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OPTIMAL REINFORCING NETWORKS FOR ELASTIC MEMBRANES

GIOVANNI ALBERTI, GIUSEPPE BUTTAZZO, SERENA GUARINO LO BIANCO,

AND ÉDOUARD OUDET

Abstract. In this paper we study the optimal reinforcement of an elastic membrane,
fixed at its boundary, by means of a network (connected one-dimensional structure),
that has to be found in a suitable admissible class. We show the existence of an optimal
solution that may present multiplicities, that is regions where the optimal structure
overlaps. Some numerical simulations are shown to confirm this issue and to illustrate
the complexity of the optimal network when their total length becomes large.

Keywords: Optimal networks, relaxed solution, reinforcement.
2010 Mathematics Subject Classification: 49J45, 49Q10, 35R35, 49M05, 35J25.

1. Introduction

In the present paper we consider the vertical displacement of an elastic membrane
under the action of an exterior load f and fixed at its boundary; this amounts to solve
the variational problem

min

{
1

2

∫
Ω
|∇u|2 dx−

∫
Ω
fu dx : u ∈ H1

0 (Ω)

}
(1.1)

or equivalently the elliptic PDE

−∆u = f in Ω, u ∈ H1
0 (Ω).

Here Ω is a bounded Lipschitz domain of Rd (d = 2 in the physical situation), f ∈ L2(Ω),
and H1

0 (Ω) is the usual Sobolev space of functions with zero trace on the boundary ∂Ω.
Our goal is now to rigidify the membrane by adding a one-dimensional reinforcement

in the most efficient way; the reinforcement is described by a one-dimensional set S ⊂ Ω
which varies in a suitable class of admissible choices. The effect of S on the membrane is
described by the energy value

Ef (S) = inf
{1

2

∫
Ω
|∇u|2 dx+

m

2

∫
S
|∇u|2 dH1 −

∫
Ω
fu dx : u ∈ C∞c (Ω)

}
(1.2)

that has to be maximized in the class of admissible choices for S. Here m > 0 is a fixed
parameter that represents the stiffness coefficient of the one-dimensional reinforcement,
the notation H1 indicates the 1-dimensional Hausdorff measure, while C∞c (Ω) denotes the
class of smooth functions with compact support in Ω.

In the present paper, the optimization problem we deal with consists in finding the
“best” reinforcement S among all the networks (i.e. closed connected one-dimensional
subsets) of Ω having a prescribed bound L on their total length, measured by means of
the Hausdorff measureH1(S). We consider then the maximization of the energy functional
Ef (S) in (1.2) over the admissible class above, that is

max
{
Ef (S) : S ⊂ Ω, S closed connected, H1(S) ≤ L

}
. (1.3)

We may consider, besides the case of distributed loads which consists in assuming the
load f in some Lebesgue class Lp(Ω), also the case of concentrated loads, in which f may
have a more singular behavior. More precisely, we assume f is a signed measure, so that
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the linear term
∫

Ω fu dx in (1.2) has to be written as
∫

Ω u df . It is well known that if f is
a measure we may have Ef (S) = −∞ for some choices of S; in many cases however, these
“singular” configurations are ruled out from our analysis because of the maximization
problem (1.3) we are dealing with.

Another model requiring a similar analytical approach is the one concerned with the
reduction of a traffic congestion in a given geographic region. Here the minimum problem
is

min

{∫
Ω
H(σ) dx : −div σ = f in Ω, σ · n = 0 on ∂Ω

}
where f = f+−f− and in the region Ω the function f+ represents the density of residents
while f− is the density of working places. The vector σ is the traffic flux and the function
H describes the transportation cost: the case H(s) = |s| is the classical Monge’s situation,
while it is said that the transport is congested if the function H is superlinear, that is

lim
|s|→+∞

H(s)

|s|
= +∞.

We refer to [2, 4, 5, 14] and to the references therein for a detailed description of this
model. In our case H(s) = |s|2/2, which reduces, via a duality argument, to a problem of
the form (1.1). The optimization problem arises when a new road or network of roads S
has to be built to reduce the congestion; the total length L is prescribed and on the new
road the congestion function is lower than |s|2/2, say α|s|2/2 with α < 1. The problem
consists in locating in an optimal way the one-dimensional set S and we end up, via a
duality argument, with a problem similar to the previous one, with m = 1/α.

