
HAL Id: hal-02009443
https://hal.univ-grenoble-alpes.fr/hal-02009443v1

Submitted on 6 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Increasing the robustness and applicability of
full-waveform inversion: An optimal transport distance

strategy
Ludovic Métivier, Romain Brossier, Quentin Mérigot, Edouard Oudet, Jean

Virieux

To cite this version:
Ludovic Métivier, Romain Brossier, Quentin Mérigot, Edouard Oudet, Jean Virieux. Increasing the
robustness and applicability of full-waveform inversion: An optimal transport distance strategy. Lead-
ing Edge, 2016, 35 (12), pp.1060-1067. �10.1190/tle35121060.1�. �hal-02009443�

https://hal.univ-grenoble-alpes.fr/hal-02009443v1
https://hal.archives-ouvertes.fr


 

Full Waveform Inversion: Optimal Transport 
 

 

 

Increasing the robustness and applicability of full waveform 
inversion: an optimal transport distance strategy 

 
L. Métivier [1,2], R. Brossier [2], Q. Mérigot [3], E. Oudet [1], J. Virieux [2]  
[1] Laboratoire Jean Kuntzmann (LJK), Univ. Grenoble Alpes, CNRS, France  

[2] ISTerre, Univ. Grenoble Alpes, France  
[3] Laborartoire CEREMADE, Univ. Paris-Dauphine, CNRS, France 

 

7 October 2016 

 

Full waveform inversion starts being used as a standard stage of the seismic imaging 

workflow, at the exploration scale, for the reconstruction of high resolution wave velocity models. 

However, its successful application still relies on the estimation of an accurate enough initial 

velocity model, as well as on the design of a suitable hierarchical workflow, allowing to feed the 

inversion process progressively with data. These two requirements are mandatory to avoid the cycle 

skipping or phase ambiguity problem when comparing observed and synthetic data. This difficulty 

is due to the definition of the full waveform inversion problem as the least-squares minimization 

of the data misfit. The resulting misfit function has local minima which corresponds to the 

interpretation of the seismic data up to one or several phase-shifts. In this article, we review an 

alternative formulation of full waveform inversion based on the optimal transport distance we have proposed 

in recent studies. We propose to use a particular instance of the optimal transport problem, which is 

adapted to the interpretation of real seismic data, and for which we design an efficient low-

complexity numerical strategy. Numerical results in 2D and 3D configurations (BP 2004, Chevron 

2014 benchmark model, SEG/EAGE overthrust model) show that this reformulation should yield 

a more convex misfit function, less prone to cycle skipping. In this study, we present a simple 

illustration on the Marmousi model which illustrates how this new distance strongly relaxes the 

requirement on the initial model design. Starting from a rather simplistic approximation of the 

initial model, the method is able to reconstruct a meaningful estimation of the Marmousi model, 

while the standard least-squares formulation is trapped into a local, meaningless minimum.  
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1 Introduction 
Full waveform inversion (FWI) is a high resolution seismic imaging technique, based on 

the non-linear iterative minimization of the misfit between calculated and observed data. The 
simple formalism of the method makes it amenable for the estimation of any subsurface 
mechanical parameters influencing the wave propagation, such as P- and S- wave velocities, 
density, attenuation, or anisotropy parameters. Nonetheless, both in industrial and academic 
applications, FWI is mainly used for the estimation of the wave velocities (Fichtner et al., 2010; 
Tape et al., 2010; Peter et al., 2011; Sirgue et al., 2010; Plessix and Perkins, 2010; Zhu et al., 
2012; Warner et al., 2013; Vigh et al., 2014; Borisov and Singh, 2015; Operto et al., 2015). In 
addition, the successful application of FWI on real data requires a kinematically compatible initial 
estimation of the velocity model (computed beforehand through well-established techniques, such 
as time tomography, velocity analysis, and/or geological interpretation) as well as the design of a 
specific hierarchical workflow, to interpret the data progressively during iterations, and to converge 
to a meaningful subsurface model estimation (Virieux and Operto, 2009). 

