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Abstract

We analyze financial markets in which agents face differential con-
straints on the set of assets in which they can trade. In particular, the
assets available to each agent span a partition of the state space, which can
be strictly coarser than the partition spanned by the assets available in
the market. We first show that the existence of differential constraints has
an impact on prices and allocations as compared to a complete financial
market with unconstrained agents.

We consider the implications for survival, taking the work of Blume
and Easley (2006) as a starting point. We show that whenever agents have
identical correct beliefs and equal discount factors, and their partitions
are nested, all agents survive. When agents have heterogeneous beliefs,
differential constraints may allow agents with wrong beliefs to survive.
Provided constraints are relevant (in a sense we define more precisely),
the condition for an agent to survive is that his survival index is at least as
large as that of the agents with finer partitions. We also study the impact
of deregulation (an increase in the set of assets available to some agents).
Unless the agent can adopt beliefs that are closer to the truth on the
newly refined partition than those of less constrained agents, increasing
his opportunities for trade might harm his chances for survival.
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1 Introduction

The question of whether financial markets price assets accurately is of central
importance in economics, especially in the light of the rapid increase in the vol-
ume, value and complexity of financial transactions over recent decades. The
strong form of the effi cient markets hypothesis (EMH) states that the market
price of an asset is the best possible estimate of its value, given all available
information, public and private. However, the observed behavior of financial
markets appears inconsistent with the strong-form EMH in a number of re-
spects. Notable examples are excessive volatility (including apparent ‘bubbles’
and crashes) and the ‘equity premium’and ‘risk-free rate’puzzles.
One argument in favor of strong-form EMH, discussed by Blume and Easley

(2006) and Sandroni (2000), is the idea that markets favor the best-informed
and most rational traders. Trades in a financial market may be seen as ‘betting
one’s beliefs’about the relative probabilities of different states of nature, and
the resulting returns on assets. Over time, traders who correctly judge these
probabilities and make rational investment choices based on their beliefs will
accumulate wealth at the expense of others. In the limit, only these rational
well-informed traders will survive, and market prices will reflect their beliefs.
This argument is intuitively appealing, and the central result can be derived

under relatively weak conditions. However, the argument raises some serious
diffi culties.
First, in simple versions of the model, all but the best-informed traders

vanish almost surely (a.s.). This appears inconsistent with observed outcomes,
where some traders do better than others over the long run, but poorly-informed
traders manage to survive. The result is also problematic as regards welfare.
While trade ensures that assets are priced correctly, it does so by greatly in-
creasing consumption inequality. In the limit, consumption is driven to zero for
all but the best-informed. The empirical failure of predictions on survival, de-
rived from standard models, casts doubt on all the predictions of those models.
Hence, it is of interest to consider more realistic models, where poorly informed
agents can survive.
Second, in the Blume—Easley version of the model, all traders can select

their most preferred portfolio from a set of securities that spans the state
space. Hence, traders can be regarded as choosing state-contingent consumption
streams, and there is no need to make the associated asset markets explicit.
This assumption is technically convenient and provides insight into the in-

tuition underlying the key results. However, it is problematic because the set of
financial assets traded in markets, while it may be large, is finite. By contrast,
the set of economically relevant contingencies on which agents might conceivably
trade is effectively unbounded.
Even within the span of the market, the assumption that traders can always

select their most preferred state-contingent consumption stream is not satis-
fied by large numbers of agents. Some institutional investors are constrained
by requirements to invest only in particular classes of assets, or to hold only
investments with an investment grade (typically credit rating).
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In addition to explicit constraints, the portfolio choices of many investors ap-
pear to reflect implicit constraints. These choices may be explained by bounded
rationality, for example in the form of limited awareness (Guiso and Jappelli
2005; Quiggin and Siddiqi 2016) or as the result of transactions costs associ-
ated with entering a particular market (as in Blume et al. 2015). Whatever
the cause, the result is that the spanning assumption of Blume and Easley be-
comes problematic. The consumption plans available to investors are restricted
to those that can be implemented using the set of assets in which they are able
to trade.
Another problem is that the financial sophistication implied by the capacity

to implement any desired state-contingent consumption plan through financial
transactions is at odds with the core assumption of the model, namely, that
agents are willing to make investments based on their own beliefs, even though
they are aware that others hold different beliefs. This assumption is, on the face
of things, inconsistent with the result of Aumann (1976) that, given common
knowledge of rationality, such disagreement is impossible.
In this paper, we examine the Blume—Easley survival result in a context

where agents may be constrained to trade in a subset of the assets available in
the market as a whole. This constraint may be externally imposed, as in the
case of institutions restricted to a limited set of assets, or it may arise from
cognitive limitations. In either case, the result is that agents are limited to
trades that lie within the span of the set of financial assets available to them.
We begin with an exogenously given state space, so that assets may be

described as bundles of state-contingent claims. Similarly to Sandroni (2005),
on this state space we consider a (potentially incomplete) set of securities, which
span a partition (referred to as the market partition) of this state space. That
is, each security pays 1 unit conditional on a given element of the partition being
realized and nothing otherwise. To capture differential constraints, we define
for each agent a partition, in general coarser than the market one, and assume
that each agent has access to a set of assets that span his individual partition.
We refer to this partition as the constrained partition available to a given agent.
If the partition of each agent coincides with the market partition, the usual case
of incomplete markets arises. An agent can trade in a strictly larger set of assets
than another, if the constrained partition of the first agent is strictly finer than
that of the second1 .
First, we consider an economy in which trade occurs only at time 0. With a

set of assets specified as above, the span of the market is a subspace of the space
of state-contingent claims. Consumption streams financed by asset trades must
be measurable with respect to this subspace. Similarly, each agent’s net trades
must be measurable with respect to his constrained partition. While we do not

1 In an Online Appendix accompanying this paper, we use results by Choquet (1966),
Kendall (1962) and Polyrakis (1999) to demonstrate how this asset structure can be generated
from a general set of assets available in the economy and a general set of financial constraints.
A suffi cient condition called "internal completeness" is for the set of assets to contain an
appropriate set of put and call options so that the implied set of payoffs is a sublattice of the
Euclidean space.
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impose short-sale constraints, all non-negative consumption streams measurable
with respect to the span of the market can be financed without recourse to short
selling.
We consider the impact of differential asset constraints, and the associated

differences in partition refinement, on allocations and survival in markets. We
first construct a simple example of an economy with differential asset constraints
and identical beliefs and show that allocations and prices in general differ from
those in the complete markets case. In particular, differential asset constraints
might lead (force) less constrained agents to buy only partial insurance against
idiosyncratic risk, even though, by trading among themselves, they could fully
insure themselves against idiosyncratic risk. We illustrate this in Examples
1 and 2. For Example 1, we provide conditions under which less constrained
agents will choose to bear more risk than constrained agents, in return for higher
expected consumption.
We next demonstrate that these effects are persistent in that constrained

agents are not driven out of the market. In particular, whenever agents have
equal discount factors and identical correct beliefs, and the constrained parti-
tions are nested, all agents almost surely survive. Thus, under these conditions,
the coarseness of the partition is irrelevant for survival, even though it alters
the equilibrium allocation and even though, ceteris paribus, agents with coarser
partitions achieve lower welfare in equilibrium. In the special case of incomplete
markets, with no differential constraints, the main results of Sandroni (2005)
and Blume and Easley (2006) remain valid.
Differential constraints make a difference when agents have heterogeneous

beliefs. Provided constraints are relevant (in a sense we will define more pre-
cisely), an agent whose beliefs are further away from the truth can survive if
the agents with beliefs closer to the truth are more constrained. The key to
the result is that agents may survive either because their probability judge-
ments are more accurate than those of others, or because they can trade in
asset markets from which agents with more accurate judgements are excluded.
This result is in stark contrast with the results cited above, which preclude be-
lief heterogeneity in bounded economies with complete markets and expected
utility maximization.
In particular, suppose that aggregate risk persists in the limit on those con-

tingencies that can only be traded by one individual. While an individual will
always try to smooth consumption across contemporaneous states, the inability
to trade with others across two or more states with distinct initial endowments
means that he will have strictly positive consumption on at least one of them
in the indefinite future and will therefore not vanish.
These results are also distinct from those obtained in the context of incom-

plete markets with sequential trading (Beker and Chattopadhyay 2010; Coury
and Sciubba 2012) where correct beliefs may not guarantee survival. In our
model, agents with correct beliefs always survive, regardless of the constraints
they face. Agents with incorrect beliefs may also survive provided they face less
financial constraints. We consider the case of sequential trading in Appendix A.
We show that the resulting survival criterion is much more complex and cannot
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in general be reduced to comparisons of the exogenous characteristics of the
agents. Nevertheless, our main insights remain robust to such an extension.
We next consider the case (arguably the most realistic) where the sets of

assets different agents have access to are not related with respect to inclusion.
We call such financial constraints ‘non-nested’. In particular, we look at an
economy, in which each agent can trade between a pair of states that no other
agent can trade on and demonstrate that all agents survive a.s. regardless of
their beliefs and discount factors. Adding an unconstrained agent with correct
beliefs to such an economy implies that the surviving traders, regardless of the
constraints they face, must have correct beliefs and equal discount factors.
Next, we study the impact of an individual gaining access to new assets,

with a resulting refinement of the constrained partition. This might occur ex-
ogenously as a result of a policy change, such as the replacement of a defined-
benefit pension plan by a defined-contribution scheme in which participants are
free to choose their own investment strategy. Alternatively the change might
arise endogenously, as the individual becomes aware of assets they had not pre-
viously considered or becomes more confident in his ability to evaluate a larger
set of assets2 .
We show that the agent almost surely vanishes, unless, upon gaining access

to the market, he adopts beliefs at least as close to the truth as those of other
agents already trading in this market. In particular, if an agent with correct
beliefs is present in the economy, a constrained agent who exogenously gains
access to new markets and who has to either guess the correct probabilities or use
Bayesian updating to learn them will vanish almost surely. More generally, we
show that while markets with less constrained agents provide more opportunities
for risk-sharing, they also pose greater risk for the survival of traders who might
misjudge probabilities.
The assumption that agents facing relaxed constraints adopt beliefs close to

those of the market is plausible in the case of an agent for whom the relaxation
of constraints is the result of increased awareness about investment options. On
the other hand, it is less plausible where access to new assets arises exogenously,
for example as a result of changes in regulation.
This finding is also relevant in the consideration of hedge funds, which invest

on behalf of high-wealth individuals. Hedge fund investors are assumed to be
suffi ciently sophisticated that they do not require prudential controls on their
investment strategies. However, many hedge funds incur losses suffi ciently severe
that they are wound up. Robust (that is, constrained optimal) investment
strategies have been proposed that would reduce the vulnerability of hedge fund
portfolios to incorrect beliefs.
Apart from extending the analysis of Blume and Easley (2006) to a market

with differential financial constraints, the results derived in the paper are of a
broader interest. First, from a normative point of view, our results provide a
potential rationale for restrictions on the investment choices available to certain
classes of agents. An example is a requirement for trustees to restrict their

2We thank an anonymous referee for suggesting this interpretation.
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holdings to investment-grade securities such as highly rated bonds.
Second, going beyond the analysis of financial markets, the results derived

here are relevant for the rapidly growing body of research on macroeconomic
models with heterogeneous agents. A crucial requirement for such models is
the existence of a long-run equilibrium in which heterogeneous agents survive
and are relevant in the determination of state-contingent prices. Our analysis
provides such an instance of persistent heterogeneity in beliefs and constraints
arising in natural settings.

2 Literature Survey

2.1 Survival in Markets

The idea that markets select for firms and agents that make optimal choices
may be traced back to mid-20th century debates about the economics of the
firm. Responding to evidence (Hall and Hitch 1939) that firms did not equate
marginal cost and marginal revenue in their pricing decisions, Alchian (1950)
and Friedman (1953) argued that markets would nonetheless select for those
firms that adopted profit-maximizing principles. Turning this argument around,
Stigler (1958) argued for the ‘survivor’principle, namely that the effi cient scale
of operation of firms in a given market could be inferred from the scale of those
firms that survived.
Similar ideas emerged in the early 2000s in relation to financial markets.

Blume and Easley (2006) and Sandroni (2000) studied the evolution of long-
lived optimizing investors with different beliefs and preferences. In bounded
economies with complete markets populated by SEU investors, only investors
with correct beliefs survive. Risk preferences are irrelevant for survival.
Blume and Easley (2006) and Massari (2013) also develop, in the context

of a bounded economy, conditions for survival for agents who are Bayesian
learners. In an unbounded economy with a bond, Cogley et al. (2014) show
that Bayesian learning need not vanish in the presence of agents who know the
truth. In our setting, where the assumption of boundedness is maintained, the
result of Blume and Easley (2006) on Bayesian learners vanishing relative to
investors with correct beliefs still applies and has some interesting consequences
when financial constraints are relaxed.
The situation is more complex in the case of incomplete markets with se-

quential trading. In this case, correct beliefs are neither necessary nor suffi cient
for survival (Beker and Chattopadhyay 2010; Coury and Sciubba 2012). Beker
and Chattopadhyay (2010) demonstrate that the dynamics of an economy with
incomplete markets is highly non-trivial: in some cases an agent with correct
beliefs can vanish, in others the economy might exhibit cycles in which the
consumption of each of the agents approaches 0 infinitely often. Coury and Sci-
ubba (2012) show that in incomplete markets, it is always possible to construct
an equilibrium in which an agent with incorrect beliefs survives. However, the
equilibrium is constructed in such a way that the allocation coincides with an
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equilibrium, in which all agents have correct beliefs. In contrast, in our set-
ting, incorrect beliefs (provided they survive), will have an impact on prices
and allocations.
Finally, several recent papers have raised issues with the concept of Pareto-

optimality in the presence of heterogeneous beliefs see, for example, Weyl (2007)
and have introduced alternative criteria for the optimality of equilibrium alloca-
tions such as belief-neutral effi ciency in Brunnermeier et al. (2014), No-Betting
Pareto improvement defined by Gilboa et al. (2014) and true-Pareto-effi ciency
studied by Blume et al. (2015). These approaches argue that certain trades
due to speculation (differences in beliefs) have to be scrutinized to determine
whether they are truly mutually improving. In this context, constraints im-
posed on trades might be socially optimal. Posner and Weyl (2013) discuss
the practical implementation of financial regulation when traders have different
beliefs.
While Blume et al. (2015) look at markets which are incomplete in the same

way for all agents, we consider differential financial constraints. Our results
show a trade-off between expanding the set of possible trades and survival at
the level of an individual. They raise the question whether investor-type specific
financial constraints might serve the double role of maximizing the number of
non-speculative trades while at the same time preventing investors with incor-
rect beliefs from engaging in speculation leading to bankruptcy.

2.2 Constrained Investment

There is extensive evidence to show that the investment choices of households
are constrained. Zhou (2015), using data from the Panel Survey on Income
Dynamics, estimates the stockmarket participation rate at 50 per cent. More
generally, as observed by French and Poterba (1991), investors hold less foreign
equity and more domestic equity than would be considered optimal on the basis
of a standard risk-return trade-off.
Many kinds of constraints in markets have been considered in the financial

market literature. Goodhart et al. (2016) provide an extensive review and
discuss the significance of market imperfections in macroeconomic modelling.
Borrowing constraints have been introduced in the form of liquidity constraints,
that is, when certain types of income cannot be traded upon in advance (see, for
example, Detemple and Serrat 2003 and Kiyotaki and Moore 2005) and in the
form of collateral requirements, (see Geanakoplos and Zame 2014 and Gottardi
and Kubler 2015, as well as the references therein). Kehoe and Levine (2001)
compare the two types of models and explain the different implications of such
restrictions on the dynamics of asset prices and allocations.
Gottardi and Kubler (2015), in particular, discuss the effi ciency of equilibria

with collateral requirements and show that, in certain cases, sharper constraints
can lead to Pareto-improvement. Araujo et al. (2005) endogenize the choice of
collateral and show that such equilibria are constrained Pareto-effi cient (given
the possibility of default). However, in this literature the possibility of default is
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not agent-specific3 . Furthermore, the effi ciency analysis is conducted assuming
that all agents have correct beliefs.
Limited participation has been studied in the literature under several differ-

ent aspects. Balasko et al. (1995) consider a one-period economy with two states
of the world, in which some of the agents cannot trade across the two states,
and discuss uniqueness of equilibria and the existence of sunspots. Multiple
papers show that imposing restrictions on the assets traded can explain some
of the stylized facts in financial markets, notably the equity premium puzzle,
the foreign equity puzzle and pro-cyclical price-dividend ratios, see Errunza and
Losq (1985, 1989), Basac and Cuoco (1998), Guo (2004) and Guevenen (2009).
Brav et al. (2002) summarize the empirical evidence.
These papers mostly assume two types of agents with specific utility func-

tions (logarithmic or CRRA) and two assets. One of the agents is restricted
and can only trade in one of the assets (a bond or his home security), while the
second agent is unrestricted and can hold both securities. Both types of agents
have correct beliefs. In contrast, we do not restrict the number or the type of
traders in our market and consider participation constraints which might con-
cern any number of assets. Furthermore, none of these studies addresses the
issue of survival of constrained traders in such markets. Hence, the question of
whether such deviations of prices from fundamentals can be persistent is so far
unresolved. Finally, the fact that most of the papers consider agents with cor-
rect beliefs implies that participation constraints distort the market allocation
and hence, removing them brings the market closer to effi ciency (Errunza and
Losq 1989). In contrast, as explained above, when (some) agents have incorrect
beliefs, the appropriate notion of effi ciency might change and thus, the impact
of relaxing constraints on effi ciency is no longer obvious.
While in our model, constraints are taken to be exogenous, a number of stud-

ies address also the issue of endogenous limited participation (Allen and Gale
1994; Calvet et al. 2004). In these models, there is a fixed cost of participation
in a given market and agents decide whether to invest in a given market, de-
pending on whether the obtained returns will compensate them for the incurred
cost. Calvet et al. (2004) study the impact of financial innovation and conclude
that it allows for better risk-sharing and reduces risk-premia, thus bringing
prices closer to fundamentals, but that it can also reduce participation in the
market. In contrast, Cao et al. (2005) show that Knightian uncertainty, that is,
uncertainty about the process determining dividends, can lead to endogenous
participation. A similar idea is used by Easley and O’Hara (2009) to show how
participation in the stock market can be affected by exogenous shocks which
increase the amount of uncertainty. Both papers present models of a one-period
economy and use ambiguity-aversion to model uncertainty about the parame-
ters of the distribution of dividends. In contrast, we model an infinite-horizon
economy with expected utility maximizers. We show that expanding the set of
assets available to an agent increases their expected discounted payoff, but also

3Whenever the collateral requirements are exogenously fixed, as in the model of Gottardi
and Kubler (2015), these are also asset-specific and not agent-specific.

8



requires the agent to form beliefs over a larger state space and thus increases
the probability of vanishing from the market.

3 The Model of the Economy

3.1 Time and Uncertainty

Let N = {0; 1; 2; ..} denote the set of time periods. Uncertainty is modelled
through a sequence of random variables {St}t∈N each of which takes values
in a finite set S. We set S0 = {s0}, that is, no information is revealed in
period 0. Denote by st ∈ S the realization of random variable St. Denote
by Ω =

∏
t∈NS the set of all possible observation paths, with representative

element σ = (s0; s1; s2 . . . st . . .). Finally denote by Ωt =
∏t
τ=0S the collection

of all finite paths of length t (ignoring period 0, which is common to all paths),
with representative element σt = (s0; s1; s2 . . . st). We will write s (σt) for the
state realized on path σ in period t. Each finite observation path σt identifies
a decision/observation node and the set of all possible observation paths Ω can
also be seen as the set of all nodes.
We can represent the information revelation process in this economy through

a sequence of finite partitions of the state space Ω. In particular, define the
cylinder with base on σt ∈ Ωt, t ∈ N as Z (σt) = {σ ∈ Ω|σ = (σt . . .)}. Let
Ft = {Z (σt) : σt ∈ Ωt} be a partition of the set Ω. Clearly, F = (F0 . . .Ft . . .)
denotes a sequence of finite partitions of Ω such that F0 = Ω and Ft is finer
than Ft−1.
Let Ft be the σ-algebra generated by partition Ft. F0 is the trivial σ-algebra.