Since limits of measures of the form H1bS can be general measures, it is convenient to
define the energy functional (1.2) even for a measure µ, by setting

Ef (µ) = inf

{
1

2

∫
Ω
|∇u|2 dx+

m

2

∫
Ω
|∇u|2 dµ−

∫
Ω
u df : u ∈ C∞c (Ω)

}
(1.4)

where also the load f is assumed to be a general measure. Passing to the limit a maximizing
sequence Sn of one-dimensional sets, and using the fact that they are connected, we end up
with an optimal measure µ which is concentrated on a one-dimensional closed connected
set S having H1(S) ≤ L. On the other hand, since the rigidity of the entire structure
improves when the reinforcement S increases, we may assume the maximizing sequence
Sn satisfies H1(Sn) = L, which implies that the total mass of the measure µ is equal to L.

We stress the fact that the connectedness assumption on S is crucial; indeed, removing
this constraint allows maximizing sequences (Sn) to spread over Ω and leads to consider
a relaxed problem of the form

max
{
Ef (µ) : µ ∈M+(Ω)

}
where Ef is the functional in (1.4) andM+(Ω) is the class of all nonnegative measures on
Ω with µ(Ω) ≤ L. This optimization problem has been studied in [10] and in [6], where
it is shown that the optimal measure µ actually belongs to Lp(Ω) where the exponent p
depends on the summability of the right-hand side f . Similar problems, in the extreme
case when in the reinforcing region a Dirichlet condition is imposed, have been considered
in [8, 9].

In our case we show that the optimal measure µ is absolutely continuous with respect to
H1bS, hence it can be written as µ = θ(x)H1bS with θ(x) ≥ 1 and

∫
S θ dH

1 = L. There-

fore, when the optimal reinforcing structure S verifies H1(S) = L, we must necessarily
have θ ≡ 1; however, in some situations, we show that the case θ(x) > 1 may actu-
ally occur. In Section 5 we present some numerical simulations, which show unexpected
behaviors of the optimal reinforcing networks.
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2. Formulation of the problem

In all the paper Ω is a bounded Lipschitz domain of Rd and f belongs to the space
M(Ω) of signed measures on Ω. The admissible class we consider consists of all networks
(one-dimensional closed connected sets) S ⊂ Ω having a total length bounded by a given
number L. More precisely we consider the class

AL =
{
S ⊂ Ω, S closed connected, H1(S) ≤ L

}
where H1 is the one-dimensional Hausdorff measure. For every S ∈ AL we define the
energy functional

Ef (S) = inf

{
1

2

∫
Ω
|∇u|2 dx+

m

2

∫
S
|∇u|2 dH1 −

∫
Ω
u df : u ∈ C∞c (Ω)

}
(2.1)

so that the optimization problem we deal with is

max
{
Ef (S) : S ∈ AL

}
. (2.2)

It has to be noticed that when f does not belong to the dual Sobolev space H−1(Ω) we
may have Ef (S) = −∞ for some choices of S; in many cases however, these “singular”
configurations are ruled out from our analysis because of the maximization problem (2.2).
However, it may happen that Ef (S) = −∞ for every S in the admissible class AL; this for
instance occurs if f = δA − δB where A,B are two points in Ω and L < |A − B|. In our
results therefore we always assume that Ef (S) is finite for at least a set S in the admissible
class AL.

As explained in the introduction, limits of maximizing sequences (Sn) in AL (intended
as measures of the form H1bSn) may lead to measures; it is therefore convenient to define
the energy functional for a general nonnegative measure µ ∈ M+(Ω) by (1.4). When
µ = H1bS we have that the energy Ef (µ) simply reduces to Ef (S). The choice of C∞c (Ω)
in (2.1) and in (1.4) has been made to have meaningful integral terms in the definition
of the energy functional; however, instead of C∞c (Ω) we may equivalently use functions
which are continuous, smooth near the support of µ and in H1

0 (Ω). The integral functionals
of the form (1.4) and the corresponding Sobolev spaces H1

µ have been studied in [3], to
which we refer for all the details. In our case the infimum in (1.4) becomes a minimum in
H1

0 (Ω) ∩H1
µ which reads

Ef (µ) = min

{
1

2

∫
Ω
|∇u|2 dx+

m

2

∫
Ω
|∇µu|2 dµ−

∫
Ω
u df : u ∈ H1

0 (Ω) ∩H1
µ

}
(2.3)

where ∇µ denotes the tangential gradient with respect to µ and H1
µ the Sobolev space

of functions u in H1
0 (Ω) whose tangential gradient ∇µu is in L2

µ. When µ is of the form

θH1bS with S rectifiable (we recall that all connected one-dimensional sets are rectifiable)
and θ ≥ 1, the tangential gradient ∇µ reduces to the tangential gradient ∇τ with respect
to S and (2.3) becomes

Ef (µ) = min

{
1

2

∫
Ω
|∇u|2 dx+

m

2

∫
S
θ|∇τu|2 dH1 −

∫
Ω
u df : u ∈ H1

0 (Ω) ∩H1(S)

}
.

