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Variational approximation of functionals defined on

1-dimensional connected sets: the planar case

M. Bonafini∗, G. Orlandi†, É. Oudet‡

September 25, 2017

Abstract

In this paper we consider variational problems involving 1-dimensional connected
sets in the Euclidean plane, such as the classical Steiner tree problem and the irri-
gation (Gilbert-Steiner) problem. We relate them to optimal partition problems and
provide a variational approximation through Modica-Mortola type energies proving a
full Γ-convergence result. We also introduce a suitable convex relaxation and develop
the corresponding numerical implementations. The proposed methods are quite gen-
eral and the results we obtain can be extended to n-dimensional Euclidean space or
to more general manifold ambients, as shown in the companion paper [11].

1 Introduction

Connected one dimensional structures play a crucial role in very different areas like
discrete geometry (graphs, networks, spanning and Steiner trees), structural mechan-
ics (crack formation and propagation), inverse problems (defects identification, contour
segmentation), etc. The modeling of these structures is a key problem both from the the-
oretical and the numerical point of view. Most of the difficulties encountered in studying
such one dimensional objects are related to the fact that they are not canonically as-
sociated to standard mathematical quantities. In this article we plan to bridge the gap
between the well-established methods of multi-phase modeling and the world of one di-
mensional connected sets or networks. Whereas we strongly believe that our approach
may lead to new points of view in quite different contexts, we restrict here our exposition
to the study of two standard problems in the Calculus of Variations which are respec-
tively the classical Steiner tree problem and the Gilbert-Steiner problem (also called the
irrigation problem).

The Steiner Tree Problem (STP) [22] can be described as follows: given N points
P1, . . . , PN in a metric space X, (e.g. X a graph, with Pi assigned vertices), find a
connected (sub-)graph F ⊂ X containing the points Pi and having minimal length. Such
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an optimal graph F turns out to be a tree and is thus called a Steiner Minimal Tree
(SMT). In case X = Rd, d ≥ 2 endowed with the Euclidean `2 metric, one refers often
to the Euclidean or geometric STP, while for X = Rd endowed with the `1 (Manhattan)
distance or for X contained in a fixed grid G ⊂ Rd one refers to the rectilinear STP.

Here we will adopt the general metric space formulation of [31]: given a metric space
X, and given a compact (possibly infinite) set of terminal points A ⊂ X , find

(STP) inf{H1(S), S connected, S ⊃ A},

where H1 indicates the 1-dimensional Hausdorff measure on X. Existence of solutions for
(STP) relies on Golab’s compactness theorem for compact connected sets, and it holds
true also in generalized cases (e.g. infH1(S), S ∪A connected).

Problems like (STP) are relevant for the design of optimal transport channels or net-
works connecting given endpoints, for example the optimal design of net routing in VLSI
circuits in the case d = 2, 3. The Steiner Tree Problem has been widely studied from the
theoretical and numerical point of view in order to efficiently devise constructive solu-
tions, mainly through combinatoric optimization techniques. Finding a Steiner Minimal
Tree is known to be a NP hard problem (and even NP complete in certain cases), see for
instance [6, 7] for a comprehensive survey on PTAS algorithms for (STP).

The situation in the Euclidean case is theoretically well understood: given N points
Pi ∈ Rd a SMT connecting them always exists, the solution being in general not unique
(think for instance to symmetric configurations of the endpoints Pi). The SMT is a union
of segments connecting the endpoints, possibly meeting at 120◦ in at most N − 2 further
branch points, called Steiner points.

Nonetheless, the quest of computationally tractable approximating schemes for (STP)
has recently attracted a lot of attention in the Calculus of Variations community, due to
different variational interpretations of (STP) as respectively a size minimization problem
for 1-dimensional connected sets [27, 20], an optimal branched transport problem [10, 16],
or even a Plateau problem in a suitable class of vector distributions endowed with some
algebraic structure [27, 24], to be solved by finding suitable calibrations [25]. Several au-
thors have proposed different approximations of the problem, whose validity is essentially
limited to the planar case, mainly using a phase field based approach together with some
coercive regularization, see e.g. [12, 19, 29, 13].

Our aim is to propose a variational approximation for (STP) and for the Gilbert-
Steiner irrigation problem (in the equivalent formulations of [34, 23]) in the Euclidean
case X = Rd, d ≥ 2. In this paper we focus on the planar case d = 2 and prove a genuine
Γ-convergence result (see Theorem 3.9 and Proposition 3.3) by considering integral func-
tionals of Modica-Mortola type [26]. In the companion paper [11] we rigorously prove
that certain integral functionals of Ginzburg-Landau type (see [1]) yield a variational ap-
proximation for (STP) and of the irrigation problem valid in any dimension d ≥ 3. This
approach is related to the interpretation of (STP) as a Plateau problem in a cobordism
class of integral currents with multiplicities in a suitable normed group as studied by
Marchese and Massaccesi in [24] (see also [27] for the planar case). Our method is quite
general and may be easily adapted to a variety of situations (e.g. in manifolds or more
general metric space ambients, with densities or anisotropic norms, etc.).
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The plan of the paper is as follows: in Section 2 we reformulate (STP) and the
irrigation problem as a suitable modification of the optimal partition problem in the
planar case. In section 3, we state and prove our main Γ-convergence results, respec-
tively Proposition 3.3 and Theorem 3.9. Inspired by [18], we introduce in section 4 a
convex relaxation of the corresponding energies. In Section 5 we present our approxi-
mating scheme for (STP) and for the Gilbert-Steiner problem and illustrate its flexibility
in different situations, showing how our convex formulation is able to recover multiple
solutions whereas Γ-relaxation detects any locally minimizing configuration. Finally, in
Section 6 we propose some examples and generalizations that are extensively studied in
the companion paper [11].

2 Irrigation-type problems for Euclidean graphs and opti-
mal partitions

In this section we describe some optimization problems on Euclidean graphs with fixed
endpoints set A, like (STP) or irrigation-type problems, following the approach of [24, 23],
and we rephrase them as optimal partition-type problems in the planar case R2.

2.1 Acyclic graphs and rank one tensor valued measures

Let A = {P1, . . . , PN} ⊂ Rd, d ≥ 2, be a given set of N distinct points, with N > 2.
Define G(A) to be the set of acyclic graphs L connecting the endpoints set A such that
L can be described as the union L = ∪N−1

i=1 λi, where λi are simple rectifiable curves with
finite length having Pi as initial point and PN as final point, oriented by H1-measurable
unit vector fields τi satisfying τi(x) = τj(x) for H1-a.e. x ∈ λi ∩ λj (i.e. the orientation
of λi is coherent with that of λj on their intersection).

For L ∈ G(A), if we identify the curves λi with the vector measures Λi = τi⊗H1 λi,
all the information concerning this acyclic graph L is encoded in the rank one tensor
valued measure Λ = τ ⊗ g ·H1 L, where the H1-measurable vector field τ ∈ Rd carrying
the orientation of the graph L satisfies spt τ = L, |τ | = 1, τ = τi H1-a.e. on λi, and the
H1-measurable vector field g ∈ RN−1 has components gi satisfying gi ·H1 L = H1 λi =
|Λi|, with |Λi| the total variation measure of the vector measure Λi = τ⊗H1 λi. Observe
that gi ∈ {0, 1} a.e. for any 1 ≤ i ≤ N − 1.

Definition 2.1 Given any graph L ∈ G(A), we call the above constructed Λ = τ ⊗ g ·
H1 L the canonical Rd ⊗ RN−1-valued measure representation of the acyclic graph L.

Remark 2.2 Observe that for any 1 ≤ i ≤ N − 1 the measures Λi verify the property

div Λi = δPi − δPN . (2.1)

To any compact connected set K ⊃ A with H1(K) < +∞, i.e. to any candidate
minimizer for (STP), we associate in a canonical way an acyclic graph L ∈ G(A) con-
necting {P1, . . . , PN} such that H1(L) ≤ H1(K) (see e.g. Lemma 2.1 in [24]). Given
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such a graph L ∈ G(A) canonically represented by the tensor valued measure Λ, the
measure H1 L corresponds to the smallest positive measure dominating |Λi| = H1 λi
for 1 ≤ i ≤ N − 1, where |Λi| is the total variation measure of the vector measure
Λi = Λ · ei = τ ⊗ (g · ei)H1 L. It is thus given by H1 L = supiH1 λi = supi |Λi|, the
supremum of the total variation measures |Λi|.