Let F be the σ-algebra generated by ∪t∈NFt. It can be shown that {Ft}t∈N is
a filtration.
We define on (Ω;F) a probability distribution π. Intuitively, π describes

the evolution of the state process in the economy. In what follows, for brevity,
we abuse notation slightly by denoting π (Z (σt)) = π (σt) = π (s0; s1; s2 . . . st).
The one-step-ahead probability distribution π (st+1 | σt) at node σt is deter-
mined by:

π (st+1 | σt) = π (s0 . . . st; st+1 | s0 . . . st) =
π (s0 . . . st; st+1)

π (s0 . . . st)
for any st+1 ∈ S.

In words, π (st+1 | σt) is the probability under distribution π that the next
observation will be st+1, given that we have reached node σt.
We will assume that the true process of the economy is i.i.d. and write

π (st+1 = s | σt) = π (s). Note that this does not restrict the endowment process
to be i.i.d.. The measurability requirements on the endowment process are
specified below.

3.2 Assets and Financial Constraints

In the classic model of Arrow and Debreu (1954), agents can trade on every
possible contingency. In reality, this type of trade usually occurs via asset
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markets.
Restrictions on the kinds of assets in which an agent can trade imply a

coarsening of the state space with respect to which their trades must be mea-
surable. For example, an agent with an initially non-stochastic endowment, who
can trade only in bonds and an index fund, can allocate consumption only in
ways that are measurable with respect to the partition generated by aggregate
consumption.
Another example arises when two agents might have access to the same set

of domestic financial markets, but only one of them is willing and able to trade
in global markets. The less constrained agent would have access to a state space
derived as the Cartesian product of the state of the domestic economy and the
state of the world economy, while the more constrained agent would have access
to a coarser quotient space, in which all states of the world economy were treated
as indistinguishable. In effect, the more constrained agent displays ‘home bias’
(French and Poterba 1991).
Consider a partition of the state space S, W 0 with representative element

w and the corresponding partition of Ωt, Ω0
t , given by Ω0

t =
∏t
τ=1W

0 and
Ω0 =

∏∞
τ=1W

0 with representative elements ωt and ω, respectively. For a given
period t ≥ 1, we assume that the assets that pay at time t and are available for
trade at period t = 0 are those that pay 1 unit on a given element of the partition
Ωt and nothing otherwise; that is, Ã0

t = {aωt (σt) = 1ωt}. The collection of all
such sets Ã0 = ∪tÃ0

t represents the set of assets available to the economy as a
whole. Hence, markets can be complete (when W 0 =

{
{s}s∈S

}
) or incomplete.

Consider a finite set I of n infinitely lived agents. For each agent, define
a partition of the state space S, W i which is at least as coarse as W 0 and
the corresponding partition of Ωt, Ωit =

∏t
τ=1W

i and Ωi =
∏∞
t=1W

i. This
partition represents agent i’s financial constraints in that the assets available

to agent i at t are those that pay conditionally on Ωit: Ã
i
t =

{
aωit (σt) = 1ωit

}
.

The set of all assets i has access to is Ãi = ∪tÃit.

Remark 1 Propositions 1 and 2 in the Online Appendix to this paper, give
suffi cient conditions (Internal Completeness and Intertemporal Asset Structure),
under which a set of assets A0 for the economy generates a space of positive
payoff streams at time t ≥ 1 identical to that of Ã0

t , for some partitions of Ωt,
Ω0
t and of S, W

0 such that Ω0
t =

∏t
τ=1W

0. The realistic scenario, in which
the set of assets is smaller than the underlying state space corresponds to a
non-trivial partition Ω0

t coarser than Ωt for all t, and thus, W 0 coarser than S.
The payoffs of all available assets are measurable with respect to the so-obtained
partition.
Similarly, the agents’partitions can be generated by assuming that each agent

i has access to a subset of all available assets Ai ⊆ A0 satisfying the same
properties. The special case of Ai = A0 and thus, W i = W 0 for all agents
corresponds to the standard case of incomplete markets.
If Aj ⊂ Ai for two agents i and j, then W i is a strict refinement of W j.

In this case, we say that i is less constrained than j, or that i has access to a
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larger set of portfolios than j.
Below, we specify the agents’endowments in terms of the assets available to

them and, thus, implicitly assume that initial endowments are also measurable
w.r.t. the relevant partitions4 . Hence, the total endowment of the economy at
t will also be measurable with respect to Ω0

t . It follows that w.l.o.g., we can
take the partition Ω0

t to coincide with Ωt. Note, however, that this distinction
between Ω0

t and Ωt becomes relevant, if we wish to consider financial innovation.
Finally, we remark that from the point of view of agent i, markets are com-

plete with respect to Ωi, that is, the agent can generate any stream of payoffs
measurable5 with respect to Ωi.

Given the so-defined individual partitions Ωi, from the point of view of agent
i, the relevant filtration is generated by finite partitions of the set Ωi,

(
Fit
)
t∈N

defined in analogy to (Ft)t∈N. Note that for each t, Fit is coarser than the
corresponding Ft. We will denote by F it the σ-algebra generated by partition
Fit. F i0 = F0 is the trivial σ-algebra. Let F i be the σ-algebra generated by
∪t∈NF it . Just as above,

{
F it
}
t∈N is a filtration. Note that for each σt and

the corresponding state realized at time t, s (σt), there is an element of the
partition wi with s (σt) ∈ wi. We will denote the element of the partition of
agent i realized at time t on path σ by wi (σt).
Agent i’s beliefs πi are defined on

(
Ωi;F i

)
. The one-step ahead probability

distribution πi
(
wit+1 | ωit

)
is defined analogously to π (st+1 | σt). Obviously,

F is finer than F i and hence, the true probability distribution π on (Ω;F)
specifies a probability distribution on

(
Ωi;F i

)
with π

(
ωit
)

= π{σt | sτ ∈ wiτ for
all τ ∈ {1 . . . t}}. We will say that i’s beliefs are correct if they coincide with
the restriction of π to

(
Ωi;F i

)
.

For most of the paper, we will restrict attention to beliefs which describe an
i.i.d. process, πi

(
wit+1 = wi | ωit

)
= πi

(
wi
)
.

There is a single good consumed in positive quantities. Each agent i is
endowed at t = 0 with some of the consumption good, ei (σ0) and with a
portfolio θ̄

i
of securities in Ãi, which pay in terms of the consumption good

θ̄
i

: Ω\σ0 →
∏
t∈NR+. The payoff of i’s portfolio is measurable with respect to(

Ωi;F i
)
and hence, his initial endowment stream is given by a function ei : Ω→∏

t∈N R+. This stream is also measurable with respect to
(
Ωi;F i

)
. The initial

endowment at node ωit coincides with the number of generalized unit securities

in the initial portfolio that pay conditional on ωit, that is, e
i
(
ωit
)

= θ̄
i
(
aωit

)
.

The total endowment of the economy is denoted by e =
∑
i e
i.

4 In particular, for an agent who has access only to a bond, initial endowment is non-
stochastic (though it can depend on the time period). Non-tradeable idiosyncratic risk can
be captured by endowing an agent with risky assets, which are non-tradable, i.e., which are
only available to this particular agent and no one else in the economy, see Example 3 below.
The impact of such non-tradeable idiosyncratic risk on survival is considered in Propositions
7 and 8.

5Furthermore, any non-negative consumption stream can be obtained without recurring to
short-sales. Thus, even though the financial constraints we impose in the paper do not restrict
short-selling, the equilibrium allocation does not include short-sales.
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Since agent i can only trade in assets in Ãi, agent i’s consumption set consists
of functions ci : Ω→

∏
t∈N R+ measurable with respect to

(
Ωi;F i

)
.

Agents are assumed to be expected utility maximizers given their trading
constraints and their (subjective) beliefs6 . Agent i’s utility function for risk is
denoted by ui and his discount factor is β

i.
We will impose the following assumptions on utility functions and endow-

ments, which are standard in the survival literature:

Assumption 1 All agents are expected utility maximizers with utility func-
tions for risk ui : R+ → R which are twice continuously differentiable,
strictly concave, and satisfy limc→0 u

′
i(c) =∞ and limc→∞ u′i (c) = 0.

Assumption 2 Individual endowments are strictly positive, ei (σt) > 0 for all
i and σt. Aggregate endowments are uniformly bounded away from zero
and uniformly bounded from above. Formally, there is an m > 0 such
that

∑
i∈I e

i(σt) > m for all i, σt; moreover, there is an m′ > m > 0 such
that

∑
i∈Ie

i(σt) < m′ for all σt.

Assumption 3 π (s) > 0 for all s ∈ S and for all i ∈ I, πi
(
wi
)
> 0 for all

wi ∈W i.

Assumption 1 implies that the agent would never choose zero consumption
in a state he believes to have a positive probability. Assumption 2 ensures that
endowments are uniformly bounded away from 0 and above. Given the i.i.d.
structure imposed on the true process and on beliefs, Assumption 3 states that
one-step-ahead probabilities of all states of the world are positive and that all
subjective beliefs assign a positive one-step-ahead probability to every element
in their respective partitions. In particular, there is a π > 0 such that π (s) > π
and πi

(
wi
)
> π for all i ∈ I and all wi ∈W i. This assumption is analogous to

imposing absolute continuity of one-step-ahead subjective beliefs with respect
to the true one-step-ahead probabilities (as in Blume and Easley 2006). Taken
together, Assumptions 1 and 3 ensure that no agent vanishes in finite time.
In economies with bounded endowments and complete markets, and popu-

lated by expected utility maximizers, only beliefs and discount factors matter
for survival. In particular, if all agents are equally patient, agents with incorrect
beliefs vanish a.s. in the presence of agents with correct beliefs. By contrast, in
unbounded economies, risk attitudes also matter for survival, and agents with
incorrect beliefs can survive. In order to disentangle the effects of asset con-
straints on survival from those of risk attitude, we restrict our attention to the
case of bounded economies.

6An expected utility representation with a coarse subjective state space has been recently
axiomatized by Minardi and Savochkin (2016).
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4 Equilibrium in Markets with Differential Fi-
nancial Constraints

Our main results are derived on the assumption that agents trade their portfo-
lios at time 0 with no subsequent opportunity for retrading. Thus, the approach
taken in the main part of the paper mimics that of Sandroni (2005), in which
there is a single period of trade, but information is subsequently revealed accord-
ing to the structure presented in Section 3. This assumption greatly simplifies
the analysis and allows us to derive a simple criterion for survival in economies
with differential constraints. Differently from Sandroni, we allow consumption
to occur in time. In Appendix A, we extend the analysis to the case of sequen-
tial trading. Even though the definition and the analysis of the equilibrium are
substantially different for the two cases, we show that the main insights of the
paper are robust to such a modification.

Definition 1 An equilibrium of the economy with differential financial con-
straints consists of an integrable7 price system (p (σt))σt∈Ω and a consumption
stream ci for every agent i such that (i) all agents i ∈ {1 . . . n} are maximiz-
ing their expected utility given the price system subject to choosing consumption
streams measurable relative to their constrained partition; and (ii) markets clear:

ci = arg max
ci

V i0
(
ci
)

= arg max
ci


ui
(
ci (σ0)

)
+
∑∞
t=1 β

t
i

∑
ωit∈Ωit

πi
(
ωit
)
ui
(
ci
(
ωit
))

s.t.
∑
t∈N
∑
ωit∈Ωit

∑
σt∈ωit

p (σt) c
i
(
ωit
)

≤
∑
t∈N
∑
ωit∈Ωit

∑
σt∈ωit

p (σt) e
i
(
ωit
)


(1)∑

i∈I
ci (σt) =

∑
i∈I

ei (σt) ∀σt ∈ Ω

An equilibrium in an economy with differential financial constraints is consis-
tent with the fact that different agents face different financial constraints, trade
on different partitions of the state space and, hence, effectively optimize over
different sets of commodities (consumption on events ωit, rather than σt). The
equilibrium can be interpreted in the following way: in period 0, before any un-
certainty is resolved, all agents sell their initial endowment to an intermediary8

7 Integrability of (p (σt))σt∈Ω, on (Ω;F ;µ), where µ is the counting measure, or equiva-
lently, the requirement that the price system is L1 on (Ω;F ;µ), ensures that the total wealth
of an individual investor is finite, i.e., that the sum

∑
t∈N

∑
ωit∈Ωit

∑
σt∈ωit

p (σt) ei
(
ωit
)
is

well-defined, see Bewley (1972, p. 516).
8The fact that agents can trade through an intermediary means that the restriction of

measurability is imposed only on the total net trades of a given agent. One could alternatively
define an equilibrium through bilateral trades and require that the bilateral net trades be
measurable with respect to each agent’s partition. This will in general restrict the set of
potential equilibrium allocations. Note, however, that when agents’ partitions are nested,
the agent with the finest partition can de facto play the role of an intermediary and thus,
measurable bilateral net trades supporting the equilibrium allocation always exist. The same
is true for an economy with two agents with non-nested partitions. More generally, as pointed
to us a by a referee, the two equilibrium notions will not coincide (e.g., Remark 2 below need
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at market prices and use the revenues to buy their preferred consumption paths
ci for all future contingencies on which they can trade. The price of consump-
tion contingent on a coarse contingency ωit is simply the sum of consumption
prices over all nodes σt ∈ ωit, that is,

∑
σt∈ωit

p (σt).

Proposition 1 Under Assumptions 1—3, an equilibrium of the economy with
differential financial constraints exists. Furthermore, the equilibrium satisfies:
for each i ∈ I and at each ωit, ωit+1 ∈ Ωi such that π

(
ωit+1

)
> 0,

u′i
(
ci
(
ωit
))

βiπ
i
(
ωit+1 | ωit

)
u′i
(
ci
(
ωit+1

)) =
p
(
ωit
)

p
(
ωit+1

) =

∑
σt∈ωit

p (σt)∑
σt+1∈ωit+1

p (σt+1)
, (2)

where p(·) is the equilibrium price system.

We now provide a simple example to illustrate the impact of differential
financial constraints on equilibrium prices and allocations.

Example 1 Consider an economy with two agents, Ann and Bob. Their initial
endowments in each period depend on whether each of them is employed or not.
The assets in the economy are a bond; unemployment insurance claims for Ann
and Bob, that is, assets A and B which yield a payment of 1 if the associated
agent is unemployed; and an insurance claim against a high unemployment rate
in the economy as a whole, which pays 1 when both agents are unemployed
and nothing otherwise. The induced state space for an unconstrained agent has
4 states: S = {s1 . . . s4}. In s1, A is employed, and B is not, in s2, B is
employed, but not A. In s3, both agents are unemployed and in s4, both are
employed. Intuitively, states s1 and s2 can be interpreted as ‘business as usual’,
in which unemployment is a matter of idiosyncratic risk, whereas in states s3 and
s4, the economy is subject to aggregate risk (low or high unemployment rates).
The initial endowment of an agent is 1 in a state in which he is unemployed
and 2 in a state in which he is employed:

Initial endowment: s1 s2 s3 s4

Ann 2 1 1 2
Bob 1 2 1 2

Assume now that while A has access to all four assets, B can only trade the
bond and his own unemployment insurance asset. This induces the partition

WB =
{
wB1 = {s1; s3} ;wB2 = {s2; s4}

}
.

not hold when measurability of bilateral trades is required) and this might have an impact
on the existence and the properties of the equilibrium, as well as on survival results. Note,
however, that in the cases studied below, notably nested partitions, or an economy with an
unconstrained agent (as in Proposition 8), the results on survival will not depend on the
definition chosen. The result of Proposition 7 is based on the fact that trading constraints
prevent agents from selling parts of their endowment and thus from vanishing. Imposing
further constraints on trades will not invalidate this argument.
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Bob’s initial endowment respects the measurability assumption imposed above,
that is, eBs1 = eBs3 = 1 and eBs4 = eBs4 = 2.

Consider first the case in which both A and B are unconstrained. Assum-
ing that both have identical (correct) beliefs π about the realization of the 4
states and strictly concave von Neumann—Morgenstern utility functions uA and
uB, the equilibrium of this economy would fully insure both agents against the
idiosyncratic risk, that is, cA (s1) = cA (s2) and cB (s1) = cB (s2), and hence,
p∗1
π(s1) =

p∗2
π(s2) obtains. As for the allocation across states s3 and s4, we know that

the less risk-averse agent will partially insure the more risk-averse one against
the aggregate risk. If both agents have identical utility functions, no trade across
these two states will occur.
Now consider the situation in which B is constrained and has access only

to the two assets generating the partition WB specified above. The equilibrium
allocation described above is no longer feasible, since it specifies cB (s1) > 1 =
cB (s3) and would thus require B to trade on states s1 and s3. So what can we
say about the equilibrium with financial constraints? First, we can show (see
the proof of Claim 1 in Appendix B) that when B is constrained, neither A,
nor B are insured against idiosyncratic risk in equilibrium. Second, since u is
concave, in equilibrium, 1 < cB (s1) = cB (s3) < cB (s2) = cB (s4) < 2, that is,
B buys partial insurance against aggregate risk. This in turn implies that state
prices are biased relative to the case of no financial constraints: p∗1

π(s1) <
p∗2
π(s2) .

Finally, if
π (s1)π (s2)− π (s3)π (s4) ≤ 0 (3)

A’s expected consumption is higher than her expected initial endowment (see the
proof of Claim 2 in Appendix B).
The suffi cient condition (3) for A to bear more risk and thus obtain a higher

expected consumption than under her initial endowment will hold if all 4 states
are equally likely. Alternatively, suppose that the state s4 has a probability π4 >
1
2 , that is, full employment is the default state of the economy. Assume also that
the two states with idiosyncratic risk, s1 and s2 are equally probable. π1 = π2,
that is, the probability that each one of the agents loses their job is the same.
In this scenario, condition (3) is satisfied as well.
While the example is formulated as a static one, we may show that, assuming

equal discount factors, identical von Neumann—Morgenstern functions uA and
uB and an initial endowment i.i.d. over time, the static equilibrium will be
replicated in every period t.

Example 2 We now add (to Ann and Bob) two agents Clara and David.
Assume that C has the same initial endowment as A, and that D has the same
initial endowment as B. That is, eC = eA, eD = eB.

Initial endowment: s1 s2 s3 s4

Clara 2 1 1 2
David 1 2 1 2

However, we now assume that Clara has access only to the bond and to Ann’s
claim for insurance against unemployment (which insures her against her own
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unemployment), whereas David is unconstrained. Hence, the partition induced
by Clara’s financial constraints is given by

WC =
{
wC1 = {s1; s4} , wC2 = {s2; s3}

}
.

Assume that all agents have identical correct beliefs on the partitions on which
they can trade, and that they are all risk-averse.
Consider first a (sub)economy consisting of only B and C. Given their

financial constraints, the idiosyncratic labor income of these two agents is non-
tradeable9 . From B’s point of view the only consumption allocations which he
prefers to his initial endowment, and which can be derived through trade, are of
the type:(

cB (s1) ; cB (s2) ; cB (s3) ; cB (s4)
)

= (1 + a; 2− b; 1 + a; 2− b)

with a > 0, b > 0. However, market clearing implies that the resulting consump-
tion bundle for C specifies

cC (s1) = 2− a 6= cC (s4) = 2 + b

and is thus inconsistent with her constrained partition. Hence, even though in
principle Bob can and might find it optimal to purchase insurance against his
own unemployment risk, the fact that Clara is not able to trade in such an
asset effectively prevents him from doing so. We examine the impact of such
non-nested financial constraints on survival in Propositions 7 and 8.
In contrast, if A and D were the only agents in the economy, they would

fully insure each other across states s1 and s2 in equilibrium, cA (s1) = cA (s2)
and cD (s1) = cD (s2). This result holds independently of whether their utility
functions are identical or not.10 If their utility functions are identical, no trade
on the states with aggregate risk, s3 and s4 occurs between them.

When all four agents are present in the economy, the equilibrium allocation is
different. Suppose, for simplicity. that everyone’s beliefs are correct and assign
a probability of 1

4 to each of the states. First, it is impossible to ensure everybody
against idiosyncratic risk in equilibrium, (see the proof of Claim 3 in Appendix
B). Second, in general, the presence of constrained traders in the market (B
and C) implies that the unconstrained traders A and D cannot be fully insured
against idiosyncratic risk, either, (see the proof of Claim 4 in Appendix B).

Our example demonstrates that markets with differentially constrained agents
exhibit different properties from markets in which the same set of assets is avail-
able to all agents. First, in such markets, some of the risk-sharing opportunities
cannot be used, due to the constraints on some agents. Such constraints can af-
fect even trades among unconstrained agents, who, in the absence of constrained

9We are grateful to an anonymous referee for suggesting this interpretation.
10 In the presence of differential bargaining power, which might arise from different risk

attitudes, the party with less bargaining power might be required to make a state-independent
payment in order to reach agreement on the full insurance bargain.
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agents, would have obtained full insurance against idiosyncratic risk. Second,
unconstrained agents might provide additional insurance against aggregate risk
to constrained agents, even when both types have identical beliefs and identical
risk preferences. Third, in the presence of constrained agents, state prices might
be biased. Finally, unconstrained agents might obtain higher expected returns
than constrained ones.