(2.4)
It is convenient to denote by Eµ,f (u) the quantity

Eµ,f (u) =
1

2

∫
Ω
|∇u|2 dx+

m

2

∫
Ω
|∇µu|2 dµ−

∫
Ω
u df.

Moreover, we denote by M+
L (Ω) the class of measures µ ∈M+(Ω) such that

-) µ(Ω) ≤ L;
-) µ is supported by a closed connected set;
-) µ ≥ H1bsptµ.
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A first existence result relies on a compactness property with respect to the Hausdorff
convergence and is given below.

Theorem 2.1. Let f ∈M(Ω) and assume that Ef (µ) is finite for at least a µ ∈M+
L (Ω).

Then the maximization problem

max
{
Ef (µ) : µ ∈M+

L (Ω)
}

(2.5)

admits at least a solution.

The optimal measures µ solving the maximization problem (2.5) are general measures
in M+

L (Ω) supported by a one-dimensional closed connected set S; moreover, since the
energy Ef (µ) increases when µ increases, we may reduce to consider only measures with
µ(Ω) = L. However, the optimal measures µ above, in principle may have singular parts
with respect to the Hausdorff measure H1bS. The next result shows that this does not
occur.

Theorem 2.2. Let µ be a solution of the maximization problem (2.5). Then there exists
a one-dimensional closed connected set S such that the absolutely continuous part of µ
with respect to H1bS is also a solution of (2.5). In other words, problem (2.5) admits a
solution µ of the form µ = θ(x)H1bS, with S ∈ AL and θ(x) ≥ 1.

By the theorem above it follows that there exists an optimal measure µ which is is
absolutely continuous with respect to H1bS, hence it can be written as

µ = θ(x)H1bS with

∫
S
θ dH1 = L and θ(x) ≥ 1 H1-a.e on S.

In the following example we show that the case θ(x) > 1 may actually occur.

Example 2.3. Let us consider Ω ⊂ R2, let A,B ∈ Ω be two points such that |A−B| = 1,
and let f = δA− δB. Taking in account the maximization problem (2.5) three possibilities
may occur, depending on the choice of L.

• If L < 1 we have Ef (S) = −∞ for every S in the class AL. In fact, since a
connected set S of length L < 1 cannot contain both A and B, and since in R2

the capacity of a point is zero, we may construct a sequence (un) in C∞c (Ω) which
is bounded in H1(Ω), vanishes on S, and with un(A)− un(B) arbitrarily large.
• If L = 1 the unique configuration for which the energy is not −∞ is the segment
S connecting A and B, which is then the unique solution of the maximization
problem (2.2).
• If L > 1 we have θ(x) > 1 on some parts of the set S (see the numerical simulations

of Section 5).

3. Proofs

In the rest of the paper we use the following result.

Proposition 3.1. Let (µn) be a bounded sequence of measures on Rd weakly* converging
to a measure µ and let (Sn) be a sequence of closed connected subsets of Rd converging to
a set S in the Hausdorff sense. Assume that

(1) µn is supported by Sn;
(2) H1(Sn) ≤ L;
(3) µn ≥ H1bSn.

Then:

(a) µ is supported by S;
(b) H1(S) ≤ L;
(c) µ ≥ H1bS.
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Proof. The fact that µ is supported by S easily follows from the weak* convergence of µn
to µ and from the Hausdorff convergence of Sn to S. The fact that H1(S) ≤ L follows
from the Golab theorem. To prove that µ ≥ H1bS, take a point x0 ∈ S and a ball B(x0, r);
for all r except a countable family we have

µ
(
B(x0, r)

)
≥ lim sup

n
µn
(
B(x0, r)

)
≥ lim sup

n
H1
(
Sn ∩B(x0, r)

)
≥ H1

(
S ∩B(x0, r)

)
where the last inequality follows again by the Golab theorem. Since x0 and r were arbi-
trary, this concludes the proof. �

Proof of Theorem 2.1. Let µn be a maximizing sequence for the optimization problem
(2.5). Since µn are bounded as measures, we may extract a subsequence weakly* con-
verging to a measure µ; at the same time, the supports Sn of µn are compact for the
Hausdorff convergence, hence we may suppose they converge to a closed connected set S.
By Proposition 3.1 we have that µ ∈M+

L (Ω). The functional Ef (µ), being the infimum of
weakly* continuous functionals, is weakly* upper semicontinuous, so that

Ef (µ) ≥ lim sup
n
Ef (µn).