One current trend in FWI is to improve the reconstruction of physical parameters by 
accounting for a more realistic physics of the wave propagation, including viscosity, elasticity, and 
anisotropic effects. In particular, this leads to a multi-parameter inversion which should provide 
much more detailed and reliable characterization of the subsurface, yielding ultimately the 
possibility to constrain micro-scale parameters through downscaling strategies (Dupuy et al., 
2016). Another line of investigation consists in increasing the range of applicability of FWI, 
mitigating the dependence on ad-hoc initial model build-up, and on the design of a suitable 
hierarchical workflow. The optimal transport strategy we promote in this study is related to this 
second line of investigation. 

The main reason for the limitation in the applicability of FWI is related to what is usually 
referred to as cycle skipping, or phase ambiguity. In standard FWI, the oscillatory seismic data is 
matched in the least-squares sense where each observed sample is compared to the synthetic 
sample at the same position in time and/or in space. This choice is problematic: if the initial model 
predicts the signal with a shift larger than half a period, minimizing the least-squares distance 
between observed and calculated data amounts to match the observed data up to one or several 
phase shifts. This yields an incorrect estimation of the subsurface model which cannot be 
overcome through iterations: the optimization is locked into a local minimum. An illustration of this 
phenomenon, where the seismic data is considered schematically as a sinusoidal temporal signal, 
is presented in Figure 1. Overcoming this difficulty has been a recurrent objective since the 
introduction of FWI by Lailly (1983) and Tarantola (1984). Increasing the accuracy of the initial 
model through high resolution tomography methods, as well as designing hierarchical workflows 
focusing first on low frequency components of the data, early-arrivals, and/or short offsets, have 
been initial strategies proposed to challenge this issue (Kolb et al., 1986; Bunks et al., 1995; Pratt, 
1999; Shipp and Singh, 2002; Sirgue and Pratt, 2004; Wang and Rao, 2009). They are still the 
ones implemented for real data applications to guarantee the success of FWI. This careful tuning 
is case-dependent, therefore, it reduces the flexibility of FWI, and requires an expert usage of FWI 
and pre-processing tools. 

Since the cycle skipping issue results from the use of the least-squares distance to match 
the seismic data, numerous studies have been proposed to modify this distance within the FWI 
workflow: cross-correlation of observed and predicted data (Luo and Schuster, 1991), separation 
of envelope and phase (Fichtner et al., 2008; Bŏzdag et al., 2011), deconvolution approaches 
(Luo and Sava, 2011; Warner and Guasch, 2014) are instances of such attempts. Images-domain 
techniques have also been promoted for reflected waves: the velocity accuracy is probed through 
the analysis of the coherency of migrated images computed in an extended-domain. These 
images are built upon a generalized image condition, which introduces a fictitious dimension (time-
lag or subsurface offsets, for instance) along which the image should be focused at zero if the 
velocity is correct (see Symes, 2008, for an overview). All these methods are currently under 



development: none has yet been proved to overcome definitely the cycle-skipping issue. Also, the 
extension to 3D framework of these strategies is not always straightforward. This is especially the 
case for image-domain techniques, due to the high computational cost associated with a higher 
dimensional model space when repeating the construction of extended-domain images. 

In this study, we review an alternative modification of the misfit function, based on the optimal 

transport distance, we have proposed in [Métivier et al, 2016a,b]. This distance comes from a very 
active research field in mathematics, as testified by the number of textbooks published on this 
topic recently (Villani, 2003, 2008; Ambrosio et al., 2008; Santambrogio, 2015). Our proposition is 
inspired by emerging applications of optimal transport in image processing (see Ferradans et al., 
2014; Lellmann et al., 2014, and references therein). In Section 2, we present what is this distance, 
why its properties make it a suitable choice for increasing the robustness of FWI, and how it can 
be implemented efficiently, in 2D and 3D configurations, within a standard FWI workflow. In 
Section 3, we present numerical results on the synthetic Marmousi model emphasizing the interest 
of this approach. More realistic 2D applications on the BP 2004 salt model and the benchmark 
2014 Chevron data are presented in Métivier et al. (2016a), while a 3D application on the 
SEG/EAGE overthrust model is proposed in Métivier et al. (2016b). Conclusion and perspectives 
are given in Section 4. 