5 Survival in Economies with Differential Fi-
nancial Constraints

In the previous sections, we showed that differential financial constraints can
have an impact on equilibrium prices and allocations. This raises the question of
whether the impact of constrained agents on prices and allocations is temporary
or permanent. Is it the case that their consumption converges to 0 over time,
thus driving the equilibrium allocation to the one that would have obtained had
all agents been unconstrained? In this section, we will show that constrained
agents can have a long-term impact on prices and risk-sharing.
We define survival as usual:

Definition 2 Agent i vanishes on a path σ if limt→∞ ci (σt) = 0. Agent i
survives on σ if limt→∞ sup ci (σt) > 0.

In this section, we will assume that Assumptions 1—3 hold, without explicitly
stating them in each of the propositions below. We first remark, that in the
absence of aggregate risk, constraints have no effect on survival:

Remark 2 In an economy with no aggregate uncertainty, equal discount factors
and identical correct beliefs, all agents will be fully insured. Indeed, since a full
insurance consumption stream is measurable w.r.t. any individual partition, the
individual financial constraints in such an economy are not binding. Hence,
all agents will survive regardless of their individual financial constraints. In
this case, the first-order conditions (2) (with correct beliefs) and the equilibrium
allocation coincide with those in an unconstrained economy.

Our first result generalizes the main result of Blume and Easley (2006) to
apply to agents with access to an identical set of assets and thus, with identical
partitions. It also extends the result of Sandroni (2005) to the case of agents,
who consume over time. When beliefs are identical, the agents with the highest
discount factors can survive. For identical discount factors, only those agents
with beliefs closest to the truth can survive.

Proposition 2 Consider two agents i and j, with access to the same set of
assets, Ai = Aj and thus, with identical partitions, Ωi = Ωj. If agent’s i

survival index lnβi−
∑
wi∈W i π

(
wi
)

ln
π(wi)
πi(wi) is strictly higher than that of j, j

vanishes a.s..
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Our next result concerns agents with access to sets of assets Ai ordered
with respect to inclusion and hence, nested partitions. It shows that the fact
that some agents have access to smaller sets of portfolios alone does not affect
survival.

Proposition 3 Consider a population of agents with sets of available assets
ordered with respect to inclusion, and thus, with nested partitions, equal discount
factors and correct beliefs. All agents survive a.s.

Our result shows that whenever agents have equal discount factors and cor-
rect beliefs relative to the partition generated by the set of assets they have
access to, and the sets of assets are ordered with respect to inclusion, whether
the agent has access to a larger or smaller set of assets is irrelevant for survival.
In fact, all agents survive. We can relate this result to Example 1. Recall that
in a one-period economy with Ann unconstrained and Bob constrained, insur-
ance against idiosyncratic risk did not obtain in equilibrium. In contrast, the
unconstrained agent insured the constrained one against some of the aggregate
risk. The result above implies that these features of the economy will persist
in the long-run, as long as both agents have correct beliefs and equal discount
factors.
While agents with access to a smaller set of assets survive, the financial

constraints will in general (weakly) reduce their welfare:

Proposition 4 Consider an economy with differential financial constraints and
assume that agent i is more constrained than j, Ai ⊂ Aj and Ωi is coarser than
Ωj. Suppose that the two agents have identical endowments, utility functions,
discount factors β and identical beliefs π restricted to Ωi. In any equilibrium of
the economy with equilibrium allocation c, V j0

(
cj
)
≥ V i0

(
ci
)
.

Ceteris paribus, an agent who is more constrained will be able to invest
conditional on a coarser partition and will, as a result, obtain a lower welfare in
equilibrium. Intuitively, the less constrained agent has access to a larger set of
trades that he can engage in and will obtain a higher utility from consumption.
Note, however, that the weak inequality cannot be replaced by a strict one. For
example, if i and j are the only agents in the population, no trade will occur in
equilibrium and their welfare will be identical.
We next examine the impact of heterogeneity in discount factors and beliefs

on survival when agents’ sets of assets are ordered with respect to inclusion.
We first show that a more constrained agent i can only survive if his survival
index is at least as large as that of a less constrained agent j. Thus, either i’s
discount factor must be at least as high or his beliefs must be at least as close
to the truth as those of j.

Proposition 5 If agent i is more constrained than agent j (Ai ⊂ Aj and Ωi

coarser than Ωj) and i has a strictly lower survival index:

ln
βj
βi

+

( ∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πi (wi)
−

∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πj (wi)

)
> 0,
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i vanishes a.s.

Hence, more constrained agents can survive only if they have larger survival
indices than less constrained agents. To formulate results for economies in which
this conditions is satisfied, we will have to understand when constraints matter
in the long-term. We will use the following definition:

Definition 3 The financial constraints of agent i, given by the partition Ωi, are
irrelevant in the limit if for any ωi ∈ Ωi and any σ, σ′ ∈ ωi, limt→∞ e (σt) −
e (σ′t) = 0. The financial constraints of agent i, given by the partition Ωi are
relevant in the limit if for some wi ∈W i, s and s′ ∈ wi, there is an ε > 0 such
that for any σ, σ′ ∈ ωi,

lim
t→∞

sup [e (σt; s)− e (σ′t; s
′)] > ε. (4)

The financial constraints of agent i are considered irrelevant if, in the limit,
the total endowment of the economy is measurable with respect to agent i’s
partition. Such an agent can effectively trade on the total endowment process
of the economy in the limit. In contrast, agent i’s constraints are relevant even
in the limit, if there are at least two states that i cannot trade on and in which
the total endowment of the economy remains distinct.
Note that if i’s constraints are irrelevant in the limit, then so are those of any

agent j who is less constrained, Ai ⊂ Aj . Similarly if i’s constraints are relevant
in the limit, then so are those of a more constrained agent j with Aj ⊂ Ai.
Consider agent j and for any ωj ∈ Ωj with ωi ⊆ ωj , define the set Ω̂it

(
ωjt

)
=

{ωit ∈ Ωit | ωit ⊆ ωjt s.t. minσt∈ωjt
e (σt) = minσt∈ωit e (σt)}, the set of ωit on

which the initial endowment of the economy obtains its minimum w.r.t. the set

ωjt . Let Ω̌it

(
ωjt

)
=
{
ωit ⊆ ω

j
t

}
\Ω̂it

(
ωjt

)
.

Definition 4 Let the set of assets available to agents i and j satisfy Ai ⊃ Aj.
The financial constraints of agent j given by the partition Ωj, are irrelevant in
the limit w.r.t. those of agent i given by partition Ωi if for any ωi ∈ Ωi and

ωj ∈ Ωj s.t. ωi ⊆ ωj, limt→∞ Ω̌it

(
ωjt

)
= ∅. The financial constraints of agent

j are relevant in the limit w.r.t. those of agent i if there is an ε > 0, wi ∈ W i

and wj ∈W j, wi ⊆ wj such that for any ωj ∈ Ωj and every ωi ⊆ ωj, ωi ∈ Ωi,
(i) min

(σtk ;s)∈
(
ωi
tk

;wi
) e (σtk ; s)−min

(σtk ;s)∈
(
ωj
tk

;wj
) e (σtk ; s) > ε occurs on

an infinite set of periods
(
tk
)
k
such that

(ii) min{
σ
tk+1

∈ωi
tk+1

|ωi
tk+1

∈Ω̌i
tk+1

(
ωj
tk

;wj
)} e (σtk+1)−min

(σtk ;s)∈
(
ωj
tk

;wj
) e (σtk ; s) >

ε for all tk.

To understand the definition note that in general, the initial endowment of
the economy is not measurable w.r.t. to Ωi or Ωj . The maximum consumption
of j at ωjt given the initial endowment of the economy isminσt∈ωjt

e (σt), whereas

the maximum consumption of i at ωit ⊆ ωit is minσt∈ωit e (σt). Furthermore, if
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Ω̌it

(
ωjt

)
= ∅, then these two values coincide for all ωit ⊆ ωjt : even though j’s

partition is coarser, he is no more constrained than i in terms of his maximal
possible consumption on ωjt . If this property obtains in the limit, j’s constraints

are irrelevant in the limit w.r.t. those of i. If, in contrast, Ω̌it

(
ωjt

)
6= ∅, then

i can obtain a strictly higher consumption on ωit than j on ωjt , that is, j’s
constraint is "relevant" w.r.t. that of i. The condition for j’s constraints to be
relevant w.r.t. those of i in the limit requires that (i) on every path ωi ⊆ ωj ,
on which wi occurs infinitely often (i.o.) i’s maximal consumption exceeds that
of j’s by ε i.o. and (ii) on every path ωj , on which wj occurs i.o. the minimal
non-zero difference in maximal consumption between i and j on ωj exceeds ε
i.o..
In the sequel, to simplify the discussion, we will concentrate mainly on the

case of agents whose constraints are relevant in the limit w.r.t. those of other
agents. We will comment briefly on how the results change if agents with con-
straints that are irrelevant in the limit are introduced.

Proposition 6 Consider a population of agents with available sets of assets
ordered with respect to inclusion A1 ⊃ A2... ⊃ An and thus nested partitions,
Ω1 strictly finer than Ω2... strictly finer than Ωn, and ordered survival indices
such that for all i < j, either

lnβi −
∑
wj

π
(
wj
)

ln
π
(
wj
)

πi (wj)
< lnβj −

∑
wj

π
(
wj
)

ln
π
(
wj
)

πj (wj)

or βi = βj and π
i
(
wj
)

= πj
(
wj
)
for all wj ∈ W j. If the constraints of any

agent i ≥ 2 are both relevant in the limit and relevant w.r.t. those of i − 1,
agents 1 and 2 a.s. survive. If, in addition, for every j ∈ {2...n− 1}, such
that the survival indices of j and j + 1 are distinct, all wj+1 ∈ W j+1 and all
wj ⊆ wj+1, πj

(
wj | wj+1

)
= π

(
wj | wj+1

)
, all agents a.s. survive.

The proposition considers agents with access to sets of assets ordered with
respect to inclusion. Furthermore, less constrained agents have lower survival
indices than more constrained ones. We impose the condition that the con-
straints of agents with lower survival indices are both relevant in the limit and
relevant w.r.t. those with the next finer partition11 . In such an economy, the
two agents with lowest survival indices, 1 and 2, a.s. survive. Requiring that
agents’conditional beliefs πj

(
wj | wj+1

)
w.r.t. the next coarser partition are

correct12 further implies that all agent a.s. survive regardless of the value of
their survival indices. This result is interesting, because it shows that agents

11The extension of Proposition 6 to the case where the constraints of some agent i are
irrelevant with respect to those of agent i−1 requires the examination of multiple cases. E.g.,
it is easy to show that agents with irrelevant constraints weaker than those of agent 1 and
survival indices lower than that of agent 1 a.s. vanish. Lemma 14 in Appendix A further
shows that if an agent’s constraints are irrelevant w.r.t. those of the agent with the next
finest partition, but his survival index is strictly lower, this agent a.s. vanishes.
12Since πj

(
wj+1

)
is in general incorrect, this does not imply that πj

(
wj
)
is correct.
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with less financial constraints can survive even when their survival index is not
maximal in the economy.
This requires however that for i ≥ 2, agents’constraints are relevant even

in the limit. In such a scenario, the constrained agents cannot consume the
entire endowment of the economy: such a consumption stream would violate
their financial constraints. Hence, it is the agents with lower survival indexes,
but weaker constraints who ensure that the markets clear. They consume the
‘leftovers’ of the constrained agents and, thus, the fact that constraints are
relevant ensures that they survive a.s..
Moreover, the least constrained agent 1 can survive in the presence of agents

with stronger constraints and correct beliefs, even if his beliefs about the con-
tingencies on which others cannot trade are wrong. For example, in Example 1,
Bob’s constraints are relevant in the limit, whereas Ann’s are not. When only
Ann and Bob are present in the economy, given equal discount factors, Ann will
survive if she and Bob assign equal probabilities to the events wB1 = {s1; s3}
and wB2 = {s2; s4}, regardless of whether her estimates about the probabilities
of the individual states s1, s2, s3 or s4 are correct.

Our last two propositions in this section examine an economy in which the
agents’constraints are not necessarily comparable. The economy discussed in
Example 2 is an example of such a situation. In this economy, the sets of assets
to which Bob and Clara have access are not ordered with respect to inclusion.
We now provide a formal definition of economies with non-nested financial

constraints. Note that, for this definition, we use the sets consisting of general-
ized unit securities Ãi.

Definition 5 Agents i and j have non-nested financial constraints if there are
states13 s, s′, s′′, s′′′ ∈ S such that:

• there is an asset a′ ∈ Ãi such that a′ (s) 6= a′ (s′) and for any asset a ∈ Ãi,
a (s′′) = a (s′′′) and

• there is an asset a′′ ∈ Ãj such that a′′ (s′′) 6= a′ (s′′′) and for any asset
a ∈ Ãj, a (s) = a (s′).

If the states s and s′ satisfy this definition, then we will say that i can trade
between s and s′, whereas j cannot.
We will say that agents in the economy have non-nested financial constraints

if, for each agent i, there are states s and s′ ∈ S between which i can trade, but
between which no other agent in the economy can trade.

13The definition does not require the four states to be distinct and thus also applies to
economies with only 3 states, where one can set s′ = s′′. However, requiring s′ = s′′ is
in general too restrictive for our purposes, since it excludes, e.g. an economy, in which
W i = {{s} ; {s′} ; {s′′; s′′′}} and W j = {{s; s′} ; {s′′} ; {s′′′}} . Indeed, choose any three
states (e.g., s, s′′ and s′′′) and note that at least one of the agents (here: j) can trade among
any of the three states and hence, the definition of non-nested constraints would not apply,
contrary to intuition. In economies with only two states, agents’partitions are trivially nested.
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Our first result shows that whenever an agent is the only one in the economy
capable of trading between some relevant contingencies, he survives regardless
of his beliefs and discount factor, and regardless of the financial constraints of
the other agents.

Proposition 7 Consider an economy with differential financial constraints and
assume that for an agent j, there are states s (j) and s′ (j) ∈ S such that the
financial constraints of j and any other agent i ∈ I\ {j} are non-nested and j
can trade between s (j) and s′ (j), whereas i cannot. Assume that condition (4)
holds for s (j) and s′ (j). Then agent j survives a.s..

In particular, if the condition above is satisfied for every agent j ∈ I then
all agents survive a.s..

This result is of special interest in view of Example 2 above. In particular,
consider agents who are exposed to some non-tradeable idiosyncratic risk, such
as labor income. While the agent j in question can be seen as owning the asset
corresponding to his labor income stream, other agents cannot trade in this
asset. That is, there are states s (j) (for example, a state where j is employed)
and s′ (j) (j is unemployed), which are distinct in j’s partition, but which
no other agent in the economy can trade on. Provided that the difference in
payoffs in these states is bounded away from 0 in the limit, j’s consumption
will be strictly positive i.o. on almost every path and hence, j will survive a.s.,
regardless of his beliefs or discount factor.
A special case of Proposition 7 is that in which the intersection of the sets

of assets to which agents have access is empty that is, ∩i∈IAi = ∅. In this case,
the finest partition that is coarser than all state partitions

(
Ωi
)
i∈I is the trivial

partition. Hence, no trade across states occurs in equilibrium independently of
agents’beliefs or on their discount factors. All agents survive a.s.
Our last result introduces an unconstrained agent with correct beliefs into

the economy from Proposition 7. The presence of such an agent will cause
all constrained agents with incorrect beliefs or lower discount factors to vanish
a.s. However, we show that as long as the constraints are non-nested, and the
constrained agents have correct beliefs and discount factors identical to that of
the unconstrained agent, they survive a.s..

Proposition 8 Take an economy with differential financial constraints and a
set of agents I ′ ∪ {j} (j 6∈ I ′) Suppose that the conditions of Proposition 7 are
satisfied for the set I ′. Let j be an unconstrained agent. Suppose that all agents
have identical discount factors and correct beliefs. Then all agents survive a.s.

The results of this section have shown that markets do not select specifically
for less constrained agents. However, when agents differ with respect to their
beliefs and discount factors, less constrained agents have an advantage in that
they can survive even when their beliefs are incorrect and their discount factor
is smaller than that of less constrained agents. This implies that economies
with differential financial constraints can exhibit limited risk sharing, biased
state prices and lower saving rates as compared to economies with identical
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financial constraints across agents. When the partitions are non-nested, agents
with differential constraints survive. This can reduce the amount of trade in
the economy.
The next section discusses the impact of a relaxation of the agent’s financial

constraints on his survival.

6 Relaxing constraints

In our analysis so far, we have assumed that trade occurs only once, in period
0, and that agents cannot retrade the resulting equilibrium allocation. In this
section, we will consider what happens if constraints are relaxed. This might
correspond for instance to a case of financial deregulation, where certain classes
of investors are allowed to trade in assets which were previously unavailable to
them. Alternatively, an agent may choose to invest through a less regulated
intermediary, such as a hedge fund, in preference to, say, a mutual fund con-
strained to choose among investment-grade securities. A particularly relevant
case is that of, a switch from defined-benefit pensions to defined-contribution
funds. In this case, employees who previously held a non-tradeable claim to
a pension payable on retirement receive access to funds which they must al-
locate over a potentially diverse portfolio. Since this is an exogenous change,
beliefs about the possible returns on assets may have been formed on the basis
of limited information and consideration.
A contrasting case is that of endogenous action14 by agents to remove or re-

lax constraints on their investment choices as a result of increased awareness15

of investment possibilities. In such cases, agents might have beliefs based on re-
search into the past performance and future prospects of the assets that become
available. Such beliefs may be closer to those of agents already trading in the
market, and ideally close to the most accurate beliefs of agents in the market.
For simplicity, we will consider a one-time change in constraints, such as

allowing an agent to trade in an asset previously unavailable to him. In state
space terms, this will mean that at node σ∗t∗ , agent i gains access to a (weakly)
finer partition of his state space, call this partition, Ω∗i. LetW ∗i be the partition
over states corresponding to the relaxed financial constraints Ω∗i of agent i with
a representative element w∗i.
Let Ωσ∗

t∗
denote the set of all (infinite) paths σ∗ with initial node σ∗t∗ , and

Ω∗iσ∗
t∗
denote the set of all (infinite) paths ω∗i with initial node ω∗it∗ such that

σ∗t∗ ∈ ω∗it∗ . Intuitively, Ω∗iσ∗
t∗
is the set of paths on which i can trade given his

relaxed financial constraints and given that the economy is in node σ∗t∗ .
Gaining access to a larger set of assets and thus, to trades on a finer partition

of the state space will require the agent to assign probabilities to the finer
contingencies. Let i’s probability distribution on

(
Ω∗i;F∗i

)
be denoted by π∗i.

14The distinction between exogenous and endogenous relaxation of a constraint was sug-
gested to us by a referee, to whom we are grateful.
15There is a growing literature on changes in awareness. See Grant and Quiggin (2013),

Karni and Viero (2013, 2017), Schipper (2016).
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We will require that the revised beliefs are consistent with i’s initial beliefs in
the sense that πi

(
ωit
)

=
∑
{ω∗it ∈Ω∗i|ω∗it ⊆ωit} π

∗i (ω∗it ). In particular, the revised
beliefs will be consistent while satisfying the i.i.d. property if

π∗i
(
w∗i | ω∗it

)
= π∗i

(
w∗i
)
and (5)

πi
(
wi
)

=
∑

{w∗i∈W∗i|w∗i⊆wi}

π∗i
(
w∗i
)

for all possible continuations of ω∗it∗ , ω
∗i
t . Note, however that the beliefs on the

finer partition π∗i are not uniquely determined by the initial beliefs.
At σ∗t∗ , agents might want to reoptimize taking into account their extended

trade opportunities. To compute the new equilibrium at σ∗t∗ , we will take the
initial equilibrium allocation to be the agents’initial endowments. We will com-
pute the new allocation and the new equilibrium prices for the economy that
starts at σ∗t∗ , taking into account that the consumption of agent i now has to
be measurable with respect to the finer partition Ω∗i. To make sure that this
reoptimization is meaningful, we have to impose a further assumption on the
structure of the economy. To formulate the assumption, we say that an agent i
can trade on σ∗t∗ if there is an ω

∗i
t∗ ∈ Ω∗i such that ω∗t∗ = {σ∗t∗}.