Remark 2.3 An equivalent definition of the measure µ = sup1≤i≤N−1 µi, for µi positive
Radon measures on Rd, can be given by duality: we have, for any positive ψ ∈ C0

c (Rd),∫
Rd
ψ dµ = sup

{
N−1∑
i=1

∫
Rd
ϕi dµi , ϕi ∈ C0

c (Rd),
N−1∑
i=1

ϕi(x) ≤ ψ(x)

}
.

Remark 2.4 (graphs as G-currents) In [24], the rank one tensor measure Λ = τ ⊗
g · H1 L identifying a graph in Rd is defined as a current with coefficients in the group
ZN−1 ⊂ RN−1. For ω ∈ D1(Rd) a smooth compactly supported differential 1-form and
~ϕ = (ϕ1, ..., ϕN−1) ∈ [D(Rd)]N−1 a smooth test (vector) function, one sets

〈Λ, ω ⊗ ~ϕ〉 :=

∫
Rd
〈ω ⊗ ~ϕ, τ ⊗ g〉 d|Λ| =

N−1∑
i=1

∫
Rd
〈ω, τ〉ϕigid|Λ| =

N−1∑
i=1

∫
Rd
〈ω, τ〉ϕi d|Λi| .

Moreover, fixing a norm Ψ on RN−1, one may define the Ψ-total variation of the current
Λ as

||Λ||Ψ = |Λ|Ψ(Rd) = sup {〈Λ, ω ⊗ ~ϕ〉 , |ω(x)| ≤ 1 , Ψ∗(~ϕ(x)) ≤ 1} , (2.2)

where Ψ∗ is the dual norm to Ψ w.r.t. the scalar product on RN−1. Remark that (2.2)
defines the Ψ-total variation for a generic d× (N − 1) matrix valued measure Λ.

2.2 Irrigation-type functionals

In this section we consider functionals defined on acyclic graphs connecting a fixed set
A = {P1, . . . , PN} ⊂ Rd, d ≥ 2, by using their canonical representation as rank one
tensor valued measures, in order to identify the graph with an irrigation plan from the
point sources {P1, . . . , PN−1} to the target point PN . We focus here on suitable energies
in order to describe the irrigation problem and the Steiner tree problem in a common
framework as in [24, 23]. We observe moreover that the irrigation problem with one point
source (Iα) introduced by Xia [34], in the equivalent formulation of [23], approximates
the Steiner tree problem as α→ 0 in the sense of Γ-convergence (see Proposition 2.6).

We first introduce some additional notation: let be given positive measures µi on
Rd, for i = 1, ...,M to form a RM -valued vector measure ~µ. Let |~µ|1 =

∑
i µi, so that

~µ = g|~µ|1 with g ∈ RM , 0 ≤ gi ≤ 1 for 1 ≤ i ≤ M ,
∑

i gi = 1. Accordingly, we denote
|~µ|∞ the supremum measure |~µ|∞ = supi µi = (supi gi) |~µ|1. For p ≥ 1 define the measure
|~µ|p := |g|p|~µ|1, with |g|p = (

∑
i g
p
i )

1/p the `p norm of g ∈ RM . We have the coerciveness
property

1

M
|~µ|1 ≤ |~µ|∞ ≤ |~µ|q ≤ |~µ|p ≤ |~µ|1, ∀ 1 < p < q ,∀ ~µ . (2.3)
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More generally, for Ψ a norm on RM , we define the measure Ψ(~µ) := Ψ(g)|~µ|1. In
particular, we have the characterization

Ψ(~µ)(Rd) = sup

{
M∑
i=1

∫
Rd
ϕi dµi, 0 ≤ ϕi ∈ C0

c (Rd) ∀ 1 ≤ i ≤M, Ψ∗(~ϕ) ≤ 1

}
(2.4)

with Ψ∗ the dual norm to Ψ w.r.t. the Euclidean structure on RM . The total variation
of the measure Ψ(~µ) coincides with the Ψ-total variation ||Λ||Ψ as defined in (2.2), where
Λ = τ ⊗ ~µ for any |~µ|1-measurable unit vector field τ ∈ Rd.

Let Λ = τ ⊗ ~µ = τ ⊗ g|~µ|1 be a rank one Rd ⊗ RM -valued measure with |τ | = 1. For
0 < α ≤ 1 define

Fα(Λ) =

∫
Rd
|g|1/αd|~µ|1 = |~µ|1/α(Rd) (2.5)

and

F0(Λ) =

∫
Rd
|g|∞d|~µ|1 =

∫
Rd

(
sup

1≤i≤M
µi

)
= |~µ|∞(Rd). (2.6)

In other words, Fα(Λ) = ||Λ||Ψα , F0(Λ) = ||Λ||Ψ0 are total variation-type functionals,
with respect to the norms Ψα = | · |`1/α and Ψ0 = | · |`∞ .

When Λ = τ ⊗ gH1 L is the canonical representation of an acyclic graph L ∈ G(A),
so that in particular we have |τ | = 1 and gi ∈ {0, 1} for 1 ≤ i ≤M , we deduce

F0(Λ) =

∫
Rd
|g|∞ dH1 L = H1(L) , Fα(Λ) =

∫
Rd
|g|1/α dH1 L =

∫
L
|θ|αdH1 ,

where θ(x) =
∑

i gi(x)1/α =
∑

i gi(x) ∈ Z, and 0 ≤ θ(x) ≤ M . We thus recognize that
minimizing the functional Fα among graphs L connecting P1, . . . , PN−1 to PN solves the
irrigation problem with sources P1, . . . , PN−1 and target PN (see [23]), while minimizing
F0 among graphs L with endpoints set {P1, . . . , PN} solves (STP) in Rd.

Since both Fα and F0 are total variation-type functionals (thanks to the key coer-
civeness property 2.3), minimizers do exist in the class of rank one tensor valued mea-
sures. The fact that the minimization problem within the class of canonical tensor valued
measures representing acyclic graphs has a solution in that class is a consequence of com-
pactness properties of Lipschitz maps (in R2, it follows alternatively by the compactness
theorem in the SBV class [5]). Actually, existence of minimizers in the canonically ori-
ented graph class in R2 can be deduced as a byproduct of our Γ-convergence result (see
Corollary 3.7 and Corollary 3.8) and in Rd, for d > 2, by the parallel Γ-convergence
analysis contained in the companion paper [11].

Remark 2.5 A minimizer of F0 (resp. Fα) among tensor valued measures Λ repre-
senting admissible graphs corresponds necessarily to the canonical representation of a
minimal graph, i.e. gi ≥ 0 ∀ 1 ≤ i ≤ N − 1. Indeed if gi = −gj on a connected arc in
λi∩λj , with λi going from Pi to PN and λj going from Pj to PN , this implies that λi∪λj
contains a cycle, hence Λ cannot be a minimizer.
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We conclude this section by observing in the following proposition that the Steiner
tree problem can be seen as the limit of irrigation problems (cf. [29], [23]).

Proposition 2.6 The functional F0 is the Γ-limit, as α→ 0, of the functionals Fα with
respect to the convergence of measures.

Proof: Observe that |g|p ≤ |g|q for any 1 ≤ q < p ≤ +∞, g ∈ RN−1, and more-
over |g|q → |g|∞ as q → +∞. Hence, we have that, for the Λ = τ ⊗ g · H1 L,

Fα(Λ) =
∫
Rd |g|1/αdH

1 L is a monotonic decreasing sequence as α → 0, so that Fα Γ−→
F0 by elementary properties of Γ-convergence, see for instance Remark 1.40 of [15].