Therefore µ is a solution of the optimization problem (2.5). �

In order to prove Theorem 2.2 we need some preliminary results.

Lemma 3.2. Let K ⊂ R be a compact set with |K| = 0. For all ε > 0 there exists a
function fε : R→ R of class C∞(R) such that:

(1) fε is locally constant on K, that is for every x ∈ K there exists an interval I of x
in which fε is constant;

(2) |fε(x)− x| ≤ ε for all x ∈ R;
(3) 0 ≤ f ′ε(x) ≤ 1 for all x ∈ R and f ′ε(x) = 1 on R \ Aε, where Aε is an open set

containing K with |Aε| < ε.

Proof. Let Aε ⊃ K be a bounded open set such that |Aε| < ε. Since K is compact there
exist αε > 0 such that dist(K,Acε) ≥ αε. Denoting by x̄ = inf Aε, we take

gε(x) = x̄+

∫ x

x̄
1R\Aε

(t) dt, fε(x) = gε ∗ ρ,

where ρ is a kernel convolution of radius αε/2. It is easy to see that fε is a smooth function
with the properties (1)–(3). �

Lemma 3.3. Let K be a compact set in Rd with H1(K) = 0. For all ε > 0 there exist a
function φε : Rd → Rd of class C∞(Rd), such that:

(1) φε is locally constant on K, that is for x ∈ K there exists a neighborhood U of x
in which φε is constant;

(2) |φε(x)− x| ≤ ε for all x ∈ Rd;
(3) |∇φε(x)| ≤ 1 for all x ∈ Rd and |∇φε(x)| = 1 on R \ Aε, where Aε is an open set

containing K with |Aε| < ε.

Proof. Let Ki be the projections of K on the coordinates axes and denote by fi,ε : R→ R,
i = 1, . . . , d the functions constructed in Lemma 3.2 on Ki. It is easy to see that

φε(x1, x2, . . . , xd) =
(
f1,ε(x1), f2,ε(x2), . . . , fd,ε(xd)

)
,

has the properties (1)–(3). �

Lemma 3.4. Let Ω ⊂ Rd and let µ be a measure concentrated on a one dimensional set
Σ ⊂ Ω, with µa and µs the absolute continuous part and the singular part with respect to
H1bΣ respectively. Then we have:

Ef (µ) = Ef (µa). (3.1)
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Proof. We have to show that for every v ∈ C∞c (Ω) and ε > 0 there exist u ∈ C∞c (Ω) such
that:

1

2

∫
Ω
|∇u|2 dx−

∫
Ω
fu dx+

m

2

∫
Ω
|∇u|2 dµ

≤ Cε+
1

2

∫
Ω
|∇v|2 dx−

∫
Ω
fv dx+

m

2

∫
Ω
|∇v|2 dµa

(3.2)

for a suitable constant C. Let us denote by d(x) the function d(x) = dist(x,Σ) and for
every ε > 0 by θε : R→ R a smooth function such that

θε(s) = 1 if |s| < ε

θε(s) = 0 if |s| > 2ε

|θ′ε(s)| ≤ 1/ε if ε < |s| < 2ε.

We denote by E ⊂ Σ the subset of Σ on which the singular part µs is concentrated,
with H1(E) = 0. The set E can be approximated by compact sets Kε ⊂ E such that
µs(E \Kε) < ε. Then we denote by φε : Rd → Rd a function with the properties (1)–(3)
of Lemma 3.3 on Kε. For a given v ∈ C∞c (Ω), we consider

u(x) =
(
1− θε(d(x)

)
v(x) + θε(d(x)

)
v
(
φε(x)

)
and we prove (3.2) in three steps, taking into account that

∇u = ∇v + θε(d)
(
∇v(φε)∇φε −∇v

)
+
(
v(φε)− v

)
∇θε(d)∇d.

Step 1. We prove the inequality for the term
∫

Ω u df in (3.2). Notice that, since v is
smooth, we have ∣∣v(φε(x)

)
− v(x)

∣∣ ≤ C|φε(x)− x| ≤ Cε (3.3)

where the last inequality follows by Lemma 3.3. Hence (the constant C in the following
may vary from line to line), using (3.3), gives∣∣∣ ∫

Ω
u df −

∫
Ω
v df

∣∣∣ ≤ C‖u− v‖L∞ = C
∥∥θε(d)

(
v(φε)− v

)∥∥
L∞ ≤ Cε.