Assumption 4 Either

(i) all agents in the economy can trade on σ∗t∗ ,

(ii) or

— the agents’partitions are nested;

— at least one of the agents in the economy can trade on σ∗t∗ ;

— and, for each k ∈ I who cannot trade on σ∗t∗ , any path ω∗k ∈ Ω∗k such that
σ∗t∗ ∈ ω∗kt∗ and any t > t∗, we have:

min
σ∈ω∗k

e (σt) = min
σ∈ω∗k|σt∗=σ∗

t∗
e (σt) .

The intuition of the last point of the assumption is that we wish the set of
paths passing through the node σ∗t∗ to be similar to the set of paths that pass
through the same cell of agent k’s partition with respect to the lower bounds
on the aggregate endowment.
Consider the economy from Example 1 consisting of Ann and Bob and as-

sume that endowments are i.i.d. over time. While there is no node besides
σ0 which both agents can trade on, at every node σt, Ann can trade on the
node. Now consider a node σ∗t∗ at which B’s financial constraints are relaxed to
W ∗B = {{s1; s3} ; {s2} ; {s4}} and the corresponding Ω∗B =

∏∞
τ=0W

∗B . Con-
sider an element of B’s new partition ω∗Bt ∈ Ω∗B which is a continuation of
the path ω∗Bt∗ and hence, σ∗t∗ ∈ ω∗Bt∗ . Recall that s (σt), respectively w∗B (σt)
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stands for the state, respectively, the element of B’s new partition W ∗B real-
ized on path σ in period t. By the construction of Ω∗B , if σt and σ′t ∈ ω∗Bt for
some t > t∗, then w∗B (σt) = w∗B (σ′t). Hence, either s (σt) = s (σ′t) = s2, or
s (σt) = s (σ′t) = s4, or s (σt) ∈ {s1; s3} and s (σ′t) ∈ {s1; s3}. Suppose that σ′
satisfies σ′t∗ = σ∗t∗ . Since the economy is i.i.d., we then have either

e (σ′t) = e (σt) = e (s2) , or

e (σ′t) = e (σt) = e (s4) , or

min
s∈{s1;s3}

e
(
σ′t−1; s

)
= min
s∈{s1;s3}

e (σt−1; s) .

It then follows that

min
σ∈ω∗k

e (σt) = min
σ′∈ω∗k|σ′

t∗=σ∗
t∗
e (σ′t)

as required by Assumption 4.
The role of Assumption 4 is to establish that for the purposes of equilibrium

analysis upon relaxing some of the financial constraints, we can restrict attention
to an "economy" that starts at σ∗t∗ with some endowment determined by trades
at t = 0. In particular, the equilibrium of the economy at σ∗t∗ depends only
on the set of successors of σ∗t∗ as opposed to events that are impossible given
σ∗t∗ . Indeed, Proposition 9 demonstrates that the market treats nodes that
are not successors of σ∗t∗ as 0-probability events by assigning them 0-prices in
equilibrium.
As explained above, this condition is not overly restrictive:

Remark 3 An economy with nested partitions and i.i.d. total initial endow-
ment, that is, e (σt; s) = e (σ′t′ ; s) for all σt, σ

′
t′ ∈ Ω satisfies Assumption 4 for

every σ∗t∗ .

Definition 6 Let
(
ci
)
i∈I be an equilibrium allocation of the economy with dif-

ferential financial constraints. An equilibrium with relaxed constraints
(
Ω∗i
)
i∈I

at σ∗t∗ is an integrable price system (p∗ (σt))σt∈Ωσ∗
t∗
and consumption streams(

c∗i : Ωσ∗
t∗
→ R+

)
i∈I

such that (i) all consumers i are maximizing their ex-

pected utility given the price system subject to choosing consumption streams
measurable relative to their relaxed constraints Ω∗i and (ii) markets clear:

c∗i = arg max
c∗i


ui
(
ci (σ∗t∗)

)
+
∑∞
t=t∗ β

t
i

∑
ω∗it ∈Ω∗i

σ∗
t∗
π∗i
(
ω∗it
)
ui
(
c∗i
(
ω∗it
))

s.t.
∑
t≥t∗

∑
ω∗it ∈Ω∗i

σ∗
t∗

∑
σ∗t∈ω∗it

p∗ (σt) c
∗i (ω∗it )

≤
∑
t≥t∗

∑
ωit∈Ωi

σ∗
t∗

∑
σt∈ωit

p∗ (σt) c
i
(
ωit
)


∑
i∈I

c∗i (σt) =
∑
i∈I

ci (σt) ∀σt ∈ Ω∗σ∗
t∗
.

25



Proposition 9 Under Assumptions 1—4, an equilibrium with relaxed constraints
exists. Furthermore, in such an equilibrium p (σt) = 0 for all σt 6∈ Ωσ∗

t∗
. Hence,

the equilibrium consumption can be characterized by the f.o.c.:

u′i
(
ci
(
ω∗it
))

βiπ
i
(
ω∗it+1 | ω∗it

)
u′i
(
ci
(
ω∗it+1

)) =
p∗
(
ω∗it
)

p∗
(
ω∗it+1

) =

∑
σ∗t∈ω∗it ∩Ωσ∗

t∗
p∗ (σ∗t )∑

σ∗t+1∈ω∗it+1∩Ωσ∗
t∗
p∗
(
σ∗t+1

) .
The Proposition shows that the f.o.c.s characterizing the equilibrium upon

retrading coincide with the respective f.o.c.s in an economy with an initial node
σ0 replaced by σ∗t∗ . Hence, we can use the results from Sections 3 and 4 to
characterize the equilibrium and study survival of an agent whose constraints
have been relaxed. As we know from Section 5, given identical discount factors,
the revised beliefs π∗i will play a crucial role for i’s survival. The next result
follows directly from Proposition 5:

Corollary 1 Suppose that the economy satisfies Assumptions 1—3. Consider a
population of agents with access to sets of assets ordered with respect to inclu-
sion, A1 ⊃ A2... ⊃ An and thus, nested partitions Ω1 strictly finer than Ω2...
strictly finer than Ωn. Suppose that at a node σ∗t∗ which satisfies Assumption 4,
agent i > 1’s set of assets is extended to A∗i and thus, his partition is refined
to Ω∗i, such that the new set of partitions satisfies the nested property.

Let all agents have identical (but not necessarily correct) beliefs π̃ and iden-
tical discount factors. Unless

∑
w1∈W 1

π
(
w1
)

ln
π∗i
(
w1
)

π̃ (w1)
≥ 0 if A∗i ⊇ A1 and

∑
w∗i∈W∗i

π
(
w∗i
)

ln
π∗i
(
w∗i
)

π̃ (w∗i)
≥ 0 if A∗i ⊂ A1,

i a.s. vanishes.

To understand the result, note that two cases are possible. First, i’s new
set of assets can be the largest (and thus, his partition — the finest) in the
population, A∗i ⊇ A1. Since the constraints on agent 1 are not relevant in the
economy, in the limit agent i’s consumption will be measurable w.r.t. agent
1’s partition. Hence, i cannot survive (relative to 1) unless he adopts beliefs at
least as close to the truth as those of 1 on the finer partition. Second, i’s new
set A∗i could be smaller than A1, A∗i ⊂ A1, implying that Ω∗i is coarser than
Ω1. In this case, Proposition 5 implies that i will a.s. vanish relative to agent 1
unless i adopts beliefs at least as close to the truth as 1.

The requirement that the agent adopt beliefs at least as close to the truth
on the new partition as those of the agents with finer partitions might not be
easy to satisfy. Unless the agent has a good understanding of the underlying
uncertainty, the probability of guessing by chance a distribution which satisfies
the condition is strictly less than 1. Hence, even though an increase in an agent’s
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opportunities for trade increases his welfare (see Proposition 4), this increase
in utility comes at the cost of a positive probability of vanishing. If all agents
have correct beliefs w.r.t. their initial partitions, π̃ = π, "guessing the correct
probability distribution"16 is a 0-probability event. In contrast, an agent who
can only trade in bonds, for whom W i = {{s ∈ S}} , trivially has correct beliefs
and survives.
We have shown that while markets with less constrained agents provide more

opportunities for risk-sharing17 , they also pose greater risk for the survival of
traders who might misjudge probabilities.
This issue has arisen in the literature on robust investment strategies for

hedge funds. Eichhorn et al. (1998) examine strategies that yield ‘satisfactory’
returns for a range of beliefs, at the cost of being suboptimal for any precise
belief. Eichhorn et al. conclude that ‘one plausible explanation for why investors
constrain certain asset classes may arise because of differences in their relative
confidence in the precision of the inputs’.
Interestingly, differential survival creates econometric diffi culties for the ex

post assessment of investment strategies for hedge funds. The most obvious
such problem is that high-risk strategies are likely to yield higher than average
returns for the subset of investors who follow such strategies and survive, even
in the absence of any ex ante expectation of higher returns. Survival bias also
poses a problem in assessing the persistence of hedge fund returns (Baqueroy et
al. 2005). Persistence is relevant in the current context, since only persistent
differences in performance can produce almost sure differential survival.

7 Concluding Comments

In the standard model of financial markets, all agents have access to the same
set of financial assets. In this context, the analysis of Blume and Easley (2006)
shows that, if markets are complete, differences in prior beliefs are, ultimately,
irrelevant since only agents with correct beliefs will survive. In contrast, in
incomplete markets, agents with incorrect beliefs can survive, whereas agents
with correct beliefs might vanish, see Coury and Sciubba (2012), Beker and
Chattopadhyay (2010).
In contrast, we examine markets in which agents face differential financial

constraints and demonstrate the survival of agents with both differing beliefs

16The issue of learning the true probabilities is beyond the scope of this paper. Nevertheless,
we note that a straightforward corollary to Theorem 5 in Blume and Easley (2006) is that an
agent who uses Bayesian updating to learn the correct probabilities will vanish in the presence
of agents with finer partitions and correct beliefs.
Another possibility suggested by an anonymous referee is for the investor to try to infer

the other agents’distributions from prices. Sciubba (2005) studies survival in economies à la
Grossman and Stiglitz (1980) and demonstrates that when information acquisition has small
but strictly positive cost, uninformed traders can survive, implying that prices do not fully
reveal all the available information even in the limit.
17Simsek (2013) points out that when traders have heterogeneous beliefs, the benefits of

financial innovation in terms of risk-sharing might be offset by the increased portfolio risk
resulting from speculative trades.
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and differing financial constraints. On the one hand, less constrained agents
may survive, even when their beliefs are less accurate than those of others.
Conversely, more constrained agents (those with a coarser partition of the state
space) will survive if their beliefs regarding the coarser state space on which they
can trade are accurate. Moreover, the cognitive and information requirements
to form accurate beliefs about the payoffs of a constrained set of assets (on a
coarse partition of the state space) are less demanding than the requirements
for accurate probabilities regarding the full set of assets and thus, the full set of
economically relevant states. In particular, agents with non-stochastic endow-
ments and minimal access to financial markets who invest only in bonds, will
survive a.s., though they will forgo consumption opportunities available from
insuring others.
In the main part of the paper, we concentrate on the case in which agents

only trade at time 0. This greatly simplifies the analysis and has the advantage
of obtaining a clear-cut criterion for survival relying on direct comparisons of
the individual financial constraints, beliefs and discount factors. This analysis
mimics the approach of Sandroni (2005), by extending it to the case in which
consumption, but not trade is conditional on the sequential revelation of in-
formation. In Appendix A, we derive a criterion for survival with differential
financial constraints for the case of sequential trade and show that it involves
complex interactions between constraints, beliefs and discount factors. Never-
theless, the two main insights gained from the case of period-0 trade remain true
with sequential trade: (i) an agent who is more financially constrained relative
to others in the economy need not vanish; in fact such constraints might allow
an agent to survive even if he has wrong beliefs on the probabilities of states
across which he is not allowed to trade; (ii) differential financial constraints al-
low for heterogeneity in beliefs and discount factors to persist and affect prices
in the long-run, thus providing a more realistic scenario for the study of financial
markets and more generally, macroeconomic models with agent heterogeneity.

8 Appendix A: Sequential Trading

In this Appendix, we extend the analysis of the model to sequential trade. We
use the model described in Section 3.1 to model the underlying uncertainty. The
asset structure, however, has to be redefined as follows.

8.1 Assets and Differential Financial Constraints

Let W 0 be the partition of the state space S as introduced in Section 3.2. For
a given node σt ∈ Ωt, we consider a set of one-period lived assets born at σt,
available in 0-supply, which pay on the direct successors of σt according to:

A0
σt =

{
aσt;w (s) =

{
1 if s (σt+1) ∈ w
0 else

}
.
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That is, asset aσt;w pays exactly 1 unit in those states s following σt which are
in w. A0

σt is the set of assets available to the economy as a whole. While it is
convenient to keep the node σt as the reference to the state at which an asset is
traded, the partition W 0 does not depend on σt and hence, the asset structure
remains constant over time. Markets generated by such a partition might be
dynamically complete or incomplete.
Let W i be the partition of the state space corresponding to agent i. In our

discussion of sequential trade, we will restrict attention to the case of nested
partitions, that is, the case in which agents’partitions can be ordered from the
finest to the coarsest. Assume, w.l.o.g. that for i, j ∈ {1...n}, j > i implies that
j’s partition is coarser than that of i and let agent 1’s partition18 W 1 = W 0.
Analogously to the case of period-0 trade, we wish to assume that at each node
σt, agent i has access to one-period lived assets that span the partition W i.
However, certain complications arise.
In the sequel, we use the definition (and the proof of existence) of an equi-

librium with implicit debt constraints of Magill and Quinzii (1994). Their proof
of existence of an equilibrium does not require agents to have access to the same
set of assets. However, it requires the assets in the economy to be linearly in-
dependent. This in turn means that we cannot simply endow each agent i with
the set of generalized unit securities paying conditionally on the elements of i’s
own partition, as well as on the elements of the partitions of more constrained
agents. Nevertheless, in the Online Appendix to this paper, we show that we
can construct the set of assets Ã0

σt for the economy and Ã
i
σt available to each

agent in such a way that: (i) each agent i has access to a linearly independent
set of generalized unit securities that span the partition W i; (ii) each agent i
has access to all assets available to agents with coarser partitions j > i and each
agent has access to the bond; (iii) the set of all assets in the economy is linearly
independent, contains the bond and spans W 0.
We set for every σt, Ã0

σt = ∪ni=1Ã
i
σt to be the set of all assets in the economy

at σt, Ãi = ∪σtÃiσt to be the set of all assets available to agent i and Ã
0 =

∪ni=1Ã
i to be the set of all assets in the economy. An asset will be identified by

the node at which it is born, σt and the subset w of S, on which it pays, and
we write a(σt;w) for a representative element of Ã0

σt .

8.2 Consumption and Endowments

We maintain Assumption 1 in the main text and slightly strengthen Assump-
tions 2 and 3 to ensure that every agent’s initial endowment is uniformly bounded
away from 0 and agents’ one-step-ahead probabilities are uniformly bounded
away from 0 for all s ∈ S:

Assumption 2′ There are m′ and m̃, m′ > m̃ > 0 such that ei (σt) > m̃ > 0
for all i and σt ∈ Ω and

∑
i∈Ie

i(σt) < m′ for all σt ∈ Ω.

18Since assets are available in 0-supply, assets that are inaccessible to any of the agents are
irrelevant for the economy.
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Assumption 3′ π (s) > 0 for all s ∈ S. Agents’beliefs on (Ω;F) are i.i.d. and
for all i ∈ I πi (s) > 0 for all s ∈ S.

With sequential trade, agents’beliefs on S (as opposed toW i) will matter for
the analysis. Assumption 3′ implies the existence of π > 0 such that πi (s) > π
for all i ∈ I and all s ∈ S. In the sequel,
Differently from the main part of the text, we do not require measurability

of endowments and consumption streams w.r.t. the agent’s partition. Indeed,
a consequence of the equilibrium with sequential trading defined below is that
even if initial endowments satisfy the measurability requirement, equilibrium
consumption streams will in general not do so. We impose Assumptions 1,
2′ and 3′ for the remainder of Appendix A.

8.3 Equilibrium

We use the definition of an equilibrium with implicit debt constraints as stated
by Magill and Quinzii (1994):
Definition: An IDC (implicit debt constraint) equilibrium is defined by:

consumption streams
(
ci (σt) : Ω→ R+

)
i∈{1...n}, portfolio holdings

(
θi (σt; a) : Ãi → R

)
i∈{1...n}

and asset prices
(
q
(
σt; Ã

0
)

: Ã0 → R+

)
, such that:

(i) consumers maximize utility
∑∞
t=0 β

t
iEπi

[
ui
(
ci (σt)

)]
subject to an implicit

debt constraint:

BC =


ci (σt) ∈ l+Ω

∞ | there exists a θi ∈ lÃ
i

∞ s. t. for every σt ∈ Ω
ci (σt) +

∑
a∈Ãiσt

q (σt; a) θi (σt; a) ≤ ei (σt) + θi
(
σt−1; a(σt−1;w(σt))

)
and q · θi ∈ lΩ∞

 ;
(ii) markets for the consumption good clear at each node:

∑
i∈I
[
ci (σt)− ei (σt)

]
=

0 for all σt;

(iii) asset markets clear at each node:
∑
i∈I θi (σt; a) = 0 for all σt ∈ Ω and all

a ∈ Ã0
σt .

The linear independency of assets allows us to state that an equilibrium with
implicit debt constraints of the economy exists, see Magill and Quinzii (1994).
The equilibrium determines the price q(σt;w) of any existing asset a(σt;w) ∈ Ã0

σt
traded at node σt and paying 1 unit on the event (σt;w).
On the other hand, a simple arbitrage argument establishes that we can

price any generalized Arrow security that pays on
(
σt;w

i
)
for some wi ∈ W i,

i ∈ {0; 1...n}, even if it does not belong to Ã0, using the prices of the existing
assets.
This, in turn, allows us to state the equilibrium asset prices for those assets

that pay on the market partition W 0, q (σt;w) and restate the optimization
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problem of consumer i in terms of the set of generalized unit securities (portfo-
lios) that pay exactly on the partition W i:

max
c

∞∑
t=0

βtiEπi
[
ui
(
ci (σt)

)]
subject to the implicit debt constraint:

BC =

 ci (σt) ∈ l+Ω
∞ | there exists a θi ∈ lΩ×W

i

∞ s. t. for every σt ∈ Ω
ci (σt) +

∑
w∈W i q (σt;w) θi (σt;w) ≤ ei (σt) + θi (σt−1;w (σt))

and q · θi ∈ lΩ∞

 .
The IDC equilibrium will satisfy the Euler equation for any agent i and any

asset paying on
(
σt;w

i
)
, wi ∈W i:

q(σt;wi) =
βi
∑
s∈wi u

′
i

(
ci (σt; s)

)
πi (s)

u′i (σt)

Furthermore, for any j > i, (that is, W j coarser than W i) and wj ∈ W j , we
have:

q(σt;wj) =
βi
∑
s∈wj u

′
i

(
ci (σt; s)

)
πi (s)

u′i (σt)

We now collect some additional properties of the IDC equilibrium, which
will be useful for the analysis of survival in the next section.
We first show that equilibrium prices are uniformly bounded away from 0

and uniformly bounded from above:

Lemma 1 In an IDC equilibrium prices q (σt;w) are uniformly bounded away
from 0 by q (w) > 0 and the price of the bond

∑
w∈W 0 q (σt;w) is uniformly

bounded above by q̄ and below by q =
∑
w∈W 0 q (w).