 
 

Figure 1: Schematic example of the cycle 
skipping/phase ambiguity issue on 
sinusoidal signals. As soon as the initial 
shift is larger than half a period of the 
signal, the fit of the signal using a least-
squares distance is performed up to one 
or several phase shifts. On may try to fit 
the n + 1 dashed wriggle of the top signal 
with the n continuous wriggle of the 
middle signal moving to the wrong 
direction. The bottom dashed signal 
predicts the n wriggle in less than half-
period leading to a correct updating 
direction (from Virieux and Operto, 2009). 
 
 

 

2 Optimal transport for full waveform inversion 
 

2.1 What is optimal transport? 
Optimal transport finds its roots back in 1780, in the work of the French engineer Gaspard 

Monge, from “École des Ponts". Monge supervised a bridge building site. Piles of sand needed to 
be displaced to fill in holes. Monge expressed mathematically how this displacement could be 
achieved optimally, to minimize the effort of the workers. This was the first formulation of the 
optimal transport problem. More than 150 years later, a modern and suitable mathematical 
formulation for this problem was introduced by Kantorovich (1942), as a minimal relaxation of the 
Monge problem (when the Monge problem has a solution, the Kantorovich formulation provides 

this solution). In his description, the initial piles can be associated with 𝑁 quantities 𝑝𝑖, located 

at points 𝑥𝑖, for 𝑖 = 1, … , 𝑁. The configuration of the holes is associated with 𝑀 quantities 𝑞𝑗, 

located at points 𝑦𝑗, for 𝑗 = 1, … , 𝑀. An important assumption is made: the total quantity of sand 



requested to fill in the holes 𝑞𝑗 is exactly equal to the total quantity of available sand 𝑝𝑖. This 

corresponds to the mass conservation assumption 

∑ 𝑝𝑖

𝑁

𝑖=1

= ∑ 𝑞𝑗

𝑀

𝑗=1

.     (1) 

Kantorovich considers the ensemble of displacements making possible to fill the holes with the 
quantities 𝑞𝑗 from the sand piles 𝑝𝑖. These displacements can be represented as matrices with 

𝑁 rows and 𝑀 columns. An entry 𝛾𝑖𝑗 tells how much from the pile 𝑝𝑖 should be moved to fill in 

the hole 𝑞𝑗 . Mapping the ensemble of piles 𝑝 onto the holes 𝑞 requires that the sum of the 

elements of the 𝑖𝑡ℎ row of 𝑗 is equal to 𝑝𝑖, while the sum of the elements of the 𝑗𝑡ℎ column of 

𝛾𝑖𝑗 is equal to 𝑞𝑗. A matrix satisfying this assumption is called a “transport plan". An example of 

such transport plan is presented in Figure 2. The matrix representing the transport plan 
schematized in Figure 2 is  

𝛾 = (
3 0 2 0
0 0 0 1
0 2 0 0

).     (2) 

The matrix 𝛾 is a transport plan as the sum of the elements of its rows are equal to 𝑝1, 𝑝2 and 

𝑝3 respectively, while the sum of the elements of its columns are equal to 𝑞1, 𝑞2, 𝑞3 and 𝑞4 

respectively. The interpretation of this transport plan is as follows. From the sand pile 𝑝1, three 

mass units should be move to 𝑞1, while two mass units should be move to 𝑞3. The sand pile 𝑝2 
and 𝑝3 should be moved integrally to 𝑞4 and 𝑞2 respectively. 
 
 

 
 
 
 
 
 
Figure 2: An example of transport plan for the solution of 

the transport problem between a distribution 𝑝1, 𝑝2, 𝑝3 
toward a distribution 𝑞1, 𝑞2, 𝑞3, 𝑞4. We may consider that 

the distribution 𝑝 is the discrete observed data and that the 

distribution 𝑞 is the discrete synthetic data. 
 