�

2.3 Acyclic graphs and partitions of R2

This section is dedicated to the two-dimensional case. The following result, which is an
instance of the constancy theorem for currents or the Poincaré’s lemma for distributions
(see [21]), states that two acyclic graphs having the same endpoints set give rise to a
partition of R2, or equivalently (see [5]), that their oriented difference corresponds to the
orthogonal distributional gradient of a piecewise integer valued function having bounded
total variation.

Lemma 2.7 Let {P,R} ⊂ R2 and let λ, γ be simple rectifiable curves from P to R
oriented by H1-measurable unit vector fields τ ′, τ ′′. Define as above Λ = τ ′ ⊗H1 λ and
Γ = τ ′′ ⊗H1 γ.

Then there exists a function u ∈ SBV (R2;Z) such that, denoting Du and Du⊥ re-
spectively the measures representing the gradient and the orthogonal gradient of u, we
have Du⊥ = Γ− Λ.

Proof: Consider simple oriented polygonal curves λk and γk connecting P to R such that
the Hausdorff distance to respectively λ and γ is less than 1

k and the length of λk (resp.
γk) converges to the length of λ (resp. γ). We can also assume without loss of generality
that λk and γk intersect only transversally in a finite number of points mk ≥ 2. Let
τ ′k, τ

′′
k be the H1-measurable unit vector fields orienting λk, γk and define the measures

Λk = τ ′k ⊗H1 λk and Γk = τ ′′k ⊗H1 γk.
For a given k ∈ N consider the closed curve σk = λk ∪ γk oriented by τk = τ ′′k − τ ′k

(i.e. we reverse the orientation of λk). Fix a direction e ∈ R2 and a vector v ∈ R2

so that the line r(t) = v + te, t ∈ R, intersects σk transversally at xj = r(tj), for
t1 < t2 < · · · < tM . Fix s0 < t1 and set uk(r(s0)) = 0, and uk(x) = 0 for x in the
connected component of R2 \ σk containing r(s0). For j ≥ 1 fix sj ∈ (tj , tj+1) and set
uk(r(sj)) = uk(r(sj−1))− sign (e · τk(xj)⊥). Extend uk to be piecewise constant to the
connected component of R2 \ σk containing r(sj). Fix now a new direction e and a new
vector v and repeat the procedure until uk remains defined on the whole of R2 \ σk.

The map uk is well defined. Indeed suppose y1 and y2 belong to the same connected
component of R2 \ σk and consider the arc β connecting them in the complement of σk.
Let r(t) = ty2 + (1− t)y1, t ∈ R, be the line passing through {y1, y2} and suppose w.l.o.g.
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that it intersects σk transversally at xj = r(tj), for t1 < t2 < · · · < tM . By construction
we have

uk(y1)− uk(y2) =
∑

j s.t. 0<tj<1

sign((y2 − y1) · τk(xj)⊥).

On the other hand the arc β together with the segment [y1, y2] form an oriented boundary
e = ∂B, so that by the Green formula we have

0 =

∫
B

div Σε
k =

∫
∂B

Σε
k · νe

where Σε
k = Σk ∗ ηε is a regularization of the measure Σk = Γk−Λk and νe is the exterior

normal to B. It follows, passing to the limit as ε→ 0, after direct computations,

0 =
∑

j s.t. 0<tj<1

sign(νe(xj) · τk(xj)) =
∑

j s.t. 0<tj<1

sign(νe(xj)
⊥ · τk(xj)⊥),

and since νe(xj)
⊥ = ±(y2 − y1) we have uk(y2) = uk(y1).

We deduce that Du⊥k = τk ⊗ H1 σk = Γk − Λk, hence |Duk|(R2) = H1(σk) and
‖uk‖L1(R2) ≤ C|Duk|(R2) by Poincaré’s inequality in BV . Hence uk ∈ SBV (R2;Z)
is an equibounded sequence in norm, and by Rellich compactness theorem there exists
a subsequence still denoted uk converging in L1(R2) to a u ∈ SBV (R2;Z). Taking into
account that we haveDu⊥k = Γk−Λk, we deduce in particular thatDu⊥ = Γ−Λ as desired.

�

Remark 2.8 Let A ⊂ R2 as above. For i = 1, ..., N − 1 let γi be the segment joining
Pi to PN , denote τi = PN−Pi

|PN−Pi| its orientation, and identify γi with the vector measure

Γi = τi ⊗H1 γi. Then G = ∪N−1
i=1 γi is an acyclic graph connecting the endpoints set A

and H1(G) = |Γ|(R2), where |Γ| = supi |Γi|.

Taking into account Lemma 2.7 we have

Corollary 2.9 Let A = {P1, . . . , PN} ⊂ R2 be a set of terminal points and G ∈ G(A) (for
instance the acyclic graph considered in Remark 2.8). For any acyclic graph L ∈ G(A),
denoting Γ (resp. Λ) the canonical tensor valued representation of G (resp. L), we have

H1(L) =

∫
R2

sup
i
|Λi| =

∫
R2

sup
i
|Du⊥i − Γi|

for suitable ui ∈ SBV (R2;Z), 1 ≤ i ≤ N − 1.

Thus, fixing the family of measures Γ = (Γ1, . . . ,ΓN−1) as in Remark 2.8, we are led to
consider the minimization for U = (u1, . . . , uN−1) ∈ SBV (R2;ZN−1) of the functional

F0(U) ≡ F0(DU⊥ − Γ) =

∫
R2

sup
i
|Du⊥i − Γi|.

We have already seen that to each acyclic graph L ∈ G(A) we can associate a U ∈
SBV (R2;ZN−1) such that H1(L) = F0(U). Moreover, for minimizers, we have the
following

7



Remark 2.10 To each minimizer U ∈ SBV (R2;ZN−1) of F0 we can find an acyclic
graph L connecting the terminal points P1, . . . , PN and such that F0(U) = H1(L).

To prove this fact, let U = (u1, . . . , uN−1) be a minimizer of F0 in SBV (R2;ZN−1),
and denote Λi = Γi −Du⊥i . Then Λi = τi ⊗H1 λi and λi necessarily contains a simple
rectifiable curve λ′i connecting Pi to PN since we have div Λi = δPi−δPN (use for instance
the decomposition theorem for rectifiable 1-currents, as in [23]). Consider the canonical
rank one tensor measure Λ′ associated to the acyclic subgraph L′ = λ′1 ∪ · · · ∪ λ′N−1

connecting P1, . . . , PN−1 to PN . Then by Lemma 2.7, there exists U ′ = (u′1, . . . , u
′
N−1) ∈

SBV (R2;ZN−1) such that Du′i
⊥ = Γi − Λ′i and in particular H1(L′) = F0(U ′) ≤ F0(U).

We thus have a relationship between (STP) and the minimization of F0 over func-
tions in SBV (R2;ZN−1), and a similar connection can be made between the α-irrigation
problem and minimization over the same space of

Fα(U) ≡ Fα(DU⊥ − Γ).

The aim of the next section is then to provide an approximation of the functionals Fα in
the sense of Γ-convergence through Modica-Mortola type energies.

Remark 2.11 In the case P1, . . . , PN ∈ ∂Ω with Ω ⊂ R2 a convex set, we may choose
G = ∪N−1

i=1 γi with γi connecting Pi to PN and spt γi ⊂ ∂Ω. We deduce by Corollary 2.9
that for any acyclic graph L ∈ G(A)

H1(L) =

∫
Ω

sup
i
|Du⊥i |

for suitable ui ∈ SBV (Ω;Z) such that (in the trace sense) ui = 1 on γi ⊂ ∂Ω and ui = 0
elsewhere in ∂Ω, 1 ≤ i ≤ N−1. We recover here an alternative formulation of the optimal
partition problem in a convex planar set Ω as studied for instance in [3] and [4].

3 Γ-convergence

In this section we state and prove our main Γ-convergence result, namely Proposition 3.3
and Theorem 3.9.