Step 2. For the Lebesgue term
∫

Ω |∇u|
2 dx in (3.2), again using (3.3), the properties of

φε given by Lemma 3.3 and the smoothness of v, we have∫
Ω
|∇u|2 dx ≤

∫
Ω
|∇v|2 dx+ Cε.

Step 3. It remains to prove the result for the term in (3.2) involving µ. Observing that
θε = 1 near Σ, we have∫

Ω
|∇u|2 dµ =

∫
Ω
|∇v(φε)∇φε|2 dµ

=

∫
Ω
|∇v(φε)∇φε|2 dµa +

∫
Ω
|∇v(φε)∇φε|2 dµs

≤
∫

Ω
|∇v(φε)|2 dµa + C

∫
Ω
|∇φε|2 dµs.

The first term in the last line can be estimated as∫
Ω
|∇v(φε)|2 dµa ≤

∫
Ω
|∇v|2 dµa + Cε

where we have used the property (2) of Lemma 3.3. It remains to prove that∫
E
|∇φε|2 dµs ≤ ε. (3.4)
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Since µs(E \Kε) < ε and φε is locally constant on Kε, we have∫
E
|∇φε|2 dµs ≤

∫
Kε

|∇φε|2 dµs +

∫
E\Kε

dµs ≤ ε

which concludes the proof. �

Proof of Theorem 2.2. The proof follows straightforwardly from Lemma 3.4 and the exis-
tence Theorem 2.1. �

4. Some necessary conditions of optimality

In this section we illustrate some necessary conditions of optimality that the solution
µ = θH1bS of the optimization problem (2.5) has to satisfy.

First of all, let µ = θH1bS be fixed and let u ∈ H1
0 (Ω)∩H1

µ be a solution of (2.4), with

f ∈ L2(Ω). The Euler-Lagrange equation in its weak form is∫
Ω
∇u∇φdx+m

∫
S
θ∇τu∇τφdH1 −

∫
Ω
fφ dx = 0 ∀φ ∈ H1

0 (Ω) ∩H1
µ. (4.1)

In order to integrate by parts the terms above we assume that S is smooth enough except
for a finite number of branching points and that θ is continuous on S. We then have∫

Ω
∇u∇φdx =

∫
Ω\S
∇u∇φdx = −

∫
Ω\S

∆uφ dx−
∫
S

[∂u
∂n

]
φdH1,

where, denoting by u+ and u− the function u on the two sides of S, and by n+ and n−

the normal versor to S in the direction of u+ and u− respectively, we have set[∂u
∂n

]
=
∂u+

∂n+
+
∂u−

∂n−
.

Note that the quantity above does not depend on the choice of the two sides of S. We
integrate now by parts the integral on S and we obtain∫

S
θ∇τu∇τφdH1 = −

∫
S

divτ
(
θ∇τu

)
φdH1 +

[
θ∇τuφ

]
S# ,

where we denoted by S# the set of points of S which are of terminal type or of branching
type. Putting all terms together we obtain from (4.1)−∆u = f in Ω \ S[∂u

∂n

]
+ divτ

(
θ∇τu

)
= 0 on S.

Concerning the conditions on a point x0 ∈ S# we obtain:

- if x0 ∈ S# ∩ ∂Ω we have the Dirichlet condition u(x0) = 0;
- if x0 ∈ S#∩Ω is a terminal point of S we have the Neumann condition∇τu(x0) = 0;
- if x0 ∈ S# ∩ Ω is a branching point of S we have the Kirchhoff condition∑

i

∇τiui = 0,

where ui are the traces of u on the various branches and τi the corresponding
tangent vectors.

Proposition 4.1. Let µ = θH1bS be a solution of the optimization problem (2.5) and let
u be the optimal state function associated to µ. Then we have for a suitable constant c{

|∇τu| = c H1 a.e. on {θ > 1}
|∇τu| ≤ c H1 a.e. on {θ = 1}.
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Proof. We compute the first variation with respect to θ, keeping S fixed, considering the
density µε = (θ + εη)H1bS. In order to have that µε be admissible we require

η ≥ 0 on {θ = 1} and

∫
S
η dH1 = 0. (4.2)

By the optimality of µ we have

Ef (µ) = inf
u
Eµ,f (u) ≥ Ef (µε) = inf

u
Eµε,f (u)

and, taking the optimal state uε of µε as a test function for µ, we deduce that

Ef (µ) ≤ 1

2

∫
Ω
|∇uε|2 dx+

m

2

∫
S
θ|∇τuε|2 dH1 −

∫
Ω
fuε dx

= Ef (µε)− ε
m

2

∫
S
η|∇τuε|2 dH1.