 
 
 
 
 
 
 

 

There is an infinity of possible transport plan which allows to move the sand piles 𝑝 to the 

holes 𝑞. The optimal transport problem consists in computing the unique transport plan which 
minimizes a function measuring the total displacement cost. This cost is the sum of the elementary 
costs associated with the elementary displacements. The cost of an elementary displacement 

between 𝑥𝑖 and 𝑦𝑗  is measured as the product between the mass which is actually transferred 



𝛾𝑖𝑗, multiplied by the distance between 𝑥𝑖 and 𝑦𝑗. This measure implies that a balance has to be 

found between the amount of mass which is transported, and the distance on which it is 
transported. Mathematically, this is formulated as the linear programming problem 

 

min
𝛾𝑖𝑗

∑ 𝛾𝑖𝑗‖𝑥𝑖 − 𝑦𝑗‖

𝑖𝑗

, subject to ∑ 𝛾𝑖𝑗 = 𝑝𝑖,

𝑗

∑ 𝛾𝑖𝑗 = 𝑞𝑗 ,

𝑖

      (3)   

where the expression ‖𝑥𝑖 − 𝑦𝑗‖ denotes a distance between 𝑥𝑖  and 𝑦𝑗  (often the Euclidean 

distance). 

2.2 Why using an optimal transport distance for full waveform inversion? 
The reason why optimal transport can be an interesting tool is that the solution of the linear 

programming problem (3) defines a distance between the distributions 𝑝 and 𝑞. This distance 
can be used to measure the discrepancy between any two discrete quantities satisfying the mass 
conservation assumption (1). 

Engquist and Froese (2014) illustrates the interesting behavior of this distance in a simple 
numerical experiment, where the optimal transport distance between time-shifted Ricker signals 
is computed. After discretization, two Ricker signals can be considered as two discrete 

distributions 𝑝 and 𝑞. The distance between the points 𝑥𝑖  and 𝑦𝑗 where are located masses 𝑝𝑖  

and 𝑞𝑗 is measured in a single dimension, which corresponds to the time axis. As the Ricker 

signal is not positive, some of the mass 𝑝𝑖  and 𝑞𝑗 have negative values. While this could be 

counter-intuitive to define negative mass, it might not be a stringent difficulty for computing the 

optimal transport distance between the distributions 𝑝  and 𝑞 . Engquist and Froese (2014) 
propose to split the Ricker signals into their positive and negative parts, and to define the optimal 
transport distance between these signals as the sum of two optimal transport distances: the first 
computed on the positive part of the Ricker signals, the second computed on the opposite of their 
negative parts. Working with the dual formulation of the optimal transport distance (which is 
defined in the next section), yields also the possibility to consider directly positive and negative 
mass. This is the strategy we employ. Finally, as the Ricker signals are only shifted in time, the 

distribution 𝑝  and 𝑞  satisfy the mass conservation assumption (1). Therefore, the optimal 
transport distance between two shifted in time Ricker signals can be computed. 
 

 
Figure 3: Computation of the 
misfit function between two 
time-shifted Ricker signal 
depending on the time shift, 
using a least-squares 
distance and an optimal 
transport distance. While the 
least-squares distance yields 
a non-convex misfit function 
with two local minima aside 
the global minimum at zero 
time-shift, the optimal 
transport distance yields a 
perfectly convex misfit 
function (from Engquist and 
Froese, 2014). 

 



When a standard least-squares norm is used, the distance between the Ricker signals with 
respect to the time shift presents two local minima aside the global minimum. This is an illustration 
of cycle skipping: minimizing the misfit between these two signal starting from a too large time 
shift would result in a misinterpretation of the signal. Conversely, when the optimal transport 
distance is used, the distance with respect to the time shift is perfectly convex: a single minimum 
exists. This is illustrated in Figure 3. 

How can we interpret this result? The definition of optimal transport is the key: the distance 
between the two signals is the minimum effort required to transport one signal onto the other. This 
effort depends on the distance between points from which the mass has to be exchanged. 
Therefore, as soon as the time shift increases, the transportation effort increases. 