Lemma 3.1 Let Ψ be a norm on RM , and ε > 0. Consider positive Radon measures
µ1,ε, . . . , µM,ε and µ1, . . . , µM satisfying

lim inf
ε→0

∫
Rd
ϕdµi,ε ≥

∫
Rd
ϕdµi ∀ ϕ ∈ C∞c (Rd), ϕ ≥ 0, ∀ 1 ≤ i ≤M . (3.1)

Then, setting ~µε = (µ1,ε, ..., µM,ε) and ~µ = (µ1, ..., µM ), we have

lim inf
ε→0

∫
Rd
ϕdΨ(~µε) ≥

∫
Rd
ϕdΨ(~µ) ∀ϕ ∈ C∞c (Rd), ϕ ≥ 0. (3.2)
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Proof: Fix ϕ ∈ C∞c (Rd), ϕ ≥ 0. By (2.4) we deduce that∫
Rd
ϕdΨ(~µε) = sup

{∑
i

∫
Rd
ϕξidµi,ε , ξi ≥ 0, Ψ∗(~ξ) ≤ 1

}
,

so that

lim inf
ε→0

∫
Rd
ϕdΨ(~µε) ≥ lim inf

ε→0

∑
i

∫
Rd
ϕξidµi,ε

≥
∑
i

∫
Rd
ϕξi dµi

(3.3)

for any ξi ≥ 0, Ψ∗(~ξ) ≤ 1, whence, again by (2.4), conclusion (3.2) follows.
�

Lemma 3.2 Let Ψ be a norm on RM , and ε > 0. Consider positive Radon measures
µ1,ε, . . . , µM,ε and µ1, . . . , µM satisfying

(i) µi,ε ⇀ µi and µi,ε(Rd)→ µi(Rd) for all i = 1, . . . ,M ,

(ii) there exist M measurable functions ϕ1, . . . , ϕM such that∫
Rd

dΨ(~µ) =

M∑
i=1

∫
Rd
ϕi dµi (3.4)

and ∫
Rd

dΨ(~µε) =
M∑
i=1

∫
Rd
ϕi dµi,ε + o(1). (3.5)

Then, setting ~µε = (µ1,ε, ..., µM,ε) and ~µ = (µ1, ..., µM ), we have

lim sup
ε→0

∫
Rd
ϕdΨ(~µε) ≤

∫
Rd
ϕdΨ(~µ) ∀ϕ ∈ C∞c (Rd), ϕ ≥ 0. (3.6)

Proof: Fix ϕ ∈ C∞c (Rd), ϕ ≥ 0. By direct calculations

lim sup
ε→0

∫
Rd
ϕdΨ(~µε)

(3.5)
= lim sup

ε→0

∑
i

∫
Rd
ϕiϕdµi,ε ≤

∑
i

lim sup
ε→0

∫
Rd
ϕiϕdµi,ε

(i)
=
∑
i

∫
Rd
ϕiϕdµi

(3.4)
=

∫
Rd
ϕdΨ(~µ).

�

We consider now Modica–Mortola functionals for functions having a prescribed jump
part. Due to summability issues for the absolutely continuous part of the gradient, we
work in local spaces.
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Proposition 3.3 For any fixed i ∈ {1, ..., N − 1} consider the measure Γi = τi ⊗H1 γi
defined in Remark 2.8, and consider the Modica-Mortola type functionals

F iε(u,B) =

∫
B
eiε(u) dx =

∫
B
|Du⊥ − Γi|2 +

1

ε2
W (u) dx, (3.7)

defined for u ∈ Hi ≡ W 1,2
loc (R2 \ γi) ∩ BV (R2) and B ⊂ R2 \ {P1, ..., PN} open, where

W (u) ≥ 0 is a smooth 1-periodic potential vanishing on Z (take for example, W (u) =
sin2(πu)). Let c0 = 2

∫ 1
0

√
W (s) ds (c0 = 2

π for W (s) = sin2(πs)). We have:

1. (Compactness and lower bound inequality) For any ui,ε ∈W 1,2
loc (R2\γi)∩BV (R2)

such that F iε(ui,ε, B) ≤ C(B) for any B ⊂ R2 \ {P1, ..., PN} open, there exists ui ∈
SBV (R2;Z) such that (up to a subsequence) ui,ε → ui in L1(R2). Moreover,

lim inf
ε→0

∫
εϕie

i
ε(ui,ε) dx ≥ c0

∫
ϕid|Du⊥i − Γi| (3.8)

for any ϕi ∈ C∞c (R2 \ {P1, ..., PN}), ϕi ≥ 0.

2. (Upper bound (in)-equality) For any Λi = τ ⊗H1 λi, with λi a simple rectifiable
curve joining Pi to PN , let ui ∈ SBV (R2;Z), such that Du⊥i = Γi−Λi. Then there exists
a sequence ui,ε ∈W 1,2

loc (R2 \ γi) ∩BV (R2) s.t. ui,ε → ui in L1(R2) and

lim sup
ε→0

∫
εϕie

i
ε(ui,ε) dx ≤ c0

∫
ϕid|Du⊥i − Γi| (3.9)

for any ϕi ∈ C∞c (R2 \ {P1, ..., PN}), ϕi ≥ 0.

Remark 3.4 Observe that energy-bounded sequences ui,ε ∈ Hi, that are involved in
statements 1) and 2) of Proposition 3.3, verify lim|x|→+∞ ui,ε(x) = 0 for any ε > 0,
1 ≤ i ≤ N − 1.

Remark 3.5 Proposition 3.3 holds true also in case the measures Γi are associated to
oriented simple polyhedral (or even rectifiable) finite length curves joining Pi to PN .

Remark 3.6 To avoid statements in local energy spaces in Proposition 3.3 one could
consider variants of the functionals F iε by relying on suitable smoothings Γi,ε = Γi ∗ ηε of
the measures Γi, with ηε a symmetric mollifier.

Proof of Proposition 3.3 Observe first that by the localization property of Γ-convergence
(see [15]) it suffices to prove (3.8) in the case ϕi = 1B the characteristic function of an
arbitrary open set (say a ball) B ⊂ R2 \ {P1, ..., PN}. Then the conclusion follows by
approximating the test function ϕi by simple functions

∑
k αk1Bk , with {Bk}k a disjoint

family of open sets Bk, thanks to the regularity of the Radon measures involved in the
statement.
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We thus fix a ball B ⊂ R2 \ {P1, ..., PN}, and we distinguish two cases, according to
whether B ∩ γi = ∅ or not. In the first case we have

F iε(u,B) ≡
∫
B
eiε(u) dx =

∫
B
|Du⊥|2 +

1

ε2
W (u) dx

and (3.8) follows by the classical result of Modica-Mortola [26] applied to F iε(u,B).
In the case B ∩ γi 6= ∅ we follow the arguments of [8], and consider u0 = 1B+ , where

B+ = {z ∈ B \ γi : (z − z0) · ν > 0}, for z0 ∈ B ∩ γi and ν⊥ = τi, so that Du⊥0 = Γi B.
Letting v = u−u0 we have Dv⊥ = Du⊥−Γi on B and W (v) = W (u) on B by 1-periodicity
of the potential W . Hence

F iε(u,B) =

∫
B
eiε(u) dx =

∫
B
|Dv⊥|2 +

1

ε2
W (v) dx ≡ F̃ iε(v,B)

and conclusion (3.8) follow again by applying Modica-Mortola theorem [26] to F̃ iε(v,B).
To prove (3.9) we may consider w.l.o.g. that λi is a polyhedral arc made by segments

joining the points Pi = S0, S1, . . . , Sk = PN , and that it intersects γi orthogonally in a
finite number of points (it is then possible to conclude in the general case by a density
argument). To construct the approximating ui,ε consider a tubular neighbourhood Uδ of
λi, with δ = O(ε) and consider maximal rectangular δ-strips of the segments [Sj , Sj+1]
contained in Uδ \ ∪jBδ′(Sj), for suitable δ′ = Cδ, where to perform the classical Modica-
Mortola optimal smooth interpolation along the orthogonal direction of each segment
[Sj , Sj+1] in order to match the values of ui on the boundary of the strips, then extend
smoothly (e.g. a Lipschitz extension) of the resulting map on ∂B2δ′(Sj) on the whole of
B2δ′(Sj), for any j = 0, ..., k. We have that ui,ε ∈ SBV (R2) and moreover F iε(ui,ε, B) <
+∞ for any open subset B ⊂ R2 \ {P1, ..., PN} provided ε is sufficiently small. One also
deduces ui,ε → ui in L1(R2) and Dui,ε ⇀ Dui as measures in R2, with |Duiε |(R2) →
|Dui|(R2), by the Modica-Mortola theorem, whence (3.9) follows.

