.
25: Calculate a search direction v∗ by solving (17)
26: Do a linesearch and update V and Fk
27: Calculate Fk−1,..., Fk−m+1 and Fk−m
28: if Fk−m+1 −Fk−m < tol2
29: then m← m− 1.
30: end if
31: Calculate gk, gk−1,..., gk−m+1

32: Until j < jmax or Fk −F prev < tol1

search algorithm which only requires cost function evaluations. In the four test
cases under consideration below, it has been possible to obtain a first hyperplane
H which is an approximated symmetric hyperplane for the set Ω up to a precision
of 0.01 for 1000 fixed sampling parameters (βi, θi, φi). This means that every term
in the sum (19) is smaller than 0.01. Once a first hyperplane H1 (described by ν1)
of symmetry has been identified, we tried to complete ν1 into an orthonormal base
for which every hyperplane of coordinate is as close as possible from an hyperplane
of symmetry. To that purpose, we consider a second optimization problem which
is the minimization of F among vectors of [−1, 1]5\{0} which are orthogonal to ν1.
A normalization of that vector defines the second vector or our base. By induction,
we define in such a way an orthogonal basis which has been used to obtain the
pictures of figures 5 and 6. More precisely, we first rotated every computed shape
with respect to its associated orthogonal basis. In a second step, we estimated the
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width of the shape in the direction given by the first vector of that basis. Since
we always found at least one axis of symmetry in our experiments, this first basis
direction is always an axis of symmetry for the computed optimal shape. Finally,
we sampled uniformly the width in every four direction of the basis to obtain the
orthogonal cuts given in figures 5 and 6. Every row corresponding to one direction.

Figure 5. Orthogonal cuts of the optimal shapes minimizing the
third and the fourth Dirichlet eigenvalues.

i multiplicity λ?i λi(B)
3 2 53.95 56.50
4 3 57.06 58.59
5 4 58.59 58.59
6 5 67.06 67.06
7 4 76.28 74.57
8 4 79.17 81.39

Table 1. Optimal values for λ∗i and the corresponding multiplicity.

4. Discussion of our numerical results

The minimizers of λ1 and λ2 are known to be (respectively) a ball and two balls
of the same volume (cf. [24, 34, 44, 35]). We considered the minimization of λi, for
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Figure 6. Orthogonal cuts of the optimal shapes minimizing the
7th and 8th Dirichlet eigenvalues.

i = 3, 4, ..., 8. The results are summarized in Table 1. The last column shows the
best results obtained for unions of balls. The results presented in Table 1 show that
our numerical optimizer for λ3 has smaller third eigenvalue than the union of three
identical balls, which is the best union of balls for this eigenvalue. These numerical
estimates provide a counterexample to the Conjecture ’Open Problem 8’ in [31].
Our results also suggest that the minimizer for λ4 is a nontrivial connected domain,
while the fifth eigenvalue is minimized by the ball and the sixth is minimized by a
union of two balls of different volumes, in such a way that the first eigenvalue of
the smallest ball is equal to the fifth eigenvalue of the largest ball. To conclude this
numerical study, let us point out a striking fact: as in the three dimensional case,
cuts of optimal profile in four dimension display a strong similarity with optimal
domains in lower dimension. For instance, the computed optimal shape for λ3 in
4D has cuts (see figure 5) which look very close from the optimal shape which is
suspected to minimize λ3 under volume constraint in three dimension (see the left
picture in figure 7). Analogously, some cuts of the computed optimal shape for λ8 in
4D have a profile very similar to the 3D optimal shape associated to 6th eigenvalue
(see the right picture in figure 7). We think that a better understanding of these
dimensional correlations would lead to deep and new results in the area.
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