 
2.3 What are the difficulties for using an optimal transport distance for full 

waveform inversion? 
Using an optimal transport distance, beyond simple Ricker signals, for real seismic data, 

is not straightforward. The first main difficulty is related to the mass conservation assumption (1). 
This assumption cannot be guaranteed for real seismic data. Indeed, there is no reason for the 
mass distributions coming from the discretization of observed and calculated seismic traces to 
satisfy this assumption. Seismic events recorded in the observed data may not be predicted by 
the calculated data, resulting in this disparity. This is a serious difficulty. If this assumption is not 
satisfied, the Kantorovich problem has no solution. In the context of exploration scale real seismic 
data, the important density of sources and receivers, yielding large number of seismic traces, also 
raises the question how the optimal transport should be used to measure the misfit between 
observed and calculated data. A straightforward use consists in considering each seismic trace 
independently and solve as many 1D optimal transport problem as the number of traces. In this 
framework, the resulting misfit functions should be the sum of the optimal transport misfit 
computing for each trace.  

However, optimal transport yields the possibility to perform more interesting multi-
dimensional comparisons. Seismic imaging practitioners have used over year and year 
representations of the seismic data in panels allowing to identify clearly the type of waves and the 
seismic events which have been recorded. The identification of these events is performed through 
the analysis of their coherency in receiver-gather or shot-gather panels. Interestingly, wave 
velocity perturbations are responsible in this case for shifting these events not only in the time 
coordinate, but also in the receiver or shot coordinate. Accounting robustly for the shifts between 
these events can thus be achieved by defining an optimal transport distance in a multi-dimensional 
space: for time-domain FWI, in 2D configurations, 2D transport problems should be considered 
(time-axis + 1D receiver array), while in 3D configurations, 3D transport problems should be 
considered (time-axis + 2D receiver network). An additional dimension along the source dimension 
could be also considered. However, this would break the standard parallelism on shots commonly 
used for time-domain FWI implementations. For frequency-domain FWI, however, in 2D 
configuration, 2D transport problems should be considered (1D source array+ 1D receiver array), 
while in 3D, 4D transport problems could be considered: (2D source network+ 2D receiver 
network). Let us note that, for frequency-domain application, the data has to be split into its real 
part and imaginary part: the resulting distance should be computed as the sum of the optimal 
transport distance computed separately on these two quantities. This ability to account for the 
coherency of the seismic events not only in the time dimension but in the whole gather domain is 
a key feature of the optimal transport distance. 

In practice, the discretization of 2D or 3D realistic scale shot gathers yields mass 
distributions that can reach several tenths of millions of elements and beyond. This raises another 
important difficulty. Standard algorithms for solving linear programming problems such as the 
problem (3) have a high computational cost, not adapted to this problem scale. For instance, all 



known methods for solving the problem (3) exactly, assuming the data are described by integers, 

have a computational complexity large than 𝒪(𝑁2), where the total number of discrete samples 

representing a gather is denoted by 𝑁 . For realistic scale applications, algorithms in linear 

complexity 𝒪(𝑁) or quasilinear complexity 𝒪(𝑁𝑙𝑜𝑔𝑁) are almost mandatory. 

Our contribution is the design of a method which is able to overcome these difficulties of 
seismic imaging; namely a strategy to estimate an optimal transport distance between mass 
distribution which do not satisfy the mass conservation assumption, with a computational 
complexity at most quasilinear. 

 

2.4 What is the solution we propose? 
The method we propose consists in solving a modified version of the Kantorovich problem. 

This strategy is explained in details in either an article oriented to the geophysical community 
(Métivier et al., 2016a) or an article oriented to the applied-mathematics community (Métivier et 
al., 2016b). Only the main ideas, on which this strategy is based, are presented here in order to 
identify salient features of this new distance definition. While the problem (3) is referred to as the 

primal problem, the associated dual problem can be expressed as finding values 𝜑𝑖  at each 
discrete point of the dataset subject to inequality constraints: 

max
𝜑𝑖

∑ 𝜑𝑖(𝑑𝑜𝑏𝑠,𝑖 − 𝑑𝑐𝑎𝑙,𝑖),   |𝜑𝑖 − 𝜑𝑗| ≤ ‖𝑥𝑖 − 𝑥𝑗‖

𝑖

, ∀𝑖, 𝑗 = 1, … , 𝑁.        (4) 

Please note that we compute the difference of observed and calculated values at the same point 

𝑖 while the inequality constraint is non-local with the two indexes 𝑖 and 𝑗. The solution of this dual 
problem (4) is equivalent to the solution of the primal problem (3). In other words, the distance 
between the observed data 𝑑𝑜𝑏𝑠 (corresponding to the previously introduced distribution 𝑝) and 

the data 𝑑𝑐𝑎𝑙  (corresponding to the previously introduced distribution 𝑞 ) computed as 
solution of these two problems is the same. This very important duality result is due to Kantorovich 
(a complete proof can be found in Villani (2003) or Santambrogio (2015)). Exactly as for the primal 
problem, if the mass conservation assumption (1) is not satisfied, the dual problem has no solution. 