�

Corollary 3.7 (Γ-convergence) Let Ψ : RN−1 → [0,+∞) be a norm on RN−1. In the
notation of Proposition 3.3, let H = H1 × · · · ×HN−1, and consider the functionals

FΨ
ε (U,B) =

∫
B
εΨ(~eε(U)) dx , for U = (u1, ..., uN−1) ∈ H, (3.10)

FΨ(U,B) =

∫
B

Ψ(g)d|DU⊥ − Γ|1 , for U ∈ SBV (R2;ZN−1), (3.11)

for B ⊂ R2 \ {P1, ..., PN} open, where we set ~eε(U) = (e1
ε(u1), ..., eN−1

ε (uN−1)), g =
(g1, ..., gN−1) and, for 1 ≤ i ≤ N − 1,

|Du⊥i − Γi| = gi|DU⊥ − Γ|1, with |DU⊥ − Γ|1 :=
∑N−1

i=1 |Du⊥i − Γi|. Then we have

1. (Compactness and lower bound inequality) For all Uε ∈ H such that FΨ
ε (Uε, B) ≤

C(B), B ⊂ R2 \ {P1, ..., PN}, there exists U ∈ SBV (R2;ZN−1) such that (up to a subse-
quence) Uε → U in L1(R2;RN−1). Moreover,

lim inf
ε→0

FΨ
ε (Uε, B) ≥ c0FΨ(U,B) (3.12)
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2. (Upper bound (in)-equality) Let Λ = τ ⊗ g · H1 L be a rank one tensor valued
measure canonically representing an acyclic graph L connecting P1, ..., PN , and let U ∈
SBV (R2;ZN−1) such that Du⊥i = Γi − Λi for any i = 1, . . . , N − 1. Then there exists a
sequence Uε ∈ H such that Uε → U in L1(R2;RN−1) and

lim sup
ε→0

FΨ
ε (Uε, B) ≤ c0FΨ(U,B) (3.13)

for any open subset B ⊂ R2 \ {P1, ..., PN}.

Proof: To prove (3.12) apply Lemma 3.1, formula (3.2) to the measures µiε = εeiε(ui,ε)dx
and µi = c0|Du⊥i − Γi| = c0gi|DU⊥ − Γ|1 that verify (3.1) in view of (3.8).

To prove (3.13), consider w.l.o.g. that each Λi = τi⊗H1 λi is such that λi is a poly-
hedral curve and intersects orthogonally γi in a finite number of points. Then the support
of the measure Λ is an acyclic polyhedral graph (oriented by τ) with edges E0, . . . , EM
and vertices {S0, . . . , S`} such that Ek = [Sk1 , Sk2 ] for suitable indexes k1, k2 ∈ {0, . . . , `}.
By finiteness there exists η > 0 such that given any edge Ek of that graph the sets

Vk = {x ∈ R2, dist(x,Ek) < min{η, η · dist(x, Sk1), η · dist(x, Sk2)}}

are disjoint and their union form an open neighbourhood of ∪iλi \ {S0, . . . , S`}.
Remark that on Ek we have Ψ(g) = g ·ck, for a suitable vector ck such that Ψ∗(ck) = 1.

We are led to define, for i = 1, . . . , N − 1, the piecewise constant functions ϕi(x) = ck,i
whenever x ∈ Vk, and ϕi(x) = 0 elsewhere in R2. With respect to those functions, the
measures µi = c0|Λi| verify (3.4). Denote ~ϕ = (ϕ1, ..., ϕN−1) and for further convenience
consider also the constant extension of g to Vk for any k, and to zero outside, and denote
again by g this function.

To construct the approximating ui,ε consider as before a tubular neighbourhood Uδ
of ∪kEk, with δ = O(ε), and consider maximal rectangular δ-strips Rk of the segments
Ek contained in Uδ \ ∪kBδ′(Sk), for a suitable δ′ = Cδ (for ε small enough Rk ⊂ Vk).
Perform on each Rk the classical Modica-Mortola optimal smooth interpolation along
the orthogonal direction of the segment Ek in order to match the values of ui on the
boundary of the strips, then extend it to R2 by a Lipschitz extension of the resulting map
on ∂B2δ′(Sk) on the whole of B2δ′(Sk), for any k = 0, ..., `.

Let µi,ε = eiε(ui,ε)dx, and ~µε = (µ1,ε, . . . , µN−1,ε). By construction, if Ek is contained
in both λi ∩ λj , then the measures µi,ε and µj,ε coincide on Wk,δ′ ≡ Vk \ (B2δ′(Sk1) ∪
B2δ′(Sk2)), to define a measure µδ′,ε on Wδ′ = ∪kWk,δ′ . We have that

~µε Wδ′ = gµδ′,ε

and in particular∫
R2

dΨ(~µε) =

∫
Wδ′

dΨ(~µε) +O(ε) =

∫
Wδ′

~ϕ · g dµδ′,ε +O(ε)

=
∑
i

∫
Wδ′

ϕidµi,ε +O(ε) =
∑
i

∫
R2

ϕidµi,ε +O(ε)
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so that the measures µi,ε satisfy 3.5, and also i) and ii) of Lemma 3.2 in view of Proposition
3.3. Hence formula (3.6) applies, and we easily deduce (3.13).

�

Corollary 3.8 (Convergence of minimizers) Let Uε ∈ H be a sequence of mini-
mizers for FΨ

ε in H. Then (up to a subsequence), Uε → U in L1(R2), and U ∈
SBV (R2;ZN−1) is a minimizer of FΨ in SBV (R2;ZN−1).

Proof: Let V ∈ SBV (R2;ZN−1) such that DV ⊥ = Γ−Λ, where Λ canonically represents
an acyclic graph L ∈ G(A), and let Vε ∈ H such that lim supε→0FΨ

ε (Vε, B) ≤ FΨ(V,B)
for any B ⊂ R2 \ {P1, ..., PN}. Hence we have, since (3.12) holds and FΨ

ε (Uε, B) ≤
FΨ
ε (Vε, B),

FΨ(U,B) ≤ lim inf
ε→0

FΨ
ε (Uε, B) ≤ lim sup

ε→0
FΨ
ε (Vε, B) ≤ FΨ(V,B)

for any B ⊂ R2 \ {P1, ..., PN}. Given a general V ∈ SBV (R2;ZN−1) we can proceed like
in Remark 2.10 and find V ′ such that DV ′⊥ = Γ− Λ and FΨ(V ′, B) ≤ FΨ(V,B).

�
Corollaries 3.7 and 3.8 together with Remark 2.10 may be summarized, in case FΨ

corresponds respectively to F0 and Fα for 0 < α ≤ 1, in the following

Theorem 3.9 Let A = {P1, .., PN} ⊂ R2 and Γi = τ ⊗H1 γi, for 1 ≤ i ≤ N − 1, as in
Remark 2.8. For U = (u1, ..., uN−1), ui ∈W 1,2

loc (R2 \ γi) ∩BV (R2), define

F0
ε (U,B) =

∫
B
ε sup

1≤i≤N−1
eiε(ui) dx ,

and, for 0 < α ≤ 1,

Fαε (U,B) =

∫
B
ε

(
N−1∑
i=1

eiε(ui)
1/α

)α
dx ,

where B ⊂ R2 \ {P1, ..., PN} is open and the energy densities eiε(ui) are defined in Propo-
sition 3.3, formula (3.7), and let

F0(U,B) ≡ F0(DU⊥ − Γ, B) , Fα(U,B) ≡ Fα(DU⊥ − Γ, B) (3.14)

be defined as in (2.6) and (2.5). Let moreover c0 > 0 be as defined in Proposition 3.3.
Then we have

F0
ε

Γ−→ c0F0 and Fαε
Γ−→ c0Fα ,

where the Γ-convergence takes place with respect to the strong topology of L1(R2;RN−1).
In particular, up to subsequences, minimizers Uε of F0

ε converge, as ε → 0, to U ∈
SBV (R2;ZN−1) with DU⊥ − Γ = τ ⊗ g · H1 L, and L a Steiner Minimal Tree with
terminal points in A, while minimizers Vε of Fαε converge (up to subsequences), as ε→ 0,
to V ∈ SBV (R2;ZN−1), where DV ⊥ − Γ = τ ′ ⊗ g′ · H1 Lα represents an optimal α-
irrigation plan with sources P1, . . . , PN−1 and target point PN .
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4 Convex relaxation

In this section we propose convex positively 1-homogeneous relaxations of the irrigation-
type functionals Fα for 0 ≤ α < 1 so as to include the Steiner tree problem corresponding
to α = 0 (notice that the case α = 1 corresponds to the well-known Monge-Kantorovich
optimal transportation problem with respect to the Monge cost c(x, y) = |x− y|).