Therefore ∫
S
η|∇τuε|2 dH1 ≤ 0 for all η verifying (4.2).

Passing to the the limit as ε→ 0 we have∫
S
η|∇τu|2 dH1 ≤ 0 for all η verifying (4.2). (4.3)

Denoting by S0 and S1 respectively the sets {θ > 1} and {θ = 1}, and taking η = 0 on
{θ = 1}, gives ∫

S0

η|∇τu|2 dH1 ≤ 0 for all η with

∫
S0

η dH1 = 0,

which implies

|∇τu| = c on S0

for a suitable constant c. By (4.3) we now deduce for all η ≥ 0 on S1

0 ≥
∫
S1

η|∇τu|2 dH1 + c2

∫
S0

η dH1 =

∫
S1

η
(
|∇τu|2 − c2

)
dH1,

which implies

|∇τu| ≤ c on S1

as required. �

5. Numerical approximation of optimal reinforcing networks

Let Ω be a convex domain of R2, L, m > 0 and f ∈ L2(Ω). We introduce in this section
a numerical strategy to approximate solutions of the following reinforcement problem:

max
(S,θ)

min
u∈H1

0 (Ω)

1

2

∫
Ω
|∇u|2 dx+

m

2

∫
S
|∇τu|2θ dH1 −

∫
Ω
fu dx (5.1)

where ∇τu denotes the tangential derivative of u along S and the couple (S, θ) satisfies
the constraints: 

S is compact and connected,

θ ∈ L1(S),∫
S θ dH

1 = L,

θ ≥ 1 almost everywhere with respect to H1.

Previous sections establish that this problem is well posed and satisfies optimality con-
ditions of Proposition 4.1. First, we introduce the following simplification, replacing the
tangential contribution in cost function (5.1) by the full gradient of the state function (see



OPTIMAL REINFORCING NETWORKS FOR ELASTIC MEMBRANES 9

[3] or [1] Theorem 2.25 p. 164 for a complete justification). Namely, we consider in the
following the cost function:

max
(S,θ)

min
u∈H1

0 (Ω)

1

2

∫
Ω
|∇u|2 dx+

m

2

∫
S
|∇u|2θ dH1 −

∫
Ω
fu dx. (5.2)

Since we expect problem (5.2) to have many local minima, we focus on stochastic opti-
mization algorithms which only require cost function evaluations to proceed.

5.1. Spanning tree parametrization and discrete functional. To discretize problem
(5.2), we consider a mesh T associated to the domain Ω made of np points and nt triangles.
We denote by K and M respectively the stiffness and mass matrices of dimensions np ×
np associated to the finite elements P1 on T . Moreover, we define Kx and Ky to be
the differentiation matrices of P1 functions. More precisely, Kx and Ky are matrices of
dimensions nt×np which evaluate the operators ∂x and ∂y on piecewise linear continuous
functions on the mesh T . Observe that due to the linearity of P1 elements, ∂x and ∂y
are constant on every triangle of the mesh. Denoting by Vareas the column vector of size
nt × 1 containing the area measures of every triangle, we recall the simple identity

K = KT
x VareasKx +KT

y VareasKy.

We denote by the letter U a real vector of np node values representing an element of
P1 ∩H1

0 (Ω).
Problem (5.2) involves both a connected set and an associated weight function. In order

to parametrize connected one dimensional structures, we follow the strategy developed in
[7]. Let nd ∈ N∗ and consider a set of nd points P1, . . . , Pnd

∈ Ω. We associate to such
a set its canonical spanning tree SP (P1, . . . , Pnd

) which is the polygonal set of minimal
length connecting the nd points without introducing new branching points. Let us point
out that SP (P1, . . . , Pnd

) is the union of nd − 1 arcs generically. It is straightforward
to establish that the union for nd ∈ N∗ of such spanning trees is dense with respect to
Hausdorff distance among compact connected subsets of Ω. To describe an L1 element of
SP (P1, . . . , Pnd

), we simply consider a vector θweights of nd−1 values greater then 1 which
represent a piecewise constant function on every arc of the tree.