Our first contribution is to recognize that, however, this can be relaxed through the addition 

of the constraints |𝜑𝑖| ≤ 𝑐 into the dual problem, where the quantity 𝑐 is a user defined constant 

quantity. The modified dual transport problem we consider is thus 

max
𝜑𝑖

∑ 𝜑𝑖(𝑑𝑜𝑏𝑠,𝑖 − 𝑑𝑐𝑎𝑙,𝑖), |𝜑𝑖 − 𝜑𝑗| ≤ ‖𝑥𝑖 − 𝑥𝑗‖

𝑖

, ∀𝑖, 𝑗 = 1, … , 𝑁, |𝜑𝑖| ≤ 𝑐, ∀𝑖 = 1, … , 𝑁.  (5) 

This dual transport problem accepts a solution when the mass conservation assumption (1) is not 

satisfied. The problem (5) defines the Kantorovich-Rubinstein norm ‖𝑑𝑜𝑏𝑠 − 𝑑𝑐𝑎𝑙‖𝐾𝑅 (Lellmann 

et al., 2014). 
As a second step, we focus on the particular case where, instead of the Euclidean distance 

‖𝑥𝑖 − 𝑥𝑗‖, we use the ℓ1 distance we denote by |𝑥𝑖 − 𝑥𝑗| to measure the distance between point 

𝑥𝑖 and 𝑥𝑗. For a 2D dataset, if we denote 𝑥𝑖
1and 𝑥𝑖

2 the two components of the point 𝑥𝑖, we 

would have 

‖𝑥𝑖 − 𝑥𝑗‖ = √(𝑥𝑖
1 − 𝑥𝑗

1)
𝟐

+ (𝑥𝑖
2 − 𝑥𝑗

2)
𝟐

, |𝑥𝑖 − 𝑥𝑗| = |𝑥𝑖
1 − 𝑥𝑗

1| + |𝑥𝑖
2 − 𝑥𝑗

2|.      (6) 

The transport problem we consider is thus 

max
𝜑𝑖

∑ 𝜑𝑖(𝑑𝑜𝑏𝑠,𝑖 − 𝑑𝑐𝑎𝑙,𝑖), |𝜑𝑖 − 𝜑𝑗| ≤ |𝑥𝑖 − 𝑥𝑗|

𝑖

, ∀𝑖, 𝑗 = 1, … , 𝑁, |𝜑𝑖| ≤ 𝑐, ∀𝑖 = 1, … , 𝑁. (7) 

The complexity of the transport problem (7) remains important: even if the size of the variable 𝜑 

is 𝑁, the number of linear inequalities constraints to be satisfied is in 𝒪(𝑁2). The interest for 

focusing on the Kantorovich-Rubinstein norm associated with the ℓ1 distance is related to the 

Ludovic Metivier
J'ajouterais (pour le reviewer 1): 

Please note that in this context x_i denotes a position in the calculated or observed datasets. For a 1D time signal, it corresponds to a time index. For a 2D shot-gather, it corresonds to a couple receiver/time indices. 



fact that an equivalent formulation can be derived, involving only 𝒪(𝑁) linear constraints. This 

drastic reduction comes from a particular feature of the ℓ1 distance (also known as Manhattan 

distance), which allows to satisfy the linear constraints only locally. Satisfying these 𝒪(𝑁) local 

constraints is equivalent to satisfy the 𝒪(𝑁2)  global constraints. The following equivalent 

formulation can thus be deduced from (7), expressed as 

max
𝜑𝑖

∑ 𝜑𝑖(𝑑𝑜𝑏𝑠,𝑖 − 𝑑𝑐𝑎𝑙,𝑖), |𝜑𝑖 − 𝜑𝑖+1| ≤ |𝑥𝑖 − 𝑥𝑖+1|

𝑖

, ∀𝑖 = 1, … , 𝑁, |𝜑𝑖| ≤ 𝑐, ∀𝑖 = 1, … , 𝑁. (8) 