More precisely, we consider relaxations of the functional defined by

Fα(Λ) = ‖Λ‖Ψα =

∫
Rd
|g|1/α dH1 L

if the measure Λ is the canonical representation of an acyclic graph L with terminal
points {P1, ..., PN} ⊂ Rd, so that in particular, according to Definition 2.1, we can write
Λ = τ ⊗ g · H1 L with |τ | = 1, gi ∈ {0, 1}. For any other d× (N − 1) valued measure µ
on Rd we set Fα(µ) = +∞.

As a preliminary remark observe that, since we are looking for positively 1-homogeneous
extensions, the extended functionals Rα satisfy

Rα(cΛ) = |c|Fα(Λ)

for any c ∈ R and Λ as above. As a consequence we have that Rα(−Λ) = Rα(Λ), where
−Λ represents the same graph L as Λ but only with reversed orientation.

4.1 Extension to rank one tensor measures

First of all let us discuss the possible positively 1-homogeneous convex relaxations of Fα
on the class of rank one tensor valued Radon measures Λ = τ ⊗ ~µ = τ ⊗ g · |~µ|1, where
|τ | = 1, g ∈ RN−1 (cf. Section 2.2).

For a generic Λ = τ ⊗~µ = τ ⊗ g · |~µ|1 as above, we can consider extensions of the form

Rα(Λ) =

∫
Rd

Ψα(g) d|~µ|1

for a convex positively 1-homogeneous Ψα on RN−1 (i.e. a norm) verifying

|g|1/α ≤ Ψα(g) ≤ Φ∗∗α0(g) for all g ∈ RN−1, (4.1)

where Φ∗∗α0 represents the convex positively 1-homogeneous envelope of the function
Φα0(g) := |g|1/α for gi ∈ {0, 1} ∀i = 1, . . . , N − 1. The expression for Φ∗∗α0 is given
(cf. [23]), for α > 0, by

Φ∗∗α0(g) =

 ∑
1≤i≤N−1

|g+
i |

1/α

α

+

 ∑
1≤i≤N−1

|g−i |
1/α

α

, (4.2)

and for α = 0 by
Φ∗∗00(g) = sup

1≤i≤N−1
g+
i − inf

1≤i≤N−1
g−i , (4.3)
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with g+
i = max{gi, 0} and g−i = min{gi, 0}. Notice that in [24] the norm Ψ on RN−1 (see

Remark 2.4) employed in order to find solutions of (STP) using calibrations corresponds
precisely to Ψ = Φ∗∗00.

According to the convex extensions Ψα and Ψ0 considered, when it comes to finding
minimizers of respectively Rα and R0 in suitable classes of weighted graphs with pre-
scribed fluxes at their terminal points, or more generally in the class of rank one tensor
valued measures having divergence prescribed by (2.1), the minimizer is not necessarily
the canonical representation of an acyclic graph. Let us consider the following example,
where the minimizer contains a cycle.

Example 4.1 Consider the Steiner tree problem for {P1, P2, P3} ⊂ R2. We claim that
the minimizer of R0(Λ) =

∫
R2 |g|∞ d|~µ|1 within the class of rank one tensor valued Radon

measures Λ = τ ⊗ g · |~µ|1 satisfying (2.1) is supported on the triangle L = [P1, P2] ∪
[P2, P3]∪ [P1, P3], hence it is not acyclic. Denoting τ the global orientation of L (i.e. from
P1 to P2, P1 to P3 and P2 to P3) we actually have as minimizer

Λ = τ ⊗
([

1

2
,−1

2

]
· H1 [P1, P2] +

[
1

2
,
1

2

]
· H1 [P3, P2] +

[
1

2
,
1

2

]
· H1 [P3, P1]

)
. (4.4)

The proof of the claim follows from Remark 4.2 and Lemma 4.3.

Remark 4.2 (Calibrations) A way to prove the minimality of Λ = τ ⊗ g · H1 L
within the class of rank one tensor valued Radon measures satisfying (2.1) is to exhibit
a calibration for Λ, i.e. a matrix valued differential form ω = (ω1, . . . , ωN−1), with
ωj =

∑d
i=1 ωijdxi for measurable coefficients ωij , such that

• dωj = 0 for all j = 1, . . . , N − 1;

• ‖ω‖∗ ≤ 1, where ‖ · ‖∗ is the dual norm to ‖τ ⊗ g‖ = |τ | · |g|∞, defined as

‖ω‖∗ = sup{τ t ω g : |τ | = 1, |g|∞ ≤ 1};

• 〈ω,Λ〉 =
∑

i,j τiωijgj = |g|∞ pointwise, so that∫
R2

〈ω,Λ〉 = R0(Λ).

In this way for any competitor Σ = τ ′ ⊗ g′ · |~µ′|1 we have 〈ω,Σ〉 ≤ |g′|∞, and moreover
Σ− Λ = DU⊥, for U ∈ BV (R2;RN−1), hence∫

R2

〈ω,Λ− Σ〉 =

∫
R2

〈ω,DU⊥〉 =

∫
R2

〈dω, U〉 = 0 .

It follows

R0(Σ) ≥
∫
R2

〈ω,Σ〉 =

∫
R2

〈ω,Λ〉 = R0(Λ) ,

i.e. Λ is a minimizer within the given class of competitors.
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Let us construct a calibration ω = (ω1, ω2) for Λ in the general case P1 ≡ (x1, 0),
P2 ≡ (x2, 0) and P3 ≡ (0, x3), with x1 < 0, x1 < x2 and x3 > 0.

Lemma 4.3 Let P1, P2, P3 defined as above and Λ as in (4.4). Consider ω = (ω1, ω2)
defined as

ω1 =
1

2a
[(x1 + a)dx+ x3dy], ω2 =

1

2a
[(x1 − a)dx+ x3dy], for (x, y) ∈ BL

ω1 =
1

2b
[(x2 + b)dx+ x3dy], ω2 =

1

2b
[(x2 − b)dx+ x3dy], for (x, y) ∈ BR

with BL the left half-plane w.r.t. the line containing the bisector of vertex P3, BR the
corresponding right half-plane and a =

√
x2

1 + x2
3, b =

√
x2

2 + x2
3. The matrix valued

differential form ω is a calibration for Λ.

Proof: For simplicity we consider here the particular case x1 = −1
2 , x2 = 1

2 and x3 =
√

3
2

(the general case is similar). For this choice of x1, x2, x3 we have

ω1 =
1

4
dx+

√
3

4
dy, ω2 = −3

4
dx+

√
3

4
dy, for (x, y) ∈ R2, x < 0,

ω1 =
3

4
dx+

√
3

4
dy, ω2 = −1

4
dx+

√
3

4
dy, for (x, y) ∈ R2, x > 0.

The piecewise constant 1-forms ωi for i = 1, 2 are globally closed in R2 (on the line {x = 0}
they have continuous tangential component), ‖ω‖∗ ≤ 1 (cf. Remark 4.2), and taking their
scalar product with respectively (1, 0)⊗ (1/2,−1/2), (−1/2,

√
3/2)⊗ (1/2, 1/2) for x < 0

and (1/2,
√

3/2)⊗ (1/2, 1/2) for x > 0 we obtain in all cases 1/2, i.e. |g|∞, so that∫
R2

〈ω,Λ〉 = R0(Λ) .