Recall that an IDC equilibrium is characterized by a uniform bound on the
value of debt D, see Magill and Quinzii (1994) such that∣∣∣∣∣ ∑

w∈W i

q (σt;w) θi (σt;w)

∣∣∣∣∣ ≤ D for all i and π-a.s. all σt ∈ Ω

Combined with the uniform bounds on prices established in Lemma 1 and
the fact that asset payoffs are linearly independent, this implies the following
Lemma:

Lemma 2 If D is the uniform bound on the value of debt in the IDC equilib-
rium, that is,

∣∣∑
w∈W i q (σt;w) θi (σt;w)

∣∣ ≤ D for all i and π-a.s. all σt ∈ Ω,
then there is a uniform bound N such that |θi (σt;w)| ≤ N for all i and π-a.s.
all σt ∈ Ω.
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The conditions listed so far are valid independently of the type of financial
constraints. Consider two agents i < j (W j is weakly coarser than W i). For
any given path σ,

u′i
(
ci (σt)

)
u′j (cj (σt))

=
βiπ

i
(
wj (σt+1)

)∑
s∈wj(σt+1) u

′
i

(
ci (σt; s)

)
πi
(
s | wj (σt+1)

)
βjπ

j (wj (σt+1))
∑
s∈wj(σt+1) u

′
j (ci (σt; s))πj (s | wj (σt+1))

Define, analogously to Beker and Chattopadhyay (2010), henceforth BC
(2010):

r̂ji (σt) =
u′i
(
ci (σt)

)∑
s∈wj(σt) u

′
i (ci (σt−1; s))πi (s | wj (σt))

Under the assumptions made on beliefs, utility functions and endowments of
the economy, the arguments in the proof of Proposition 1 in BC (2010) can be
reproduced in our case, which implies the analogue of their Proposition 1:

Proposition 10 For any agent i and agent j > i, that is, W j (weakly) coarser

than W i, Eπi
[
r̂ji (σt) | σt−1

]
= 1, r̂ji (σt) > 0 and supσt∈Ω r̂

j
i (σt) < ∞. Also,

there is a random variable Rji , which is non-negative and a.s. finite such that

Rji (σ) = lim
T→∞

T∏
t=1

r̂ji (σt) .

In particular, note that the proposition applies equally when W i = W j (as,
for example, in the special case of identical financial constraints considered by
BC, 2010).
Using the definition of r̂ji , we obtain analogously to Proposition 2 in BC

(2010):

Proposition 11 In equilibrium, the consumption of any two agents i and j
such that j is more constrained than i satisfies:

ΠT+1
t=1 r̂

j
i (σt) = βT+1

i

u′i
(
ci (σT+1)

)
u′i (ci (σ0))

ΠT
t=0

πi
(
wj (σt+1)

)
q (σt;wj (σt+1))

and
u′i
(
ci (σt+1)

)
u′j (cj (σt+1))

=
u′i
(
ci (σt)

)
u′j (cj (σt))

βj
βi

πj
(
wj (σt+1)

)
πi (wj (σt+1))

r̂ji (σt)

r̂jj (σt)
(6)

8.4 Survival in Economies with Sequential Trading

Expression (6) is of particular interest, since it allows us to compare our frame-
work to both the case of complete markets in Blume and Easley (2006) and the
case of a single asset in BC (2010). With complete markets, as in Blume and
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Easley (2006) all agents have the finest partition and hence, r̂jj (σt) = r̂ji (σt) = 1
for all σt. It follows that

u′i
(
ci (σt+1)

)
u′j (cj (σt+1))

=
u′i
(
ci (σt)

)
u′j (cj (σt))

βj
βi

πj
(
wj (σt+1)

)
πi (wj (σt+1))

,

which implies that discount factors and beliefs only matter for survival.
In contrast, if all agents only have access to a single security as in BC (2010),

(which in our case is restricted to be a bond), all agents have the trivial partition
{S} and since πi (S) = 1,

u′i
(
ci (σt+1)

)
u′j (cj (σt+1))

=
u′i
(
ci (σt)

)
u′j (cj (σt))

βj
βi

r̂ji (σt)

r̂jj (σt)

Individual beliefs thus only enter this equation implicitly through r̂.
When the partitions of the agents are nested, as in our case, beliefs on the

coarser partition W j enter the equation explicitly and play a similar role as
they do in the standard Blume and Easley (2006) complete market setting with
correct beliefs on W j making the agent more likely to survive.

Consider the case in which aggregate uncertainty is measurable w.r.t. W j

and all agents have identical beliefs, then r̂ji (σt) = r̂jj (σt) = 1 for all σt and
hence, survival is determined only by the difference in discount factors. Clearly,
in this case differential financial constraints are irrelevant for survival.
More generally, if

r̂ji (σt+1)

r̂jj (σt+1)
= const = 1

we can think of markets as being "quasi-complete" w.r.t. W j . Define yji to be
the ratio of marginal utilities of j and i:

yji (σt) =
u′j (σt)

u′i (σt)

An analogue of part (i) of Theorem 1 in BC (2010) shows that with equal
discount factors, on those paths on which the variance of the ratio of agents’

marginal utilities converges to 0, the ratio r̂ji (σt+1)

r̂jj (σt+1)
indeed converges to 1 in the

limit.

Proposition 12 Let βi = βj. Then

lim
t→∞

πj (σt | σt−1)

πi (σt | σt−1)

yji (σt)

yji (σt−1)
= 1 π-a.s. on σ satisfying

lim
t→∞

V arπ

[
πj (σt | σt−1)

πi (σt | σt−1)

yji (σt)

yji (σt−1)
| σt−1

]
= 0.
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The results in the main part of the paper rely on agents’consumption streams
being measurable w.r.t. their partitions. Such measurability in our case would
imply r̂jj (σt) = 1 for all σt. We now show that with aggregate risk, if j > i, and
i and j have identical correct beliefs and discount factors, j a.s. vanishes. In a
second step, we provide conditions on beliefs and discount factors under which
j can survive.
To state the proposition, we first define an i.i.d.-economy in which individual

initial endowments depend only on the current state and are thus i.i.d.

Definition 7 An i.i.d. economy has the property that ei (σt; s) = ei (s) for all
i ∈ I, all σt ∈ Ω and all s ∈ S.

Proposition 13 Consider an i.i.d. economy with aggregate risk such that for
some w̃j ∈ W j there are s, s′ ∈ w̃j such that e (s) 6= e (s′). Suppose that j’s
equilibrium consumption19 satisfies

r̂jj (σt) = 1 for all σt.

Let i’s partition W i be finer than that of j, W j.

(i) If βi = βj and π
i = πj = π, then j a.s. vanishes.

(ii) If I = {i; j} and if

ln
βi
βj

+
∑

wj∈W j

π
(
wj
)

ln
πi
(
wj
)

πj (wj)
<
∑
s∈S

π (s) ln

∑
s∈wjs u

′
i (e (s))πi

(
s | wjs

)
u′i (e (s))

(7)
then j a.s. survives.

Proposition 13 imposes measurability on j’s equilibrium consumption. In
general, this property will not hold in equilibrium. Our next result shows indeed
that j can vanish a.s. conditional on any given node only in a set of i.i.d.
economies with measure 0.

Proposition 14 Consider an i.i.d. economy with two agents. Assume that

βi <
u′i (m′)

u′i (m̃)
, i ∈ {1; 2} .

If the partition generated by agent j’s financial constraints, W j has at least one
element w̄j which contains at least two distinct states sw̄j 6= s′w̄j , then except
for a set of endowment processes with measure 0, there is no node σ̄t̄ ∈ Ω such
that an agent i ∈ {1; 2} a.s. vanishes conditional on σ̄t̄.
19Note that we do not claim that such an equilibrium exists. For the case of two agents,

and non-i.i.d. economies, BC (2010) provide a method of constructing economies, in which
equilibria satisfy this property.
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In economies with only two agents, there is no distinction between differential
financial constraints and market incompleteness: the set of possible trades is
restricted to those measurable w.r.t. to both agents’ partitions. Hence, the
condition imposed on the partition of agent j implies that markets indeed are
incomplete. The condition on the agents’discount factors further ensures that
the equilibrium price of the bond in this economy is bounded strictly below 1,
q̄ < 1. Under this condition, we show that none of the agents can vanish a.s.
conditional on a node σ̄t̄ ∈ Ω. Note that this result is independent of agents’
beliefs and does not depend on the relative comparison of their discount factors,
nor (trivially) on the type of financial constraints imposed as long as markets
are incomplete.
To provide some intuition for the result, we discuss an example:

Example 3 Consider an economy with S = {s1, s2, s3}, e (s1) = 4, e (s2) = 2,
e (s3) = 1. The economy is i.i.d. with π (s) > 0 for all s. W j = {{s1; s2} ; {s3}},
W i = {{s1} , {s2} , {s3}}. Clearly, since there are only two agents in the econ-
omy, the constraint on j’s trades together with market clearing implies that i can
also effectively only trade on W j. Assume that20 ui (·) = ln (·) and πi (s) = 1

3
for all s and let ej (s1) = ej (s2) = 1, ej (s3) = 1

2 .
We will argue that agent j cannot vanish a.s. conditional on a node σ̃t̃ —

the argument for i is analogous. Suppose thus that conditional on some node
σ̃t̃, j a.s. vanishes. In Lemma 18 we show that on paths emanating from σ̃t̃
equilibrium asset prices converge to those in an economy with a representative
agent i: qi (s;w = {s1; s2}) = 1

4βie (s) and qi (s;w = {s3}) = 1
3βie (s).

By assumption, βi <
u′i(m

′)
u′i(m̃) = 1

4 , thus implying that the maximal limit price

of the bond is 7
3βi < 1.

Furthermore, since j vanishes a.s. conditional on σ̃t̃, c
j → 0. In order

to convey the intuition of the argument for this example, we will use directly
the limit prices qi (s;w) and the limit consumption of j, cj = 0. The precise
argument which takes into account the fact that conditional on σ̃t̃, asset prices
and j’s consumption are eventually close, but do not coincide with their limit
values is spelled out in the proof of Proposition 14.
Since j’s initial endowment is bounded below by 1

2 , to obtain 0-consumption,
he has to either hold short positions in the relevant asset at the beginning of
the period, or alternatively, use his entire initial endowment and dividends to
buy assets instead. One possibility to accomplish this would be by holding a
stationary portfolio θ∗ (w) such that for all s and the corresponding element of
the partition ws such that s ∈ ws,

θ∗ (ws)+e
j (s) =

∑
w̃∈{{s1;s2};{s3}}

qi (s; w̃) θ∗ (w̃) =
1

3
e (s)βi

[
3

4
θ∗ ({s1; s2}) + θ∗ ({s3})

]
20We provide only the specifications strictly necessary for the understanding of the argu-

ment. j’s beliefs and utility function do not impact the argument below and hence can be
specified arbitrarily within the assumptions of the model.
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holds. Note, however that this system is overdetermined whenever j’s partition
is not the finest one. Since e (s1) 6= e (s2), it thus does not have a solution for
ej (s1) = ej (s2) = 1, (and more generally, except for a measure 0-endowment
processes).
Instead, we solve a subsystem taking one equation for each element of the

partition, e.g. s1 for {s1; s2} and, trivially, s3 for {s3} (such a subsystem has
a unique solution except for a measure 0-endowment processes):

θ∗ ({s1; s2}) + 1 =
4

3
βi

[
3

4
θ∗ ({s1; s2}) + θ∗ ({s3})

]
(8)

θ∗ ({s3}) +
1

2
=

1

3
βi

[
3

4
θ∗ ({s1; s2}) + θ∗ ({s3})

]
Intuitively, the solution of (8) is a "stationary state" in which j has 0-consumption,
while holding a constant portfolio along a path on which only states s1 and s3

occur. Clearly, such paths have a measure 0. However, we will now show that if
j starts by holding a portfolio that deviates from θ∗, his portfolio holdings will
exceed any predefined boundary in finite time with strictly positive probability,
thus violating the result of Lemma 2.
Indeed, consider the solution to (8) θ∗ ({s1; s2}) and θ∗ ({s3}). Suppose that

at σ̃t̃, θj (σ̃t̃; {s1; s2}) = θ∗ ({s1; s2}) + d, where21 d > 0. Suppose thus that at
t̃+1, s1 is realized. Then, from j’s budget constraint together with the condition
that cj (σ̃t̃; s1) = 0, j’s portfolio θj has to satisfy:

θj (σ̃t̃; {s1; s2})+1 = θ∗ ({s1; s2})+d+1 =
4

3
βi

[
3

4
θj (σ̃t̃; s1; {s1; s2}) + θj (σ̃t̃; s1; {s3})

]
Using the first equation in the system (8), we have:

3

7
θj (σ̃t̃; s1; {s1; s2}) +

4

7
θj (σ̃t̃; s1; {s3}) =

d
7
3β

+

[
3

7
θ∗ ({s1; s2}) +

4

7
θ∗ ({s3})

]
and hence, either

θj (σ̃t̃; s1; {s1; s2}) >
d

7
3βi

+ θ∗ ({s1; s2}) > d+ θ∗ ({s1; s2}) , or

θj (σ̃t̃; s1; {s3}) >
d

7
3βi

+ θ∗ ({s3}) > d+ θ∗ ({s3}) ,

since (as shown above) 7
3βi < 1.

Intuitively, since the assets bought by j exceed the quantities in the "station-
ary state", since he receives both their dividends and his initial endowment, and
since, by assumption, asset prices are lower than 1, the quantity he needs to
buy in the subsequent period of at least one of the assets must also exceed the
stationary quantity θ∗, but this time by d

7
3βi

> d.

21The argument for d < 0 is symmetric.
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Proceeding inductively, one sees that one can choose a path of κ subsequent
realizations of the states s1 and s3, such that on this path j’s asset holdings in
one of the two assets will exceed d

( 7
3βi)

κ . Thus, for suffi ciently large κ’s, j’s

asset holdings will exceed any initially predetermined bound on assets. Since
any sequence of states s1 and s3 of length κ occurs with a strictly positive prob-
ability, this generates a contradiction to the hypothesis that j a.s. vanishes in
equilibrium. Hence, θj (σ̃t̃; {s1; s2}) = θ∗ ({s1; s2}) should hold.

However, by the same argument (exchanging s1 by s2 and considering the
continuation (σ̃t̃; s2)), θj (σ̃t̃; {s1; s2}) should be given by the solution θ∗∗ ({s1; s2})
to:

θ∗∗ ({s1; s2}) + 1 =
2

3
βi

[
3

4
θ∗∗ ({s1; s2}) + θ∗∗ ({s3})

]
θ∗∗ ({s3}) +

1

2
=

1

3
βi

[
3

4
θ∗∗ ({s1; s2}) + θ∗∗ ({s3})

]
But θ∗ ({s1; s2}) 6= θ∗∗ ({s1; s2}) (except for a set of endowments of measure
0). Hence, starting with holdings θ∗ ({s1; s2}) implies a non-zero difference d to
θ∗∗ ({s1; s2}) and one can find a finite sequence of states s2 and s3 generating
the same contradiction as above.

As the example illustrates, the assumption of an i.i.d. economy plays two
roles: first, it ensures that on paths, on which j vanishes, the limit asset price
process depends only on the current state of the economy (this is also true in
the Markov setting used by BC, 2010); second, it guarantees that as long as
there is variation in the endowment process within one of the elements of the
trading partition, this variation is persistent and a.s. occurs infinitely often on
any given path22 , so that there is no unique stationary portfolio that makes j’s
consumption consistently converge to 0.
While the result of Proposition 14 does not imply that the probability with

which an agent vanishes is 0, this set is (a) of measure less than 1, (b) nowhere
dense23 .
The idea that a given type of agents (for example, those with wrong beliefs,

more severe constraints, etc.) will survive / vanish except for a negligibly small
set of histories can be formalized in two different ways:
(a) in measure theoretic terms, these agents survive / vanish a.s
(b) in topological terms, the set on which these agents vanish / survive is

meagre (a countable union of nowhere dense sets). That is they are of Baire
category one.
In some relevant cases, these concepts coincide. Most obviously, if we rep-

resent the history as a binary expansion, those histories that eventually end in
22An examination of the proof suggests that the results extend to an economy, in which

endowments depend only on the current state, but beliefs are Markovian, provided that all
one-step-ahead transitional probabilities are strictly positive. For general non-i.i.d. economies
the result need not however hold, as demonstrated by BC (2010).
23Rudin (1983) provides a method for the construction of such sets on the interval [0; 1]

which is topologically equivalent to the set Ω.
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a repetitive pattern correspond to the rationals, which are both meagre and of
zero measure. These histories can be exploited by trading strategies, even for
agents with wrong beliefs about the probability distribution of the generating
process.
It turns out, however, that intuitions based on the rationals are mislead-

ing. In general the concepts of measure and Baire category are orthogonal, see
Marinacci (1994). We have therefore addressed both criteria.
Finally note that one can interpret the two agents in the proposition as

types. In particular, we can replace each agent i ∈ {1; 2} by a set of n identical
w.r.t. preferences, beliefs, discount factors, constraints and initial endowments
agents and consider an equilibrium in which all agents of the same type behave
identically. For such an equilibrium, there will not exist a node conditional on
which any of the agents will vanish a.s.
We conclude the analysis of sequential trading with the following result.

Proposition 15 Consider an i.i.d. economy populated by a finite set of agents
I and such that the uniform upper and lower bounds on equilibrium prices de-
termined in Lemma 1 satisfy q < q̄ < 1. Suppose that for agent i ∈ I,

max
w∈W i

min
s∈w

ei (s) <
(
1− q

)
(1− q̄) min

w∈W i
max
s∈w

ei (s) . (9)

Furthermore, suppose that there is at least one agent in the economy with finan-
cial constraints leading to a partition at least as fine as W i. Then there is no
node σ̄t̄ such that agent i vanishes a.s. conditional on σ̄t̄.

Similarly to the previous proposition, the result uses a condition on the upper
and lower bounds of prices in the economy, as well as the initial endowment. As
shown in Magill and Quinzii (1994) and Krebs (2004), these bounds depend on
the parameters of the economy, such as the total initial endowment, the agent’s
preferences and discount factors, as well as the minimal probabilities π. This
suggests that for a given initial endowment for i, the rest of the parameters of
the economy can be adjusted in such a way that the condition on q̄ and q is
satisfied.
In particular, the condition relating the initial endowment of agent i and

the bounds on prices, q and q̄, precludes the case, in which i has access to a
complete set of securities and thus, his partition is W i =

{
{s}s∈S

}
. Indeed, (9)

would then require

max
s∈S

ei (s) <
(
1− q

)
(1− q̄) min

s∈S
ei (s) ,

which is excluded by
(
1− q

)
(1− q̄) < 1. In contrast, if i only has access to a

bond, W i = {{S}}, the requirement in (9) becomes:
min
s∈S

ei (s) <
(
1− q

)
(1− q̄) max

s∈S
ei (s)

In particular, the proof of the Proposition uses the fact that (9) implies that
for w1 ∈W i defined as

w1 ∈ arg max
w∈W i

min
s∈w

ei (s)
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maxs∈w1 ei (s) strictly exceeds
mins∈w1 e

i(s)

1−q̄ and hence, w1 has at least two states
leading to two distinct endowments for agent i.

Similarly, to Theorem 2 in BC (2010), the two propositions establishing
survival of agents with financial constraints do not use the fact that the (poten-
tially vanishing) agent’s consumption is optimal. Rather, they exploit the idea
that financially constrained agents will be limited in their ability to sell their
initial endowment. In particular, our results show that when constraints are
non-trivial, an agent whose consumption goes to 0 a.s. conditional on a node
σ̄t̄ will have to hold arbitrarily large long / short positions in at least some of
the assets in finite time. This, combined with the limits on equilibrium prices
contradicts, as shown in Lemma 2, the uniform bounds on debt.
Differently from the results stated in the main part of the paper, in the

case of sequential trade we do not obtain clear-cut criteria for survival which
can be reduced to direct comparisons of the individual financial constraints,
beliefs and discount factors. Instead, similarly to the results in BC (2010) for
incomplete markets, we obtain a criterion for survival that combines in non-
trivial fashion all of the above and suggests that the equilibrium dynamics in
markets with differential financial constraints and sequential trade will be rather
complex. Nevertheless, the two main insights gained from the case of period-
0 trade remain true: (i) financial constraints per se do not harm the agent’s
chances to survive; (ii) differential financial constraints allow for heterogeneity
in beliefs and discount factors in the long-run.