Let Vlengths(P1, . . . , Pnd
, θweights) be the vector of size nt×1 which contains the weighted

lengths of SP (P1, . . . , Pnd
) intersected with every triangle of the mesh T . With previous

notations, we can now introduce a discrete functional to approximate cost function (5.2):

max
(SP (P1,...,Pnd

),θweights)
min

U∈P1∩H1
0 (Ω)

1

2
UTKU+

m

2
UT
(
KT
x VlengthsKx +KT

y VlengthsKy

)
U−MF

where F is the linear interpolation of the given function f at the vertices of the mesh
T . The pair (SP (P1, . . . , Pnd

), θweights) must satisfy the constraints that every value of
θweights is greater than 1 and the following measure equality constraint is satisfied:

nd−1∑
i=1

H1(Si)θweights(i) = L (5.3)

where the (Si)1≤i≤nd
are the nd − 1 edges of SP (P1, . . . , Pnd

). Since the second mini-
mization problem is a strictly convex quadratic problem, it reduces to solve the linear
system [

K +
m

2

(
KT
x VlengthsKx +KT

y VlengthsKy

)]
U = MF. (5.4)

5.2. Parametrization of the constraints. As explained in previous section, we need
the couple (SP (P1, . . . , Pnd

), θweights) to have weights greater than one and satisfies equal-
ity constraint (5.4). To parametrize such admissible couples we introduce a last scale
parameter denoted by hs ∈]0, 1[. We introduce in algorithm 1 a three steps procedure to
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Figure 1. Approximation of globally optimal reinforcement structures for
m = 0.5, L = 1, 2 and 3. The upper colorbar is related to the weights θ
which colors the optimal reinforcement set on the left whereas the lower
colorbar stands for the tangential gradient plotted on the connected set on
the right picture

produce an admissible pair
(
SP (P1, . . . , Pnd

)
, θweights) for a given triplet of parameters(

SP (P1, . . . , Pnd
), θweights, hs

)
.

5.3. Technical details and complexity. We summarize in algorithm 2, the different
steps required to compute the cost associated to a given set of parameters, that we choose



OPTIMAL REINFORCING NETWORKS FOR ELASTIC MEMBRANES 11

Algorithm 1 Projection on weighted length and bound constraints.

Input: L, SP (P1, . . . , Pnd
), θweights, hs.

step 1: Compute the length L of SP (P1, . . . , Pnd
) and the center of mass C of the

points P1, . . . , Pnd
.

step 2: Define (P1, . . . , Pnd
) to be the image of SP (P1, . . . , Pnd

) by the homothety

of center C and ratio hsL/L.
step 3: Project the weight vector θweights on the convex set which is the intersec-

tion of the linear constraint (5.3) with respect to SP (P1, . . . , Pnd
) and the bound

constraints θweights ≥ 1. The projected vector is denoted by θweights.

Output: SP (P1, . . . , Pnd
), θweights.

Algorithm 2 Summary of one cost evaluation.

Input: m, l, SP (P1, . . . , Pnd
), θweights, hs.

step 1: Project (SP (P1, . . . , Pnd
), θweights) with algorithm 1 to obtain an admissible

couple (SP (P1, . . . , Pnd
), θweights).

step 2: Locate points P1, . . . , Pnd
in the mesh T .

step 3: Compute the intersection of every arc of SP (P1, . . . , Pnd
) with every triangle

of T to evaluate Vlengths(P1, . . . , Pnd
, θweights).

step 4: Assemble matrix KT
x VlengthsKx+KT

y VlengthsKy and solve linear system (5.4)

to compute its solution U .

Return: 1
2U

T
KU + m

2 U
T (
KT
x VlengthsKx +KT

y VlengthsKy

)
U −MF

as
(
SP (P1, . . . , Pnd

), θweights, hs
)
. We give below some technical details and underline the

computational complexity of every step.
In the first phase of projection, only the final step of the procedure is not computa-

tionally trivial. Whereas the projection of a point onto an hyperplane can be analytically
described, the projection on an hyperplane intersected with a box requires a specific atten-
tion. In all our experiments, we used Dai and Fletcher algorithm [11] to obtain a fast and
precise approximation of this projection. Observe that the spanning tree SP (P1, . . . , Pnd

)
is precisely by construction of length hsL ≤ L which implies that constraints (5.3) and
θweights ≥ 1 are compatible. In our situation, an order of only nd iteration was required
to reach a relative error of 10−6 on first order optimality conditions with respect to the
infinity norm which reduces to a complexity of order n2

d.
Second and third step have been carried out using an hash structure representation of

the mesh T combined with a Quad-tree associated to its vertices. Using those precom-
puted information, these operations required in practice an order of (nd +np) log(nd +np)
operations.