Hence ω is a calibration for Λ.
�

Remark 4.4 A calibration always exists for minimizers in the class of rank one tensor
valued measures as a consequence of Hahn-Banach theorem (see e.g. [24]), while it may
be not the case in general for graphs with integer or real weights. The classical minimal
configuration for (STP) with 3 endpoints P1, P2 and P3 admits a calibration with respect
to the norm Φ∗∗00 in RN−1 (see [24]) and hence it is a minimizer for the relaxed functional
R0(Λ) = ||Λ||Φ∗∗00 among all real weighted graphs (and all rank one tensor valued Radon
measures satisfying (2.1)). It is an open problem to show whether or not a minimizer of
the relaxed functional R0(Λ) = ||Λ||Φ∗∗00 has integer weights.
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4.2 Extension to general matrix valued measures

Let us turn next to the convex relaxation of Fα for generic d× (N − 1) matrix valued
measures µ = (µ1, . . . , µN−1), where µi, for 1 ≤ i ≤ N − 1, are the vector measures
corresponding to the columns of µ. As a first step observe that, due to the positively
1-homogeneous request on Rα, whenever Λ = p ·H1 L = τ ⊗ g ·H1 L, with |τ | = c ≥ 0
and gi ∈ {0, 1}, we must have

Rα(Λ) =

∫
Rd
|τ ||g|1/α dH1 L =

∫
Rd

Φα(p) dH1 L,

with Φα(p) = |τ ||g|1/α is defined only for matrices p ∈ K0 (+∞ otherwise), where

K0 = {τ ⊗ g ∈ Rd×(N−1), gi ∈ {0, 1}, |τ | = c ≥ 0}.

Following [18], we look for Φ∗∗α , the positively 1-homogeneous convex envelope on
Rd×(N−1) of Φα(·). Setting q = [q1, . . . , qN−1], with qi ∈ Rd its columns, we have that the
convex conjugate function Φ∗α(q) = sup{q · p− Φα(p), p ∈ K0} is given by

Φ∗α(q) = sup

{
τ t · q · g − |τ | · |g|1/α , |τ | = c ≥ 0, g =

∑
i∈J

ei, J ⊂ {1, ..., N − 1}

}

= sup

 c

τ t ·
∑
j∈J

qj

− |J |α
 , c ≥ 0, |τ | = 1, J ⊂ {1, ..., N − 1}

 .

Hence Φ∗α is the indicator function of the convex set

Kα =

{
q ∈ Rd×(N−1),

∣∣∣∣∣∑
i∈J

qi

∣∣∣∣∣ ≤ |J |α ∀ J ⊂ {1, ..., N − 1}

}
,

and in particular, for α = 0, it holds (cf. [18])

K0 =

{
q ∈ Rd×(N−1),

∣∣∣∣∣∑
i∈J

qi

∣∣∣∣∣ ≤ 1 ∀ J ⊂ {1, ..., N − 1}

}
.

It follows that Φ∗∗α is the support function of Kα, i.e., for p ∈ Rd×(N−1),

Φ∗∗α (p) = sup
q∈Kα

p · q = sup

{
p · q ,

∣∣∣∣∣∑
i∈J

qi

∣∣∣∣∣ ≤ |J |α , J ⊂ {1, ..., N − 1}

}
, (4.5)

with q1, . . . , qN−1 ∈ Rd the columns of q. We are then led to consider the relaxed func-
tional, for matrix valued test functions ϕ = (ϕ1, . . . , ϕN−1),

Rα(µ) =

∫
Rd

Φ∗∗α (µ) = sup

{
N−1∑
i=1

∫
Rd
ϕi dµi, ϕ ∈ C∞c (Rd;Kα)

}
.
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Observe that for µ a rank one tensor valued measure the above expression coincides with
the one obtained in the previous section choosing Ψα = Φ∗∗0α.

In the planar case d = 2, consider a 2 × (N − 1) matrix valued measure µ =
(µ1, . . . , µN−1) such that divµi = δPi−δPN . Fix a measure Γ as for instance in Remark 2.8.
We have div(µ− Γ) = 0 in R2 and by Poincaré’s lemma there exists U ∈ BV (R2;RN−1)
such that µ = Γ−DU⊥. So the relaxed functional reads

Eα(U) = Rα(µ) for µ = Γ−DU⊥, U ∈ BV (R2;RN−1). (4.6)

The relaxed irrigation problem (Iα) ≡ minBV Eα(U) can thus be described in the
following equivalent way, according to (4.5): let q = ϕ be any matrix valued test function
(with columns qi = ϕi for 1 ≤ i ≤ N − 1), then we have

(Iα) ≡ min
U∈BV (R2;RN−1)

sup


∫
R2

N−1∑
i=1

(Du⊥i − Γi) · ϕi , ϕ ∈ C∞c (R2;Kα)

 .

Notice that with respect to the similar formulation proposed in [18], there is here the
presence of an additional “drift” term, moreover the constraints set Kα is somewhat
different.

We compare now the functional Eα(U) with the convex envelope (Fα)∗∗(U) inBV (R2;RN−1),
where Fα(U) := Fα(Γ−DU⊥) if Γ−DU⊥ = Λ canonically represents an acyclic graph,
and Fα(U) = +∞ elsewhere in BV (R2;RN−1). Observe first that (Fα)∗∗(U) = Eα(U)
whenever Λ = Γ − DU⊥ canonically represents a graph connecting P1, ..., PN , so that
Eα(U) ≤ (Fα)∗∗(U) by convexity of Eα(U). Moreover, we have (Fα)∗∗(U) ≤ (F1)∗∗(U),
since Fα(U) ≤ F1(U). For α > 0, denoting µ = Γ−DU⊥, we deduce

(F1)∗∗(U) =
N−1∑
i=1

|µi|(Rd) ≤ (N − 1)1−α

(
N−1∑
i=1

|µi|1/α
)α

(Rd) ≤ (N − 1)1−αEα(U),

and analogously we have (F1)∗∗(U) ≤ (N − 1)E0(U). We obtain (cf. Proposition 3.1 of
[18])

Lemma 4.5 We have Eα(U) ≤ (Fα)∗∗(U) ≤ (N−1)1−αEα(U) for any U ∈ BV (R2;RN−1)
and any 0 ≤ α < 1.

5 Numerical identification of optimal structures

5.1 Local optimization by Γ-convergence

In this section, we plan to illustrate the use of Proposition 3.3 to identify numerically
local minima of the Steiner problem. We base our numerical approximation on a standard
discretization of (3.7). Let Ω = (0, 1)2 and assume that the convex hull of the given points
P1, . . . , PN ∈ R2 is contained in Ω. As a standard consequence, the associated Steiner
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Figure 1: Rectilinear Steiner trees and associated vectorial drifts for five and seven points

tree is also contained in Ω. Consider a Cartesian grid covering Ω of step size h = 1
M

where M > 1 is a fixed integer. Dividing every square cell of the grid into two triangles,
we define a triangular mesh T associated to Ω and replace each point Pi with the closest
grid point.

Fix now Γi an oriented vectorial measure absolutely continuous with respect to H1 as
in Remark 2.8. Assume for simplicity that Γi is supported on γi a union of vertical and
horizontal segments contained in Ω and covered by the grid associated to the discrete
points {(kh, lh), 0 ≤ k, l < M}. Notice that such a measure can be easily constructed by
considering for instance the oriented `1-spanning tree of the given points.

To mimic Proposition 3.3, we define the function space

Hh
i ≡ P1(T ,Ω \ γi) ∩BV (Ω)

to be the set of functions which are globally continuous on Ω \ γi and piecewise linear on
every triangle of T . Moreover, we require that every function of Hh

i has a jump through
γi of amplitude +1 in the orthogonal direction of the orientation of Γi. Observe that
Hh
i is a finite dimensional space of dimension M2: one element uhi can be described by

M2 + ni parameters and ni linear constraints describing the jump condition where ni is
the number of grid points covered by γi.