9 Appendix B: Proofs

Proof of Proposition 1:
An equilibrium of the economy exists under the following conditions (Bewley

1972):

1. the consumption sets are convex, Mackey-closed and contained in the set
of essentially bounded measurable functions;

2. the preferences of the agents are complete and transitive;

3. the better sets are convex and Mackey-closed;

4. the worse sets are closed in the norm topology;

5. there exists a set of paths with strictly positive measure such that the
preferences of all agents satisfy strict monotonicity on this set. That is,
adding a constant to the payoff in each state and each period makes the
agent strictly better off; and

6. for all agents, the initial endowments are in the interior of the consump-
tions sets.
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We can assume that the consumption set of an agent i ∈ {1 . . . n} is given
by the sets of all essentially bounded measurable functions on Ωi and, hence,
satisfies condition 1. We can then define the function V i0

(
ci
)
on the set of all

essentially bounded measurable functions on Ω, while the measurability restric-
tion with respect to Ωi is imposed by the consumption set of i. Condition 2 is
then trivially satisfied. The convexity requirement in condition 3 follows from
the concavity of the utility function ui. Further, V i0 is uniformly continuous and,
hence, continuous with respect to the Mackey topology. This means that both
the better and the worse sets are closed with respect to the Mackey topology,
and, hence, also in the norm topology. The second requirement in conditions 3
and 4 are therefore satisfied.
For condition 5, and an agent i, take the set of paths to be Ω. Note that

V i0 is monotonic. Take any consumption stream c. Adding a positive amount
to c strictly improves the act. Hence, the preferences of all agents are strictly
monotonic on Ω.
As for condition 6, a careful examination of Bewley’s (1972) proof shows

that in absence of production, this condition can be relaxed24 as in Assumption
2. We conclude that an equilibrium of the economy exists.
Note that the measurability condition on i’s consumption ensures that u′i

(
ci (σt)

)
=

u′i
(
ci (σ′t)

)
for all σt, σ′t ∈ Ωit. If p(·) is an equilibrium price system, then con-

dition (2)

u′i
(
ci
(
ωit
))

βiπ
i
(
ωit+1 | ωit

)
u′i
(
ci
(
ωit+1

)) =
p
(
ωit
)

p
(
ωit+1

) =

∑
σt∈ωit

p (σt)∑
σt+1∈ωit+1

p (σt+1)

is the first-order condition of agent i’s maximization problem at state σt. Hence,
it will be satisfied in any equilibrium in which agent i chooses an interior al-
location on all finite paths with positive probabilities. We now show that As-
sumptions 1—3 imply that the optimal consumption streams of all agents will
be strictly positive on all finite paths which have positive probability. To show
this, we demonstrate that the marginal rate of substitution between consump-
tion at σ0 and ωt will always be strictly positive and finite, provided that the
true probability of ωt is positive.

Since the initial endowment is uniformly bounded above, so are all the con-
sumption streams in equilibrium. Hence, by Assumption 1, u′i is always strictly
positive. Furthermore, setting c (σ0) = 0 is not optimal, since, by Assump-
tion 2, endowment is uniformly bounded away from 0 and by Assumption 1,
u′ (0) =∞. Take an arbitrary ωit such that π

(
ωit
)
> 0, and hence, by Assump-

tion 3, πi
(
ωit
)
> 0. If c (ωt) = 0, and if p (σ0), p (ωt) > 0, an iteration on (2)

24 Indeed, Assumption 2 is suffi cient for the existence of an equilibrium in a finite economy
with no production as in Debreu (1962). The extension of the price functional of each such
finite economy to the whole state space as in Bewley (1972, p. 521) only requires Assumption 2.
With no production, the rest of the Bewley’s (1972) proof can be replicated under Assumption
2. In particular, the last argument on p. 523 follows directly from equation (1), p. 522 and
the strict positivity of individual endowments.
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gives

MRSi
(
ci (σ0) ; ci (ωt)

)
=

u′i
(
ci (σ0)

)
βtiπ

i
(
ωit
)
u′i
(
ci
(
ωit
)) = 0 <

p (σ0)

p (ωt)
,

which cannot hold in the optimum. Hence, ci (ωt) = 0 can only obtain if
πi (ωt) = 0, or, by Assumption 2, if π (ωt) = 0. We thus obtain that i will have
strictly positive consumption on all finite paths which have positive probability
with respect to the truth. This, in turn implies that the first order condition
will hold on all such paths.
Derivations for Example 1:
Claim 1: Neither of the two agents is insured against idiosyncratic risk in

equilibrium.
Proof of Claim 1:
Let uA(·) and uB(·) be A’s and B’s concave von Neumann—Morgenstern

utility. Standard expected utility maximization then gives the f.o.c’s for Ann:

u′A
(
cA (s)

)
π (s)

u′A (cA (s′))π (s′)
=

ps
ps′

for s , s′ ∈ {1 . . . 4}

and for Bob (since cB (s1) = cB (s3), cB (s2) = cB (s4))

u′B
(
cB (s1)

)
(π (s1) + π (s3))

u′B (cB (s2)) (π (s2) + π (s4))
=
p1 + p3

p2 + p4
.

Combining these, we obtain:

u′B
(
cB (s1)

)
(π (s1) + π (s3))

u′B (cB (s2)) (π (s2) + π (s4))
=

p1

p2

1 + p3

p1

1 + p4

p2

=
u′A
(
cA (s1)

)
π (s1)

u′A (cA (s2))π (s2)

1 +
u′A(cA(s3))π(s3)

u′A(cA(s1))π(s1)

1 +
u′A(cA(s4))π(s4)

u′A(cA(s2))π(s2)

u′B
(
cB (s1)

)
(π (s1) + π (s3))

u′B (cB (s2)) (π (s2) + π (s4))
=

u′A
(
cA (s1)

)
π (s1) + u′A

(
cA (s3)

)
π (s3)

u′A (cA (s2))π (s2) + u′A (cA (s4))π (s4)
.

Indeed, in a manner of contradiction, assume that cB (s1) = cB (s2) and note
that this implies:

u′B
(
cB (s1)

)
(π (s1) + π (s3))

u′B (cB (s2)) (π (s2) + π (s4))
=

(π (s1) + π (s3))

(π (s2) + π (s4))
=
u′A
(
cA (s1)

)
π (s1) + u′A

(
cA (s3)

)
π (s3)

u′A (cA (s2))π (s2) + u′A (cA (s4))π (s4)

=
u′A
(
3− cB (s1)

)
π (s1) + u′A

(
2− cB (s1)

)
π (s3)

u′A (3− cB (s1))π (s2) + u′A (4− cB (s1))π (s4)

> 1 ,

since

u′A
(
3− cB (s1)

)
π (s1) + u′A

(
2− cB (s1)

)
π (s3)

u′A (3− cB (s1))π (s2) + u′A (4− cB (s1))π (s4)
>

(π (s1) + π (s3))

(π (s2) + π (s4))
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is equivalent to:

u′A
(
3− cB (s1)

)
π (s1) (π (s2) + π (s4)) + u′A

(
2− cB (s1)

)
π (s3) (π (s2) + π (s4))

> u′A
(
3− cB (s1)

)
π (s2) (π (s1) + π (s3)) + u′A

(
4− cB (s1)

)
π (s4) (π (s1) + π (s3))

[
u′A
(
3− cB (s1)

)
− u′A

(
4− cB (s1)

)]
π (s1)π (s4) +

[
u′A
(
2− cB (s1)

)
− u′A

(
4− cB (s1)

)]
π (s3)π (s4)

+
[
u′A
(
2− cB (s1)

)
− u′A

(
3− cB (s1)

)]
π (s2)π (s3) > 0

which is always satisfied, since u′A is a decreasing function. We thus obtain a
contradiction to the assumption that B is fully insured against idiosyncratic
risk in equilibrium.
Claim 2: If

π (s1)π (s2)− π (s3)π (s4) ≤ 0 (10)

A’s expected consumption is higher than her expected initial endowment.
Proof of Claim 2:
From the fact that B’s utility function is concave and thus, B partially

insures against risk, it follows that the equilibrium consumption of A satisfies:
cA (s1) < 2, cA (s2) > 1, cA (s3) < 1, cA (s4) > 2 with

cA (s4) = 4− cB (s2) > cA (s1) = 3− cB (s1) >

> cA (s2) = 3− cB (s2) > cA (s3) = 2− cB (s1) .

From A’s f.o.c. we then conclude that the equilibrium prices satisfy:

p∗4
π (s4)

<
p∗1

π (s1)
<

p∗2
π (s2)

<
p∗3

π (s3)
.

Suppose to the contrary of Claim 2 that

Eπ
[
cA (s)

]
< Eπ

(
eA (s)

)
= 2π (s1) + π (s2) + π (s3) + 2π (s4) ,

and, hence,[
3− cB (s1)

]
π (s1) +

[
2− cB (s1)

]
π (s3) +

[
3− cB (s2)

]
π (s2)

+
[
4− cB (s2)

]
π (s4) ≤ 2π (s1) + π (s2) + π (s3) + 2π (s4) ,

or

cB (s2) ≥ 2 +
π (s1) + π (s3)

π (s2) + π (s4)

[
1− cB (s1)

]
.

It follows that:

EπuA
(
cA
)

= π (s1)uA
(
3− cB (s1)

)
+ π (s3)uA

(
2− cB (s1)

)
+ π (s2)uA

(
3− cB (s2)

)
+π (s4)uA

(
4− cB (s2)

)
≤ π (s1)uA

(
2 +

(
1− cB (s1)

))
+ π (s3)uA

(
1 +

(
1− cB (s1)

))
+π (s2)uA

(
1− π (s1) + π (s3)

π (s2) + π (s4)

(
1− cB (s1)

))
+ π (s4)uA

(
2− π (s1) + π (s3)

π (s2) + π (s4)

(
1− cB (s1)

))

42



< (π (s1) + π (s4))uA

(
2 +

(
1− cB (s1)

)( π (s1)π (s2)− π (s3)π (s4)

(π (s2) + π (s4)) (π (s1) + π (s4))

))
+ (π (s2) + π (s3))uA

(
1 +

(
π (s3)π (s4)− π (s1)π (s2)

(π (s2) + π (s4)) (π (s2) + π (s3))

)(
1− cB (s1)

))
.

Since cB (s1) > 1, for π (s1)π (s2)− π (s3)π (s4) ≤ 0, this is a mean-preserving
spread of the initial endowment and we have EπuA

(
cA
)
< EπuA

(
eA
)
, in con-

tradiction to utility maximization.
Derivations for Example 2:
Claim 3: It is impossible to ensure all agents in the economy against idio-

syncratic risk.
Proof of Claim 3:
Suppose to the contrary that ci (s1) = ci (s2) for all agents i ∈ {A;B;C;D}.

For A to be fully insured across s1 and s2, we need:

u′A
(
cA (s1)

)
u′A (cA (s2))

= 1 =
p1

p2
.

Furthermore, since C and D are fully insured across s1 and s2, the measurability
requirement on their consumption implies that they are fully insured across all
states:

ci (s1) = ci (s2) = ci (s3) = ci (s4) , i ∈ {C;B} ,

and hence,
u′B(cB(s3))
u′B(cB(s4))

= p1+p3

p2+p4
, or p3 = p4. But this would imply that

u′i(c
i(s3))

u′i(c
i(s4)) =

p3

p4
= 1, or that both A and D have to be fully insured across states s3 and s4,

which is impossible.
Claim 4: In general, A and D will not be fully insured against idiosyncratic

risk in equilibrium.
Proof of Claim 4:
To give an example, suppose that ui (c) = ln c for i ∈ {A;B;D}, whereas

uC (c) = c
1
2 . Suppose that A and D were fully insured against idiosyncratic

risk, then by the same argument as above p1 = p2 = p. Since B and C are risk-
averse, they will try to smooth consumption across the states they perceive.
Hence, in equilibrium, their consumption will satisfy:

2 > cB (s2) = cB (s4) > cB (s1) = cB (s3) > 1

2 > cC (s1) = cC (s4) > cC (s2) = cC (s3) > 1.

But then,

cA (s1) =
6− cB (s1)− cC (s1)− cD (s1)

2
=

6− cB (s2)− cC (s2)− cD (s1)

2
= cA (s2)

and we obtain
cB (s1) + cC (s1) = cB (s2) + cC (s2) . (11)
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The demand functions of B and C satisfy:

cB (s1) = cB (s3) =
3p+ p3 + 2p4

2 (p3 + p)

cB (s2) = cB (s4) =
3p+ p3 + 2p4

2 (p4 + p)

cC (s2) = cC (s3) =
3p+ p3 + 2p4

2p+ p3 + p4

(p+ p4)

(p+ p3)

cC (s1) = cC (s4) =
3p+ p3 + 2p4

2p+ p3 + p4

(p+ p3)

(p+ p4)

and substituting into (11), we obtain:

3p+ p3 + 2p4

2 (p3 + p)
+

3p+ p3 + 2p4

2p+ p3 + p4

(p+ p3)

(p+ p4)
=

3p+ p3 + 2p4

2p+ p3 + p4

(p+ p4)

(p+ p3)
+

3p+ p3 + 2p4

2 (p4 + p)
.

Without loss of generality., we can normalize 3p+ p3 + 2p4 = 1 and simplify to:

2p (p3 − p4) = (p4 − p3) (p4 + p3) .

Since the only solution of this equation is p3 = p4, it follows that

cA (s3) = cA
(
s4
)

cD (s3) = cD
(
s4
)

cB (s3) = cB (s4)

cC (s3) = cC (s4) ,

in contradiction to the existence of aggregate risk.
To simplify the proofs of the following results, we state and prove the fol-

lowing:

Lemma 3 Consider two agents i and j such that j is weakly less constrained
than i, that is, Ai ⊆ Aj and Ωi is weakly coarser than Ωj. In equilibrium, π-a.s.
for any path ωi ∈ Ωi,

lim
T→∞

1

T + 1
ln

u′i
(
ci
(
ωiT+1

))∑
ω̃jT+1⊆ωiT+1

u′j

(
cj
(
ω̃jT+1

))
πj
(
ω̃jT+1 | ωiT+1

) (12)

= ln
βj
βi

+
∑

wi∈W i

π
(
wi
)

ln
π
(
wi
)

πi (wi)
−

∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πj (wi)

and

lim
T→∞

1

T + 1
ln

∑
ω̃jT+1⊆ωiT+1

u′j

(
cj
(
ω̃jT+1

))
πj
(
ω̃jT+1 | ωiT+1

)
u′i
(
ci
(
ωiT+1

)) (13)

= ln
βi
βj

+
∑

wi∈W i

π
(
wi
)

ln
π
(
wi
)

πj (wi)
−

∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πi (wi)
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If, furthermore, πi
(
wi
)

= πj
(
wi
)
for all wi ∈ W i and βi = βj, then for every

ωiT+1 ∈ Ωi,

u′i
(
ci
(
ωiT+1

))∑
ω̃jT+1⊆ωiT+1

u′j

(
cj
(
ω̃jT+1

))
πj
(
ω̃jT+1 | ωiT+1

) =
u′i
(
ci (σ0)

)
u′j (cj (σ0))

(14)

Proof of Lemma 3:
We will use the analogue of the Blume and Easley (2006) decomposition.

Applying condition (2) to i and j,

u′i
(
ci (σ0)

)
βiu
′
i

(
ci
(
ωiT+1

))
πi
(
ωiT+1

) =
u′j
(
cj (σ0)

)
βj
∑
ω̃jT+1⊆ωiT+1

u′j

(
cj
(
ω̃jT+1

))
πj
(
ω̃jT+1

) .
Hence,

u′i
(
ci (σ0)

)
βiu
′
i

(
ci
(
ωiT+1

))
πi
(
ωiT+1

) =
u′j
(
cj (σ0)

)
βjπ

j
(
ωiT+1

)∑
ω̃jT+1⊆ωiT+1

u′j

(
cj
(
ω̃jT+1

))
πj
(
ω̃jT+1 | ωiT+1

) ,
(15)

which reduces to:

u′i
(
ci
(
ωiT+1

))∑
ω̃jT+1⊆ωiT+1

u′j

(
cj
(
ω̃jT+1

))
πj
(
ω̃jT+1 | ωiT+1

) =
βj
βi

πj
(
ωiT+1

)
πi
(
ωiT+1

) u′i (ci (σ0)
)

u′j (cj (σ0))

=
u′i
(
ci (σ0)

)
u′j (cj (σ0))

T+1∏
t=1

βj
βi

πj
(
wit
)

πi
(
wit
)

If πi
(
wi
)

= πj
(
wi
)
for all wi ∈ W i and βi = βj , (14) immediately obtains.

Otherwise,

lim
T→∞

1

T + 1
ln

u′i
(
ci
(
ωiT+1

))∑
ω̃jT+1⊆ωiT+1

u′j

(
cj
(
ω̃jT+1

))
πj
(
ω̃jT+1 | ωiT+1

) =

= lim
T→∞

ln
βj
βi

+ lim
T→∞

1

T + 1

T+1∑
t=1

ln
πj
(
wit
)

πi
(
wit
) + lim

T→∞

1

T + 1
ln
u′i
(
ci (σ0)

)
u′j (cj (σ0))

.

Since u′i
(
ci (σ0)

)
and u′j

(
cj (σ0)

)
are finite, the third term on the r.h.s. con-

verges to 0, furthermore,

lim
T→∞

1

T + 1
ln

u′i
(
ci
(
ωiT+1

))∑
ω̃jT+1⊆ωiT+1

u′j

(
cj
(
ω̃jT+1

))
πj
(
ω̃jT+1 | ωiT+1

)
= lim

T→∞
ln
βj
βi

+ lim
T→∞

1

T + 1

T+1∑
t=1

(
lnπj

(
wit
)
− lnπ

(
wit
))

+

+ lim
T→∞

1

T + 1

T+1∑
t=1

(
lnπ

(
wit
)
− lnπi

(
wit
))
.
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Since ln
π(wit)
πi(wit)

and ln
π(wit)
πj(wit)

are i.i.d and are equal in expectations to the

relative entropy of i’s and j’s beliefs with respect to the truth π, we obtain that
(12) π-a.s. holds. The derivations for (13) are analogous and thus omitted.

Proof of Proposition 2:
Using Lemma 3 for the case Ωi = Ωj , we obtain that for two such agents, i

and j, with ln βi
βj

+

(∑
wi∈W i π

(
wi
)

ln
π(wi)
πj(wi) −

∑
wi∈W i π

(
wi
)

ln
π(wi)
πi(wi)

)
> 0,

π-a.s. on every ωi ∈ Ωi,

lim
T→∞

1

T + 1
ln
u′j
(
cj
(
ωiT+1

))
u′i
(
ci
(
ωiT+1

)) = ln
βi
βj

+

( ∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πj (wi)
−

∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πi (wi)

)
> 0.

Since u′i
(
ci (ωT+1)

)
> u′i (m′) for all ωiT+1, the denominator in the ln on the

l.h.s. is bounded. If the numerator u′j
(
cj (ωT+1)

)
were also bounded, the

l.h.s. would converge to 0 in contradiction to the equality above. Hence, π-a.s.,
u′j
(
cj (ωT+1)

)
→∞ and therefore, cj (ωT+1)→ 0, or j vanishes.

Proof of Proposition 3:
Order the agents from 1 to n s.t. A1 ⊇ A2 ⊇ ...An and thus, Ω1 finer than

Ω2 finer than... Ωn. By measurability of initial endowment, w.l.o.g., set Ω1 = Ω.

Lemma 4 Agent 1, cannot be the only one to survive on a path σ ∈ Ω.

Proof of Lemma 4:
Take a path σ and assume that limt→∞ ci (σt) = 0 for all i > 1. Measur-

ability of consumption implies for all i > 1 and ωi ∈ Ωi such that σ ∈ ωi,
ci (σt) = ci (σ′t) for all σ

′
t ∈ ωit and thus, limt→∞ ci (σ′t) = 0. Since Ω2 is

the finest partition among those of agents i > 1, there is a t
(
ω2
)
such that

σ ∈ ω2 with ci (σt) < ε < m
n−1 for all i > 1 and all t ≥ t

(
ω2
)
, implying

c1 (σ̃t) ≥ m− (n− 1) ε > 0 for all σ̃ ∈ ω2 and t ≥ t
(
ω2
)
. By (15), and since dis-

count factors and beliefs are identical, we can use (14) replacing i by 2 and j by 1,

where
u′2(c

2(σ0))
u′1(c1(σ0)) <∞. We have

∑
σ̃T+1∈ω2

T+1
u′1
(
c1 (σ̃T+1)

)
π1
(
σ̃T+1 | ω2

T+1

)
≤

u′1 (m− (n− 1) ε) < ∞ for all T + 1 > t
(
ω2
)
. However, limt→∞ c2 (σt) = 0,

and thus, by Assumption 1, lim
T+1→∞ u′2

(
c2
(
ω2
T+1

))
=∞, in contradiction to

(14).
It follows that at least one agent, i > 1 has to survive on σ, and thus on ωi

such that σ ∈ ωi.