Finally, assembling and solving the linear system has been performed by a standard
Cholesky decomposition which concentrated the main part of the computational effort in
our experiments where the number of parameters 3nd was negligible with respect to np
which was of order 104.

5.4. Numerical experiments. Based on previous discretization, we approximate opti-
mal triplet solution of problem (5.2) using a stochastic algorithm. We focus our study
on the homogeneous load case corresponding to f constantly equal to 1 and on the sum
of two Dirac masses f = δ(−1/2,0) − δ(1/2,0). In all our experiments, we used the NLopt
library (see [12]) and its implementation of ISRES algorithm with its default parameters.
We carried out optimization runs limited to five hours of computation leading to a order
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of 2 × 106 cost function evaluations on a standard computer for a mesh made of 104 tri-
angles. In figures 1 and 3, we describe the optimal configurations we obtained for L = 1
to L = 6 obtained with nd = 20. Observe that the resulting number of parameters in the
triplet is exactly 3nd. Moreover, in order to obtain a fine and stable description of optimal
structures, we performed a local optimization step of the obtained structure increasing
the number of points to nd = 50. We used the NLopt implementation of the BOBYQA
algorithm for this final step which do not requires gradient base information.

Finally, we give in table 1 several numerical estimates obtained on a fine mesh with
105 elements of our computed sets and also of natural networks which could be guess to
be optimal. As illustrated by these numerical values, neither the radius (for L = 1), a
diameter (for L = 2), a triple junction (for L = 3) or a cross for (L = 4) seem to be
optimal.

As described in proposition 4.1, we recover the fact that, for optimal structures when
θ > 1, the tangential gradient is almost constant whereas we can observe drastic changes
of magnitude when θ = 1 (see Figures 1, 3 and 2).

Length constraint l Theoretical guesses Computed optimal networks
1 -0.179471 (radius) -0.178873
2 -0.165095 (diameter) -0.161944
3 -0.152676 (star) -0.149601
4 -0.141969 (cross) -0.138076
5 - -0.127661
6 - -0.117140

Table 1. Reinforcement values computed on a fine mesh of 106 elements
for classical and computed connected sets for m = 0.5

6. Some open questions

There are several interesting open questions related to the optimization problem (2.5);
we try to list here below some of them. We denote by µ = θH1bS an optimal solution of
(2.5), whose existence was proved in Theorem 2.1 and in Theorem 2.2.

• According to Theorem 2.2 the optimal density θ is in L1(S) with respect to the
one-dimensional Hausdorff measure H1bS. It would be interesting to investigate
the cases in which θ is bounded and, possibly refining the assumptions on the data,
when θ has some regularity properties.
• In the numerical simulations we made, the optimal set S never contains closed

curves; it would be interesting to show this fact under fairly general assumptions.
• The optimal set S is not in general a curve since it may present branching points;

this seems to occur only for values of L large enough. Moreover, when a branching
occurs, it is not clear what is the necessary condition of optimality for the related
angles.
• The regularity of the optimal set S seems a difficult issue: is it true that, under

suitable assumptions on the data, the set S is smooth except a finite number of
branching points?
• When the admissible total length L tends to +∞ the optimal set S tends to fill

the entire Ω. Is there an asymptotic behavior of the set S as L → +∞? This
reminds a Γ-convergence result for the irrigation problem, studied in [13].
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Figure 2. Approximation of globaly optimal reinforcement strucutres for
m = 0.5, L = 1.5, 2.5 and 5 for a source consisting of two dirac masses.
The upper colorbar is related to the weights θ which colors the optimal
reinforcement set on the left whereas the lower colorbar stands for the
tangential gradient plotted on the connected set on the right picture
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(GNAMPA) of the “Istituto Nazionale di Alta Matematica” (INDAM). Édouard Oudet
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Figure 3. Approximation of globaly optimal reinforcement strucutres for
m = 0.5, L = 4, 5 and 6. The upper colorbar is related to the weights θ
which colors the optimal reinforcement set on the left whereas the lower
colorbar stands for the tangential gradient plotted on the connected set on
the right picture
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Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56126 Pisa, ITALY
E-mail address: giuseppe.buttazzo@unipi.it

Dipartimento di Matematica e Applicazioni ”R. Caccioppoli”, Università di Napoli “Fed-
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