Then, we define the discrete version of (3.7) by

Gih(uhi ) = F ih(uhi ) =

∫
Ω\γi

f ih(uhi ) =

∫
Ω\γi
|Duhi |2 +

1

h2
W (uhi ), (5.1)

if u ∈ L1(Ω) is in Hh
i and extend Gih by letting Gih(u) = +∞ otherwise. Then we define

G0
h(uhi ) =

∫
Ω\γi

h sup
1≤i≤N−1

f ih(uhi )
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and

Gαh (uhi ) =

∫
Ω\γi

h

(
N−1∑
i=1

f ih(uhi )1/α

)α
.

By a similar strategy we used to prove Theorem 3.9, we can establish that we still have

G0
h

Γ−→ c0F0 and Gαh
Γ−→ c0Fα

with respect to the strong topology of L1(R2;RN−1). Observe that an exact evaluation
of the integrals involved in (5.1) is required to obtain this Γ-convergence result (an ap-
proximation formula can also be used but then a theoretical proof of convergence would
require to study the interaction of the order of approximation with the Γ-convergence).
We point out that this constraint is not critical from a computational point of view since
every function uih of finite energy has a constant gradient on every triangle of the mesh.
On the other hand, the potential integral can be evaluated formally to obtain an exact
estimate of this term whith respect to the degrees of freedom which describe a function
of Hh

i .

Figure 2: Local minimizers obtained by the Γ-convergence approach applied to 3, 5 and
7 points

Based on these results we performed two different numerical experiments.
We first approximated the optimal Steiner trees associated to the vertices of a triangle,

a regular pentagon and a regular hexagon with its center. To obtain the results of figure
2 we discretized the problem on a grid of size 200 × 200. In the case of the triangle we
used the associated spanning tree to define the measures (Γi)i=1,2. In the case of the
pentagon and of the hexagon we used the rectilinear Euclidean Steiner trees computed
by the Geosteiner’s library (see [33] for instance) to initiate the vectorial measures. We
refer to figure 1 for an illustration of both singular vector fields. We solved the resulting
finite dimensional problem using an interior point solver. Notice that in order to deal
with the non smooth cost function G0

h(uhi ) we had to introduce standard gap variables
to get a smooth non convex constrained optimization problem. Using [17], we have been
able to recover the locally optimal solutions depicted in figure 2 in less than five minutes
on a standard computer. Whereas the results obtained for the triangle and the pentagon
describe globally optimal Steiner trees, the one obtained for the hexagon and its center
is only a local minimizer.
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In a second experiment we focus on simple irrigation problems to illustrate the ver-
satility of our approach. We applied exactly the same approach to the pentagon setting
minimizing the functional Gαh (uhi ). We illustrate our results in figure 3 in which we recover
the solutions of Gilbert-Steiner problems for different values of α. Observe that for small
values of α, as expected by Proposition 2.6, we recover an irrigation network close to an
optimal Steiner tree.

Figure 3: Gilbert-Steiner solutions associated to parameters α = 0.2, 0.4, 0.6, 0.8 and 1
(from left to right)

5.2 Convex relaxation and multiple solutions

The convex relaxation of Steiner problem (I0) obtained following [18] reads in our discrete
setting as:

min
(uhi )1≤i<N

sup
(ϕhi )1≤i<N∈K0

h2

2

∑
t∈T

N−1∑
i=1

(∇uhi )t · (ϕhi )t (5.2)

where

K0 =

(ϕhi )1≤i<N ∈ (R2T )N−1 |∀J ⊂ {1, . . . , N − 1},∀t ∈ T ,
∣∣∣∑
j∈J

(ϕhj )t

∣∣∣ ≤ 1

 (5.3)

and ∀1 ≤ i < N , uhi ∈ Hh
i . Applying conic duality (see for instance Lecture 2 of [9]), we

obtain that the optimal vector (uhi ) solves the following minimization problem

min
(uhi )1≤i<N∈L, (ψhJ )J⊂{1,...,N−1}∈(R2T )2N−1

h2

2

∑
t∈T

∑
J⊂{1,...,N−1}

|(ψhJ)t| (5.4)

where L is the set of discrete vectors (uhi )1≤i<N which satisfy ∀i = 1, . . . , N − 1, ∀t ∈ T :

(∇uhi )t =
∑

J⊂{1,...,N−1}, i∈J

(ψhJ)t. (5.5)

We solved this convex linearly constrained minimization problem using the conic solver
of the library Mosek [28] on a grid of dimension 300 × 300. Observe that this convex
formulation is also well adapted to the, now standard, large scale algorithms of proximal
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type. We studied four different test cases: the vertices of an equilateral triangle, a square,
a pentagon and finally an hexagon and its center as in previous section. As illustrated
in the left picture of figure 4, the convex formulation is able to approximate the optimal
structure in the case of the triangle. Due to the symmetries of the problems, the three last
examples do not have unique solutions. Thus, the result of the optimization is expected
to be a convex combination of all solutions whenever the relaxation is sharp, as it can
be observed on the second and fourth case of figure 4. Notice that we do not expect this
behaviour to hold for any configuration of points. Indeed the numerical solution in the
third picture of figure 4 is not supported on a convex combination of global solutions
since the density in the middle point is not 0. Whereas the local Γ-convergence approach
of previous section was only able to produce a local minimum in the case of the hexagon
and its center, the convexified formulation gives a relatively precise idea of the set of
optimal configurations (see the last picture of figure 4 where we can recognize within the
figure the two global solutions).

Figure 4: Results obtained by convex relaxation for 3, 4, 5 and 7 given points

6 Generalizations

In this article we have focused on the optimization of one dimensional structures in the
plane in specific, classical cases. A first possible generalization is to consider the same
problems with respect to more general norms, for instance anisotropic ones: given | · |a an
anisotropic norm on Rd let respectively Φa

α(τ⊗g) = |τ |a · |g|1/α and Φa
0(τ⊗g) = |τ |a · |g|∞

for τ ∈ Rd, |τ | = 1 and g ∈ RN−1
+ , the positive orthant of RN−1. Consider a convex

positively 1-homogeneous extension Ψα and Ψ0 of resp. | · |1/α and | · |∞ to the whole of

RN−1 and form the functionals, for 0 ≤ α ≤ 1

Fαa (Λ) =

∫
L

Φa
α(τ ⊗ g)dH1 =

∫
L
|τ |aΨα(g)dH1 = ||Λ||a,α . (6.1)

where Φa
α(τ ⊗ g) = |τ |aΨα(g) denotes the corresponding extension of Φa

α to R2 ⊗ RN−1.
Then minimizers of Fαa solve the anisotropic irrigation problem (resp. the anisotropic
Steiner tree problem in case α = 0), in particular, if | · |a = | · |1, F0

a corresponds to the
rectilinear Steiner tree problem in Rd. For d = 2, following [14, 30, 2] one may reproduce
the Γ-convergence and convex relaxation approach developed here to numerically study
the anisotropic problem (6.1). A further step in this direction would consist in considering
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size or α-mass minimization problems in suitable homology and/or oriented cobordims
classes for one dimensional chains in manifolds endowed with a finsler metric.

Another generalization concerns the convex relaxation and the variational approximation
of (STP) and (Iα) in the higher dimensional case d ≥ 3. This is done in the com-
panion paper [11], where we obtain a full Γ-convergence result by using functionals of
Ginzburg-Landau type in the spirit of [1] and [32]. Moreover, as in the present paper, we
introduce appropriate “local” convex envelopes, discuss calibration principles and show
some numerical simulations.

In parallel to previous theoretical generalizations, we are currently developing numerical
approaches adapted to these new formulations. On the one hand, we are studying a
large scale approach to solve problems analogous to the conic convexified formulation of
section 5.2. Such an extension is definitely required to approximate realistic problems
in dimension three and higher. On the other hand, we want to focus on refinement
techniques which may decrease dramatically the number of degrees of freedom involved
in the optimization process. Observe for instance that very few parameters are required
to describe exactly a drift as the ones given in Figure 1. Based on such observations, a
sequential localized approach may provide a very precise description of, at least locally,
optimal structures.
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