Lemma 5 For any ωnt ∈ Ωn

lim
t→∞

sup
∑
σ̃t∈ωnt

u′1
(
c1 (σ̃t)

)
π1 (σ̃t | ωnt ) ≤ max

i∈{1...n}
u′i

(m
n

) u′1 (c1 (σ0)
)

u′i (ci (σ0))
(16)

Proof of Lemma 5:
Take a path σ ∈ Ω and note that for every σt, there is an i (σt) ∈ I such that

ci (σt) ≥ m
n . Since discount factors and beliefs are identical, it follows that for
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any σt ∈ Ω and the corresponding i (σt) and ωi(σt) ∈ Ωi(σt) such that σ ∈ ωi(σt),
we can use (14) replacing i by i (σt) and j by 1 to obtain:∑

σ̃t∈ωi(σt)t

u′1
(
c1 (σ̃t)

)
π1
(
σ̃t | ωi(σt)t

)
≤ u′i(σt)

(m
n

) u′1
(
c1 (σ0)

)
u′i(σt)

(
ci(σt) (σ0)

)
It follows that for any σt and ω

i(σt)
t ∈ Ωi(σt),∑

σ̃t∈ωi(σt)t

u′1
(
c1 (σ̃t)

)
π1
(
σ̃t | ωi(σt)t

)
≤ max
i∈{1...n}

u′i

(m
n

) u′1 (c1 (σ0)
)

u′i (ci (σ0))
= P

Consider ωnt ∈ Ωn and note that we can partition ωnt into at most n − 1
subsets xk (ωnt ) ⊆ Ωt such that on σt ∈ xk (ωnt ) agent k is the agent with
the coarsest partition and consumption ck (σt) ≥ m

n . It follows that for every
ωkt ⊆ xk (ωnt ), ∑

σ̃t∈ωkt

u′1
(
c1 (σ̃t)

)
π1
(
σ̃t | ωkt

)
≤ P and thus,

∑
ωkt⊆xk(ωnt )

π1
(
ωkt | xk (ωnt )

) ∑
σ̃t∈ωkt

u′1
(
c1 (σ̃t)

)
π1
(
σ̃t | ωkt

)
≤ P

Finally, since the number of the elements of the partition (xk (ωnt ))k∈{1...n} is
finite, we have:
n∑
k=1

π1 (xk (ωnt ) | ωnt )
∑

σ̃t∈xk(ωnt )

u′1
(
c1 (σ̃t)

)
π1 (σ̃t | xk (ωnt )) =

∑
σ̃t∈ωnt

u′1
(
c1 (σ̃t)

)
π1 (σ̃t | ωnt ) ≤ P

for any ωnt ∈ Ωn, and thus,

lim
t→∞

sup
∑
σ̃t∈ωnt

u′1
(
c1 (σ̃t)

)
π1 (σ̃t | ωnt ) ≤ P

proving the statement of the Lemma.

Lemma 6 On any ωn ∈ Ωn, agent n survives. Furthermore, the consumption
of agent n on each path is uniformly bounded away from 0.

Proof of Lemma 6:

Consider agents 1 and n. We have that
∑
σ̃t∈ωnt

u′1(c
1(σ̃t))π1(σ̃t|ωnt )

u′n(cn(ωnt )) =
u′1(c

1(σ0))
u′n(cn(σ0))

and thus, by Lemma 5,

lim
t→∞

supu′n (cn (ωnt )) ≤ P u
′
n (cn (σ0))

u′1 (c1 (σ0))
(17)

Hence, n survives on any ωnt . Furthermore, (17) implies

lim
t→∞

inf cn (ωnt ) ≥ u′−1
n

(
P
u′n (cn (σ0))

u′1 (c1 (σ0))

)
> 0.
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Lemma 7 For any j ∈ {2...n− 1} and any ωnt ∈ Ωn

lim
t→∞

sup
∑

ω̃jt⊆ωnt

u′j

(
cj
(
ω̃jt

))
πj
(
ω̃jt | ωnt

)
≤ P

u′j
(
cj (σ0)

)
u′1 (c1 (σ0))

(18)

Proof of Lemma 7:
The result follows from (14) in which i is replaced by n and j remains j and

the fact that u′n satisfies (17).

Lemma 8 Agent j ∈ {1...n− 1} survives π-a.s. on Ω.

Proof of Lemma 8:
Suppose in a manner of contradiction that there exists a set Ω̃j ⊆ Ωj ,

π
(

Ω̃j
)
> 0 and limt→∞ cj

(
ωjt

)
= 0 π-a.s. ωj ∈ Ω̃j . Then, limt→∞ u′j

(
cj
(
ω̃jt

))
=

∞ π-a.s. Ω̃j and hence, limt→∞
∑
ω̃jt∈Ω̃j π

(
ω̃jt

)
u′j

(
cj
(
ω̃jt

))
=∞. Now let Ω̃n

denote the smallest measurable event on Ωn such that for every ωj ∈ Ω̃j , there
is an ωn ∈ Ω̃n with ωj ⊆ ωn. Hence,

∞ = lim
t→∞

∑
ω̃jt∈Ω̃j

π
(
ω̃jt

)
u′j

(
cj
(
ω̃jt

))
≤ lim
t→∞

sup
∑

ωnt ∈Ω̃n

π (ωnt )
∑

ω̃jt⊆ω
n
t

ω̃jt∈Ω̃j

π
(
ω̃jt | ωnt

)
u′j

(
cj
(
ω̃jt

))

= lim
T→∞

sup
∑

ωnt ∈Ω̃n

π (ωnt )
∑

ω̃jt⊆ω
n
t

ω̃jt∈Ω̃j

πj
(
ω̃jt | ωnt

)
u′j

(
cj
(
ω̃jt

))
≤ P

u′j
(
cj (σ0)

)
u′1 (c1 (σ0))

<∞

where the first inequality follows from the definitions of Ω̃j and Ω̃n, the second
equality from the fact that j’s beliefs beliefs are correct, and the two last inequal-
ities from (18). We thus obtain a contradiction and conclude that j ∈ {1...n− 1}
π-a.s. survives on Ωj and thus, by measurability on Ω.

Proof of Proposition 4:
At the equilibrium prices, i’s and j’s optimization problems are given by

(1). Endowments, discount factors and utility functions coincide. Further,
beliefs coincide on the common partition representing contingencies of which
both can trade. Hence, the only difference between the two problems concerns
the measurability requirements: cj has to be measurable relative to

(
Ωj ;F j

)
,

whereas ci has to be measurable relative to the finer
(
Ωi;F i

)
. Since Ωi is

coarser than Ωj , i and j are maximizing the same utility function at the same
equilibrium prices and at the same initial endowment, but with j has a strictly
larger choice set w.r.t. inclusion than i. Hence, V j0

(
cj
)
≥ V i0

(
ci
)
obtains in

equilibrium.
Proof of Proposition 5:
By Lemma 3, (12) obtains π-a.s. By assumption, the l.h.s. of (12) is

strictly positive. Since u′j
(
cj
(
ω̃jT+1

))
≥ u′j (m′) for all ω̃jT+1 ∈ Ωj , and thus,
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∑
ω̃jT+1⊆ωiT+1

u′j

(
cj
(
ω̃jT+1

))
πj
(
ω̃jT+1 | ωiT+1

)
≥ u′j (m′) for all ωiT+1 ∈ Ωi,

this implies u′i
(
ci
(
ωiT+1

))
→∞, or ci

(
ωiT+1

)
→ 0, π-a.s.

To prove Proposition 6, we first prove two special cases of it, Proposition
16, in which all agents have identical discount factors and identical, but poten-
tially wrong beliefs and Proposition 17, in which all agents have distinct beliefs
and discount factors. Lemma 16 provides the bridge between these two cases,
essentially establishing that when a set of agents has equal discount factors and
beliefs, their total consumption in the limit coincides with the limit consumption
of a single agent with those same discount factors and beliefs and furthermore,
all of these agents a.s. survive.

Proposition 16 Consider a population of agents with available sets of assets
ordered with respect to inclusion A1 ⊃ A2... ⊃ An and thus nested partitions, Ω1

strictly finer than Ω2... strictly finer than Ωn. If the constraints of any agent
i ≥ 2 are both relevant in the limit and relevant w.r.t. those of i − 1 and if all
agents have identical discount factors and identical (but not necessarily correct
beliefs), all agents a.s. survive.

Proof of Proposition 16:
The proof of this proposition uses some of the Lemmata derived in the proof

of Proposition 3. In particular, note that the proofs of the Lemmata 4, 5 and
6 only depend on the assumption that all agents have identical discount factors
and identical, but not necessarily correct beliefs. Hence, the results of these
Lemmata apply here.

Lemma 9 Agent 1 survives a.s.

Proof of Lemma 9:
Since partitions are nested, for every i, ei is measurable w.r.t. Ω1, and so is

the equilibrium consumption, ci. Thus, w.l.o.g., we can set Ω1 = Ω and conclude
that 1’s constraints are irrelevant in the limit. Since those of 2 are both relevant
and relevant w.r.t. those of 1, there are distinct s and s′ ∈ w2 for some w2 ∈W 2

and ε > 0 such that for any σ, σ′ ∈ ω2, limt→∞ sup [e (σt; s)− e (σ′t; s
′)] > ε.

Since for every j ≥ 2, j’s consumption is measurable with respect to Ω2, for
every t, every σt ∈ ω2

t and s, s
′ ∈ w2,

∑
j≥2 c

j
(
ω2
t ;w

2
)
≤ e (σt; s

′), and hence,
for every σ ∈ ω2, on which state s occurs i.o. (which in turn implies that w2

occurs i.o. on ω2),

lim
T→∞

sup c1 (σT ) = lim
T→∞

sup

e (σT )−
∑
j≥2

cj (σT )


≥ lim
T→∞

sup

[
e (σT )− min

s̃∈w2(σT )
e (σT−1; s̃)

]
≥ lim
T→∞

sup [e (σT−1; s)− e (σT−1; s′)] > ε.

Since s occurs i.o. a.s. w.r.t. πi for any i, it follows that π-a.s. and for any i,
πi-a.s., agent 1 survives on σ. Hence, if n = 2, by Lemma 6, agent 2 survives
on all paths in Ωn = Ω2.
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Assume thus that n > 2. The next lemma considers a given path σ and
distinguishes two cases: either on σ, agent 1’s consumption exactly coincides
with the part of the initial endowment non-measurable w.r.t. Ω2, or it exceeds
it. We show that in both cases, agent 2 π-a.s. survives on ω2 such that σ ∈ ω2.

Lemma 10 Consider a path σ ∈ Ω and let σ ∈ ω2:

(i) If limt→∞ c1 (σt) − e (σt) + minσ̃t∈ω2
t
e (σ̃t) = 0, then π-a.s. 2 survives on

ω2;

(ii) If limt→∞ sup c1 (σt)− e (σt) + minσ̃t∈ω2
t
e (σ̃t) > 0, then 2 survives on ω2.

Proof of Lemma 10:
Part (i): Under condition (i) of the Lemma, since

∑
j≥3 c

j (σt) is measurable
w.r.t. Ω3, for every t, c2 (σt) + c1 (σt) − e (σt) + minσ̃t∈ω3

t
e (σ̃t) ≥ 0. Hence,

π-a.s.,

lim
t→∞

inf c2 (σt) ≥ lim
t→∞

inf −c1 (σt)+e (σt)− min
σ̃t∈ω3

t

e (σ̃t) = lim
t→∞

sup

[
min
σ̃t∈ω2

t

e (σ̃t)− min
σ̃t∈ω3

t

e (σ̃t)

]
> ε,

where the last inequality follows from 3’s financial constraints being relevant in
the limit w.r.t. those of 2 and the fact that each w2 (w3) occurs π-a.s. i.o. on
any ω2 (ω3). Hence, agent 2 survives on ω2 π-a.s.
Part (ii): Since

∑
j≥2 c

j (σt) is measurable w.r.t. Ω2, c1 (σ′t) − e (σ′t) +

minσ̃t∈ω2
t
e (σ̃t) ≥ 0 is also measurable w.r.t. Ω2. Thus, under condition (ii) of

the Lemma, there is a ε̂1
(
ω2
)
with limt→∞ sup c1 (σ′t)−e (σ′t)+minσ̃t∈ω2

t
e (σ̃t) =

2ε̂1
(
ω2
)
> 0. By measurability, i.o. on ω2,minσ′t∈ω2 c1 (σ′t)−e (σ′t)+minσ̃t∈ω2

t
e (σ̃t) ≥

ε̂1
(
ω2
)
and hence, i.o. on ω2,

∑
σt∈ω2

t
u′1 (c1 (σt))π

1
(
σt | ω2

t

)
≤ u′1

(
ε̂1
(
ω2
))
<

∞. Using (14) with i = 2 and j = 1, we conclude that 2 survives on ω2.
The two parts of Lemma 10 taken together imply that agent 2 π-a.s. sur-

vives.
To complete the proof of the Proposition proceed by induction. Take any

h ∈ {1...n− 1} such that all agents 1...h a.s. survive. Note that by measurability
of agent h + 1’s consumption, the total consumption of agents 1...h has to
satisfy for any ωh+1 ∈ Ωh+1 and any σ ∈ ωh+1, limt→∞

∑
i≤h c

i (σt)− e (σt) +
minσ̃t∈ωh+1

t
e (σ̃t) ≥ 0.

Lemma 11 Consider a path σ ∈ Ω and let σ ∈ ωh+1:

(i) If limt→∞
∑
i≤h c

i (σt) − e (σt) + minσ̃t∈ωh+1
t

e (σ̃t) = 0, then π-a.s. h + 1

survives on ωh+1;

(ii) If limt→∞ sup
∑
i≤h c

i (σt) − e (σt) + minσ̃t∈ωh+1
t

e (σ̃t) > 0, then h + 1

survives on ωh+1.
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Proof of Lemma 11:
The proof of part (i) is identical to that of Lemma 10 up to a change in

indices and therefore omitted. To prove part (ii), note that by an argument
using measurability of consumption and condition (ii) of the Lemma analagous
to that in the proof of part (ii) of Lemma 10, it can be shown that there is an
ε̂h
(
ωh+1

)
> 0 s.t. minσ′t∈ω2

∑h
i=1 c

i (σ′t)−e (σ′t)+minσ̃t∈ωh+1
t

e (σ̃t) ≥ ε̂h
(
ωh+1

)
i.o. on ωh+1. Hence, i.o. on ωh+1, at every σ′t ∈ ωh+1

t , at least one agent

i ∈ {1...h} has to consume at least ε̂
h(ωh+1)

h .
Clearly, if i consumes at least ε̂h

(
ωh+1

)
on σ′t, measurability implies c

i (σ′t) >
ε′

h , where σ
′
t ∈ ω′it ⊆ ωh+1

t . Using (14) with j̃ taking the place of j for any
j̃ ∈ {1...i} and in particular, for j = j̃ = 1, π1-a.s., there is a uniform infimum of

u′1
(
c1 (σ′t)

)
on σ′t ∈ ω′it , limt→∞ inf u′1

(
c1 (σ′t)

)
< maxi∈{1...h}

u
′
1(c

1(σ0))u′i

(
ε̂h(ωh+1)

h

)
u
′
i(c

i(σ0))
,

and, moreover, limt→∞ inf maxσ′t∈ω
h+1
t

u′1
(
c1 (σ′t)

)
< maxi∈{1...h}

u
′
1(c

1(σ0))u′i

(
ε̂h(ωh+1)

h

)
u
′
i(c

i(σ0))
.

It follows that

lim
t→∞

inf
∑

σ′t∈ω
h+1
t

u′1
(
c1 (σ′t)

)
π1
(
σ′t | ωh+1

t

)
< max
i∈{1...h}

u
′

1

(
c1 (σ0)

)
u′i

(
ε̂h(ωh+1)

h

)
u
′
i (ci (σ0))

<∞

Using (14) with i = h+ 1 and j = 1, we have limt→∞ inf u′h+1

(
ct+1

(
ωh+1
t+1

))
<

∞, or limt→∞ sup ct+1
(
ωh+1
t+1

)
> 0, which implies that h+ 1 survives on ωh+1.

We thus conclude that when beliefs and discount factors are identical, all
agents a.s. survive.

Proposition 17 Consider a population of agents with available sets of assets
ordered with respect to inclusion A1 ⊃ A2... ⊃ An and thus nested partitions,
Ω1 strictly finer than Ω2... strictly finer than Ωn, and ordered survival indices
such that:

lnβi −
∑
wj

π
(
wj
)

ln
π
(
wj
)

πi (wj)
< lnβj −

∑
wj

π
(
wj
)

ln
π
(
wj
)

πj (wj)

holds for all i < j. If the constraints of any agent i ≥ 2 are both relevant in the
limit and relevant w.r.t. those of i−1, agents 1 and 2 a.s. survive. Furthermore,
if for every j ∈ {2...n− 1}, such that the survival indices of j and j + 1 are
distinct, all wj+1 ∈ W j+1 and all wj ⊆ wj+1, πj

(
wj | wj+1

)
= π

(
wj | wj+1

)
,

all agents a.s. survive.

Proof of Proposition 17:
As in the proof of Proposition 16, w.l.o.g., set Ω = Ω1.

Lemma 12 Agent 1 survives π-a.s. and π1-a.s.
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Proof of Lemma 12:
The proof that 1 survives π-a.s. is identical to that of Lemma 9. Note that

the proof requires that the state s occurs i.o. on almost every path, which is
also true for πi. Hence, 1 survives π1-a.s..

Lemma 13 Agent 2 survives π-a.s.

Proof of Lemma 13:
Suppose that limt→∞ c2

(
ω2
t

)
= 0. Since 3’s constraints are relevant in the

limit w.r.t. those of 2, π-a.s., for ω3 ⊇ ω2, i.o.,minσt∈ω2
t
e (σt)−minσt∈ω3

t
e (σt) >

ε. By measurability, cj (σt) ≤ minσt∈ωjt
e (σt) for all j ≥ 2, σt ∈ ωjt , ω

j
t ⊇ ω2.

Hence, i.o. on ω2, c1 (σt) ≥ ε for all σt ∈ ω2
t . However, since 1’s survival index

is strictly lower than that of 2, π-a.s., this contradicts (13) (with i = 2, j = 1),
since the infimum of the l.h.s. would be non-positive, whereas the r.h.s. is
strictly positive. Hence, agent 2 π-a.s. survives.
The next Lemma uses the condition that for agents 2...n − 1, conditional

beliefs on the next coarser partition are correct.

Lemma 14 Suppose that for every j ∈ {2...n− 1}, all wj+1 ∈ W j+1 and
all wj ⊆ wj+1, πj

(
wj | wj+1

)
= π

(
wj | wj+1

)
. For any j ∈ {1...n− 1},

limt→∞
∣∣cj (σt)− c̄j (σt)

∣∣ = 0 π-a.s. on Ω, where for σt ∈ ωjt ⊆ ω
j+1
t , c̄j (σt) =

minσ̃t∈ωjt
e (σ̃t) − minσ̃t∈ωj+1

t
e (σ̃t). Hence, j survives a.s. if j + 1’s financial

constraints are relevant in the limit w.r.t. those of j and vanishes a.s. if they
are irrelevant in the limit w.r.t. those of j.

Proof of Lemma 14:
Consider first agent 1. Using condition (13) with i = 2 and j = 1, and noting

that the r.h.s. is strictly positive, we obtain that π-a.s.

lim
T→∞

∑
σ̃T+1∈ω2

T+1

u′1
(
c1 (σ̃T+1)

)
π1
(
σ̃T+1 | ω2

T+1

)
=∞.

By measurability, for every ω2
t ∈ Ω2, c1t (σt) = c1 (σ′t) for all σt, σ

′
t ∈ Ω̂1

t

(
ω2
t

)
.

As shown in Lemma 12, π-a.s. and π1-a.s., on every σ, denoting by c̄1t (σt) =
e (σt)−minσt∈ω2

t
e (σt),

lim
t→∞

inf c1t (σt)− c̄1t (σt) ≥ 0. (19)

Hence, π-a.s. for every ω2,

lim
T→∞

∑
σ̃T+1∈ω2

T+1

u′1
(
c1 (σ̃T+1)

)
π1
(
σ̃T+1 | ω2

T+1

)

= lim
T→∞

[
∑

σ̃T+1∈Ω̂1
T+1(ω2

T+1)

u′1
(
c1 (σ̃T+1)

)
π1
(
σ̃T+1 | ω2

T+1

)
+

∑
σ̃T+1∈Ω̌1

T+1(ω2
T+1)

u′1
(
c1 (σ̃T+1)

)
π1
(
σ̃T+1 | ω2

T+1

)
]
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= lim
T→∞

[u′1
(
c1
(
ω2
T+1

))
π1
(

Ω̂1
T+1

(
ω2
T+1

))
+

∑
σ̃T+1∈Ω̌1

T+1(ω2
T+1)

u′1
(
c1 (σ̃T+1)

)
π1
(
σ̃T+1 | ω2

T+1

)
]

where the first term uses c1 (σ̃T+1) = c1
(
σ̃′T+1

)
for all σ̃T+1, σ̃′T+1 ∈ Ω̂1

T+1

(
ω2
T+1

)
.