The problem (8) is a modified dual optimal transport problem, which has a solution even when the 
mass conservation assumption (1) is not satisfied, and which can be expressed as a linear 

programming problem of size 𝑁  with 𝒪(𝑁)  linear inequality constraints. This reformulation 

opens the way to the design of efficient numerical strategies for its solution. To this purpose, the 
main idea we exploit is to recast it as a non-smooth optimization problem, which can be solved 
efficiently through a proximal splitting algorithm named SDMM (Combettes and Pesquet, 2011). 
Using this method, we design an algorithm for approximating the solution of (8) with linear 

complexity 𝒪(𝑁)  or quasilinear complexity 𝒪(𝑁𝑙𝑜𝑔𝑁) , allowing to consider the large-scale 

problems imposed by full waveform inversion, both for 2D and 3D data panels associated with 2D 
and 3D configurations. The full procedure is described in Métivier et al. (2016b) 
 

An illustration of the use of this optimal transport distance on the example of the shifted 
in time Ricker signal is provided in Figure 4. Compared to the least-squares distance, a single 
minimum is recovered. However, compared to the standard optimal transport distance used by 
Engquist and Froese (2014), the convexity of the misfit function with respect to the time shift is 

lost. This is probably due to the use of the ℓ1 norm to measure the spatial distance between 

points, even if this remains to be proved theoretically. This loss of convexity could appear as a 
penalizing feature; however, for the practical applications we have considered, this does not 
seem to have an impact on the convergence of the local optimization solvers. 
 

Figure 4: Computation of the misfit 
function between two time-shifted 
Ricker signal depending on the time 
shift, using a least-squares distance 
(black) and the Kantorovich-Rubinstein 
distance (red). We recover a single 
minimum. However, compared to the 
optimal transport distance used by 
Engquist and Froese (2014), the 
convexity of the misfit function is lost at 
the minimum. This is due to the 
particular formulation of the 
Kantorovich Rubinstein problem which 

is based on a ℓ1  measure of the 

distance between points. 
 

 

3 Implementation and numerical results 
 

3.1 Implementation: gradient computation 
The FWI problem is solved through local optimization techniques, which are based on the 

computation of the gradient of the misfit function. Modifying the misfit function thus requires to 



examine how to compute its gradient. Standard implementation of FWI are based on the adjoint-
state approach: the gradient is computed as the zero-lag correlation between incident and adjoint 
wavefields. The adjoint wavefields are computed as the backpropagation of residuals at the 
receivers location (Plessix, 2006). It is established that a modification of the misfit function only 
induces a modification of the adjoint source definition (see Brossier et al. (2010); Luo and Sava 
(2011) for instance). The question for us is thus to determine what are the residuals associated 
with the optimal transport misfit function (8) which will act as adjoint source. 
 

The computation of the misfit function requires the solution of the problem (8). The misfit  

function is the value of the quantity ∑ 𝜑�̅�(𝑑𝑜𝑏𝑠,𝑖 − 𝑑𝑐𝑎𝑙,𝑖)𝑖  where the function 𝜑 maximizes this 

quantity under the constraints which have been discussed earlier. The important result regarding 
the implementation of our strategy is the following: it is possible to show that the residuals 

associated with this misfit function is precisely the function �̅�. Therefore, the optimal transport 

problem has to be solved only once by iteration, which prevents drastic increase in computer time 
(for instance we observe a 20% increase of the computation time for the gradient, on the Marmousi 
example presented after). From its solution, we can extract both the value of the misfit function 
and the residuals which have to be back-propagated for computing the adjoint fields and, 
therefore, building the model gradient. 

 

Figure 5: Marmousi model case study. Exact model (a), initial model 1 (b), initial model 2 (c), 
results obtained with the least-squares distance starting from model 1 (d), from model 2 (e), results 
obtained with the KR distance starting from model 1 (f), from model 2 (g). 
 

3.2 Numerical results: Marmousi case study 
We illustrate the Kantorovich-Rubinstein approach on the following Marmousi synthetic 

case study. The exact Marmousi model is presented in Figure 5(a). A synthetic dataset is 
computed in the 2D acoustic constant-density approximation. We use a fixed-spread surface 



acquisition with 128 sources each 125 m and 168 receivers each 100 m, at 50 m depth. A Ricker 
source function centered on 5 Hz is used to generate the synthetic dataset. The frequency content 
of the source is high-pass filtered above 3 Hz to mimic realistic seismic data. Below 3 Hz, seismic 
signal is contaminated by noise, and therefore unavailable for inversion. Two initial models are 
considered: the first contains the main features of the exact model, only with smoother interfaces 
(Fig. 5.b). The second is a strongly smoothed version of the exact model with very weak lateral 
variations and underestimated growth of the velocity in depth (Fig. 5.c). Starting from these two 
initial models, we compare the FWI results obtained using a least-squares distance and the 
optimal transport distance we propose. The minimization is performed using the l-BFGS algorithm 
(Nocedal, 1980) implemented in the SEISCOPE optimization toolbox (Métivier and Brossier, 
2016). 

The results we obtain are presented in Figure 5(d-g). The convergence to a correct 
estimation of the P-wave velocity model is obtained using both the least-squares (Fig. 5.d) and 
optimal transport (Fig. 5.f) distances starting from the first initial model. A slightly better estimation 

of the low velocity zone at 𝑥 = 11 km, 𝑧 = 2.5 km is obtained using the optimal transport distance. 
A high velocity artifact can be seen for the least-squares estimation in this zone. More importantly, 
starting from the second initial model, only the results obtained using the optimal transport 
distance are meaningful (Fig.5g). The poor initial approximation of the P-wave velocity is 
responsible for cycle skipping and the least-squares estimation converges towards a local 
minimum (Fig.5f). The estimation obtained with the optimal transport distance is significantly closer 

from the true model, despite low velocity artifacts in the shallow part at 𝑥 = 1.5 km, 𝑧 = 1 km and 

in depth at 𝑥 = 12 km, 𝑧 = 3.4 km. This example illustrates the potential of optimal transport for 
FWI: starting from a very crude approximation of the P-wave velocity, a meaningful estimation is 
computed. In the same configuration, FWI based on the least-squares distance fails and produces 
a heavily cycle skipped estimation. 
 

4 Conclusion 
Optimal transport distance appears as an interesting tool for FWI, for its ability to provide 

a more convex misfit function. In addition, contrary to other misfit function modifications such as 
cross-correlation techniques, the resolution power seems to be preserved. Its principle is based 
on a change in the way the distance should be computed between observed and computed 
seismograms. When a least-squares distance is used to compare the seismic data, only point-to-
point comparisons are performed and the information on the coherency between seismic events 
in the shot-gather panel is not accounted for in the inversion. Optimal transport offers the 
possibility to account for this coherency in the inversion. Theoretical work is mandatory to better 
understand the more convex behavior of the modified optimal transport distance we promote. 
However, this ability to take into account this coherency of the data is the reason why we consider 
it as a promising alternative to standard misfit functions for FWI. 

Currently, the method has been successfully applied for a salt reconstruction problem on 
the 2D BP2004 model. Starting from an initial model containing no information about the presence 
of salt, we were able to design a suitable workflow to progressively reconstruct a complex salt 
body. This prompts us to continue the investigation of this strategy for imaging subsalt targets. 
The optimal transport method has also been successfully applied to the Chevron 2014 benchmark 
dataset, for which results comparable with those published in the literature have been recovered, 
using a very simple workflow. These two applications are presented in Métivier et al. (2016a). A 
first 3D application on the SEG/EAGE overthrust model is also presented in Métivier et al. (2016b). 
Future work will now include applications on 2D and 3D real data, for instance on the Valhall 
dataset. Methodological work is also on going, as other optimal transport formulation might 
improve further the method in terms of computational cost and misfit function convexity. 

 

Ludovic Metivier
this => its
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