Note further that since 2’s financial constraints are relevant w.r.t. those of 1 in
the limit, and since every w2 occurs i.o. π-a.s. on every ω2,

lim
T→∞

inf
∑

σ̃T+1∈Ω̌1
T+1(ω2

T+1)

u′1
(
c1 (σ̃T+1)

)
π1
(
σ̃T+1 | ω2

T+1

)
]

≤ lim
T→∞

inf
∑

σ̃T+1∈Ω̌1
T+1(ω2

T+1)

u′1
(
c̄1 (σ̃T+1)

)
π1
(
σ̃T+1 | ω2

T+1

)
≤ u′1 (ε)

Since π-a.s., limT→∞
∑
σ̃T+1∈ω2

T+1
u′1
(
c1 (σ̃T+1)

)
π1
(
σ̃T+1 | ω2

T+1

)
=∞, we

thus have that limT→∞ u′1
(
c1
(
ω̃2
T+1

))
π1
(

Ω̂1
T+1

(
ω2
T+1

))
=∞ and hence, c1

((
ω̃2
T+1

))
→

0 π-a.s. on Ω̂1
T+1

(
ω2
T+1

)
.

By (19) and since e (σt)−c1 (σt) is Ω2-measurable, limT→∞
∣∣c1 (σT+1)− c̄1 (σT+1)

∣∣ =
0 π-a.s..
We can now repeat the argument by induction for any agent with an in-

dex greater than 1. For agent j > 1, define c̄jt
(
ωjt

)
= minσt∈ωjt

e (σt) −
minσt∈ωj+1

t
e (σt). Suppose that π-a.s. limt→∞ cj (σt) = limj

t→∞ c̄i (σt) for all
j ≤ k. Then, π-a.s.

lim
t→∞

inf ck+1
t

(
ωk+1
t

)
− c̄k+1

t

(
ωk+1
t

)
≥ 0 (20)

where for any σ̄t ∈ ωk+1
t ⊆ ωk+2

t ,

c̄k+1
t

(
ωk+1
t

)
= min
σt∈ωk+1

t

e (σt)− min
σt∈ωk+2

t

e (σt) = e (σ̄t)−
k∑
j=1

c̄j (σ̄t)− min
σt∈ωk+2

t

e (σt)

and furthermore, since k + 2’s financial constraint is relevant in the limit w.r.t.
that of k + 1, on almost all ωk+2

T+1,

lim
t→∞

sup c̄k+1 > ε. (21)

Furthermore, for any ωk+1
t ∈ Ω̂k+1

t

(
ωk+2
t

)
, e (σt) −

∑
j≤k c̄

j
t (σt) = e (σ′t) −∑

j≤k c̄
j
t (σ′t) for all σt, σ

′
t ∈ ωk+1

t . Finally, for any ωk+2
t , any j > k+1, any ωk+1

t ,

ω′k+1
t ∈ Ω̂k+1

t

(
ωk+2
t

)
and any σt ∈ ωk+1

t , σ′t ∈ ω′k+1
t , cj (σt) = cj (σ′t). It thus

follows that for every ε > 0, limt→∞ π{ωk+2
t s.t. maxωk+1

t ,ω′k+1
t ∈Ω̂k+1

t (ωk+2
t ) |c

k+1
(
ωk+1
t

)
−

ck+1
(
ω′k+1
t

)
| > ε} = 0 and thus, π-a.s. for every ωk+2, in the limit k+ 1’s con-

sumption is constant on Ω̂k+1
t

(
ωk+2
t

)
:

lim
t→∞

π

(
max

ωk+1
t ,ω′k+1

t ∈Ω̂k+1
t (ωk+2

t )

∣∣ck+1
(
ωk+1
t

)
− ck+1

(
ω′k+1
t

)∣∣ = 0 | ωk+2
t

)
= 1.

(22)
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Since k + 1’s survival index is strictly smaller than that of k + 2, using (13)
with i = k + 2 and j = k + 1 and noting that the r.h.s. is strictly positive, we
obtain π-a.s. limT→∞

∑
ω̃k+1
T+1⊆ω

k+2
T+1

u′k+1

(
ck+1

(
ω̃k+1
T+1

))
πk+1

(
ω̃k+1
T+1 | ω

k+2
T+1

)
=

∞.
Then, since πk+1

(
ω̃k+1
T+1 | ω

k+2
T+1

)
= π

(
ω̃k+1
T+1 | ω

k+2
T+1

)
, and using (22),

lim
T→∞

∑
ω̃k+1
T+1⊆ω

k+2
T+1

u′k+1

(
ck+1

(
ω̃k+1
T+1

))
πk+1

(
ω̃k+1
T+1 | ω

k+2
T+1

)

= lim
T→∞

[
∑

ω̃k+1
T+1∈Ω̂k+1

T+1(ω
k+2
T+1)

u′k+1

(
ck+1

(
ω̃k+1
T+1

))
π
(
ω̃k+1
T+1 | ω

k+2
T+1

)
+

∑
ω̃k+1
T+1∈Ω̌k+1

T+1(ω
k+2
T+1)

u′k+1

(
ck+1

(
ω̃k+1
T+1

))
π
(
ω̃k+1
T+1 | ω

k+2
T+1

)
]

= lim
T→∞

[u′k+1

(
ck+1

(
ω̃k+2
T+1

))
π
(

Ω̂k+1
T+1

(
ωk+2
T+1

))
+

∑
ω̃k+1
T+1∈Ω̌k+1

T+1(ω
k+2
T+1)

u′k+1

(
ck+1

(
ω̃k+1
T+1

))
π
(
ω̃k+1
T+1 | ω

k+2
T+1

)
]

Furthermore, (20) together with (21), the fact that k + 2’s constraints are rele-
vant in the limit w.r.t. k+ 1’s and that each wk+2 occurs i.o. π-a.s., imply that
π-a.s.,

lim
T→∞

inf
∑

ω̃k+1
T+1∈Ω̌k+1

T+1(ω
k+2
T+1)

u′k+1

(
ck+1

(
ω̃k+1
T+1

))
π
(
ω̃k+1
T+1 | ω

k+2
T+1

)

≤ lim
T→∞

inf
∑

ω̃k+1
T+1∈Ω̌k+1

T+1(ω
k+2
T+1)

u′k+1

(
c̄k+1

(
ω̃k+1
T+1

))
π
(
ω̃k+1
T+1 | ω

k+2
T+1

)
≤ u′

k̃−1
(ε)

Since π-a.s., limT→∞
∑
ω̃k+1
T+1⊆ω

k+2
T+1

u′k+1

(
c̄k+1

(
ω̃k+1
T+1

))
π
(
ω̃k+1
T+1 | ω

k+2
T+1

)
=∞,

we thus have that π-a.s., limT→∞ u′k+1

(
ck+1

(
ω̃k+2
T+1

))
π
(

Ω̂k+1
T+1

(
ωk+2
T+1

))
= ∞,

and hence π-a.s. on Ω̂k+1
T+1

(
ωk+2
T+1

)
, ck+1

(
ω̃k+2
T+1

)
→ 0.

Since e (σt) −
∑
j≤k+1 c̄

j (σt) is measurable w.r.t. Ωk+2,
∑
j≥k+2 c

j (σt) is

measurable w.r.t. Ωk+2, ck+1
(
ω̃k+2
T+1

)
→ 0 π-a.s. and limT→∞

∣∣cj (σT )− c̄j (σT )
∣∣ =

0 π-a.s. j ≤ k, we have π-a.s., limT→∞
∣∣ck+1 (σT )− c̄k+1 (σT )

∣∣ = 0. It follows
that k + 1 a.s. survives if his constraints are relevant in the limit w.r.t. those
of k + 2. In contrast, if k + 1’s constraints are irrelevant in the limit w.r.t.
those of k + 2, we have that a.s., limT→∞ Ω̌k+1

T+1

(
ωk+2
T+1

)
= ∅ and hence, π-a.s.,

ck+1
(
ωk+1
T+1

)
→ 0 so that agent k + 1 a.s. vanishes.

Lemma 15 Agent n a.s. survives.
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Proof of Lemma 15:
We have shown above that for agents j ∈ {1...n− 1}, consumption converges

a.s. to c̄j . It follows that for σt ∈ ωnt , π-a.s.,

lim
t→∞

cn (σt) = e (σt)−
n−1∑
j=1

c̄j (σt) = min
σ̃t∈ωnt

e (σ̃t) ≥ m

and hence, n a.s. survives.
Proof of Proposition 6:

Lemma 16 Suppose that agents j...j + k have equal discount factors and iden-
tical beliefs, whereas j + k+ 1 has a strictly higher survival index. Suppose that
either j = 1, or j > 1, j − 1 has a strictly lower survival index than j and
a.s., limt→∞

∑
i<j

[
ci (σt)− c̄i (σt)

]
= 0. Then j...j + k a.s. survive and a.s.

limt→∞
∑j+k
i=j

[
ci (σt)− c̄i (σt)

]
= 0.

Proof of Lemma 16:
Suppose in a manner of contradiction that for some σ limt→∞ sup

∑j+k
i=j [ci (σt)−

c̄i (σt)] > 0. The same arguments as those used in the proof of part (ii)
of Lemma 11 can be used to establish that for ωj+k+1 ∈ Ωj+k+1 such that
σ ∈ ωj+k+1, there is a ε̂

(
ωj+k+1

)
> 0 s.t.

lim
t→∞

inf
∑

ωjt⊆ω
j+k+1
t

u′j

(
cj
(
ωjt

))
πj
(
ωjt | ω

j+k+1
t

)
< max
i∈{j...j+k}

u
′

j

(
cj (σ0)

)
u′i

(
ε̂(ωj+k+1)

h

)
u
′
i (ci (σ0))

.

However, using condition (13) with j = j and i = j + k + 1, and noting that

the r.h.s. is strictly positive, implies π-a.s., limt→∞
∑
ω̃jt⊆ω

j+k+1
t

u′j

(
cj
(
ω̃jt

))
πj
(
ω̃jt | ω

j+k+1
t

)
=∞, thus establishing a contradiction to limt→∞ sup

∑j+k
i=j [ci (σt)−

c̄i (σt)] > 0.
It follows that limt→∞

∑j+k
i=j

[
ci (σt)− c̄i (σt)

]
= 0. Since j+ 1’s constraints

are relevant in the limit w.r.t. those of j, agent j a.s. survives. We can then
apply Lemmata 10 and 11 to show that all agents j + 1...j + k survive a.s. as
well.
The proof of Proposition 6 now follows by combining Propositions 16 and

17 with the result of Lemma 16. W.l.o.g., let agents 1...h1 for h1 ∈ {1...n} have
distinct survival indices. In particular, agent 1 a.s. survives. By Lemma 14, we
know that if agents 1...h1, h1 ∈ {1...n} have distinct ordered survival indices,
they all survive a.s. and furthermore, limt→∞

[
ci (σt)− c̄i (σt)

]
= 0 a.s. obtains

for all i ∈ {1...h1}. If h1 = n, then Proposition 17 completes the proof. If
h1 < n, let agent h2− 1 be the agent with the largest index who has a discount
factor and beliefs identical to those of agent h1, then by Proposition 16 and
Lemma 16, all agents h1...h2 − 1 a.s. survive and furthermore, the condition
limt→∞

∑h2−1
i=1

[
ci (σt)− c̄i (σt)

]
= 0 a.s. obtains. If h2 − 1 = n, this completes

the proof.
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If h2 − 1 < n, proceed by induction. Suppose that agents 1...hk − 1 a.s.
survive and a.s.

∑hk−1
i=1

[
ci (σt)− c̄i (σt)

]
= 0. If hk = n, hk a.s. survives by

Lemma 15. If hk < n and hk has a survival index distinct from hk + 1, then
the proof of Lemma 14 (applied to agents hk and hk+1) shows that agent hk
a.s. survives and a.s. limt→∞

[
chk (σt)− c̄hk (σt)

]
= 0. If, in contrast, agents

hk...hk+1 − 1 have identical discount factors and beliefs, then by Lemmata 16
and 16, all agents hk...hk+1 − 1 a.s. survive and furthermore, the condition
limt→∞

∑hk+1−1
i=1

[
ci (σt)− c̄i (σt)

]
= 0 a.s. obtains. This proves Proposition 6.

Proof of Proposition 7:
Note that for all agents other than j, ci (σt; s) = ci (σt; s

′) has to hold in
equilibrium. Since condition (4) is satisfied, agent j’s consumption on state s is
bounded below by ε in the limit. Since state s occurs i. o. π-.a.s., we conclude
that j survives a.s..
Whenever the economy has non-nested partitions as in Definition 5, the same

argument applies to every agent j ∈ I and the statement of the Proposition
obtains.
Proof of Proposition 8:
Consider a set of paths Ω̄ which has a strictly positive probability and on

which the unconstrained agent j vanishes a.s.. We know from the previous
result that, on this set of paths, all constrained agents survive a.s.. Hence, take
the minimal set Ω̄′ such that Ω̄′ ⊇ Ω̄ and Ω̄′ is measurable w.r.t. Ωi for some
constrained agent i. The set Ω̄′ also has a strictly positive probability and since
i survives a.s. on Ω̄, he also survives a.s. on Ω̄′. It follows that for any path
ωi ⊆ Ω̄′, the numerator of (14) has a finite infimum and hence, the denominator
has to have a finite infimum. Hence, as shown in the proof of Proposition 3, the
unconstrained agent j survives a.s. on every such ωi ⊆ Ω̄′, a contradiction. We
conclude thus that agent j survives a.s..
Since j survives a.s., we know from the argument used in the proof of Propo-

sition 3 that any agent who is more constrained than j, has correct beliefs and
an identical discount factor also survives a.s..
Proof of Proposition 9:
The existence of such an equilibrium follows easily from Bewley’s (1972)

theorem. If all agents can trade on σ∗t∗ , then all agents assign 0-probability to
all σt 6∈ Ωσ∗

t∗
and we can directly apply the result of Proposition 1. If not all

agents can trade on σ∗t∗ , then the set of contingencies in this economy includes
all σt ∈ ω∗it for all ω∗it ∈ Ω∗iσ∗

t∗
for some i ∈ I. Obviously, given σ∗t∗ , many

of the paths have an objective probability of 0 and are assigned 0-probability
by agents who can trade on σ∗t∗ . In contrast, agents who cannot trade on σ

∗
t∗

assign (mistakenly) strictly positive probability to impossible events. Hence,
in equilibrium, there will be potentially trade over 0-probability contingencies:
agents who can trade on σ∗t∗ will want to sell consumption contingent on σt 6∈
Ωσ∗

t∗
, whereas agents who cannot trade on σ∗t∗ would like to buy it. Non-

negativity constraints on consumption ensure that such trades remain finite.
Given Assumption 3, all agents will wish to assign strictly positive consumption
to nodes σ∗t ∈ Ωσ∗

t∗
such that as long as p (σ∗t ) ∈ (0;∞). However, if p (σt) ∈
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(0;∞), only an agent j for whom σt ∈ ω∗jt \Ωσ∗t∗ will wish to assign strictly
positive consumption to such a node, whereas all agents who can trade on σ∗t∗
will want to consume 0 at σt. We will now show that this cannot constitute an
equilibrium allocation and hence, p (σt) = 0 has to hold, whenever σ∗t 6∈ Ωσ∗

t∗
.

Take σt 6∈ Ωσ∗
t∗
such that there is an l ∈ I and a ω∗lt ∈ Ω∗lσ∗

t∗
such that

σt ∈ ω∗lt . Let L denote the set of all such l. Suppose that p (σt) > 0 and thus,
c∗k (σt) = 0 for all k 6∈ L. Then,

∑
l∈L c

∗l (σt) = e (σt). Let l′ be the agent
with the finest partition in L. Then there is also a node σ∗t ∈ Ωσ∗

t∗
such that

σt and σ∗t ∈ ω∗l
′

t and hence, σ∗t ∈ ω∗lt for all l ∈ L. By Assumption 4, we can
choose σ∗t so that e (σ∗t ) ≤ e (σt). Measurability of consumption implies that∑
l∈L c

∗l (σt) =
∑
l∈L c

∗l (σ∗t ). However, c
∗k (σt) = 0 < c∗k (σ∗t ) for all k who

can trade on σ∗t∗ , hence, this cannot be an equilibrium allocation. We conclude
that p (σt) = 0 for all σt 6∈ Ωσ∗

t∗
.

Proof of Lemma 1:
To show that prices are uniformly bounded away from 0, we use an argument

similar to Krebs (2004). On an optimal consumption path for any consumer i,
we have to have

qmin (σt;w)u′i
(
ci (σt)

)
≥ βi

∑
s∈w

u′i
(
ci (σt; s)

)
πi (s)

Note that (i) in an economy with n agents, there is at least one agent i who con-
sumes at least 1

n of the minimal initial endowment of the economy, c
i (σt) ≥ m̃;

(ii) for any agent and at any node, ci (σt; s) ≤ m′, the maximal total endow-
ment of the economy; (iii) πi (s) ≥ π > 0 for all i and all s ∈ S. It thus follows
that the uniform lower bound on equilibrium asset prices is given by:

qmin (σt;w) ≥ min
w∈W 0

min
i∈I

βi
∑
s∈w

u′i (m′)

u′i (m̃)
π > 0.

It follows that the price of asset w is uniformly bounded below by q (w) =

mini∈I βi
∑
s∈w

u′i(m
′)

u′i(m̃) π and the price of the bond is uniformly bounded below

by q = mini∈I βi
∑
s∈S

u′i(m
′)

u′i(m̃) π.
The uniform upper bound can be determined by using Magill and Quinzii

(1994, pp. 859-860) condition A4, which is always satisfied for agents with EUM
preferences. Let β̃ denote the uniform coeffi cient of patience introduced in A4
of Magill and Quinzii (1994). They show that

∑
w∈W 0 q (σt;w) ≤ q̄ = 1

(1−β̃)m̃
is a uniform upper bound on the equilibrium price of the bond in the economy.
It then follows that q (σt;w) ≤ 1

(1−β̃)m̃
for any σt and any w.

Proof of Lemma 2:
Suppose that for everyN > 0, there is an i, (σt; w̃) such that |θi (σt; w̃)| > N .

Suppose, for example, θi (σt; w̃) > N . Since
∑
w∈W i q (σt;w) θi (σt;w) ≤ D,
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and since, by the proof of Lemma 1, q (σt;w) ∈
[
q; q̄
]
with q > 0, it follows that

qN +
∑

w∈W i\w̃

q (σt;w) θi (σt;w) ≤ D,

∑
w∈W i\w̃

q (σt;w) θi (σt;w) ≤ D − qN

and since N can be chosen large enough so that D − qN < 0, there must be at

least one w̄ such that θi (σt; w̄) ≤ D−qN
q̄ . It then follows that in state (σt; s)

with s ∈ w̄, the value of debt of the agent has to be at least:

θi ((σt; s) ;w) q ((σt; s) ;w) ≥
qN −D

q̄
− ei (σt; s) .

Hence, for N > m′q̄+D(q̄+1)
q , we obtain a contradiction to the uniform bound on

the value of debt.
The argument for θi (σt; w̃) < −N is symmetric.
Proof of Proposition 11:
From the definition of r̂ji , we have

ΠT+1
t=1 r̂

j
i (σt) = ΠT+1

t=1

u′i
(
ci (σt)

)∑
s∈wjt

u′i (ci (σt−1; s))πi
(
s | wjt

)
= βT+1

i

u′i
(
ci (σT+1)

)
u′i (ci (σ0))

ΠT
t=0π

i
(
wj (σt+1)

) u′i
(
ci (σt)

)
βi
∑
s∈wj(σt+1) u

′
i (ci (σt; s))πi (s)

= βT+1
i

u′i
(
ci (σT+1)

)
u′i (ci (σ0))

ΠT
t=0

πi
(
wj (σt+1)

)
q (σt;wj (σt+1))

Furthermore,

u′i
(
ci (σt)

)
u′j (cj (σt))

=
βiπ

i
(
wj (σt+1)

)∑
s∈wj(σt+1) u

′
i

(
ci (σt; s)

)
πi
(
s | wj (σt+1)

)
βjπ

j (wj (σt+1))
∑
s∈wj(σt+1) u

′
j (cj (σt; s))πj (s | wj (σt+1))

=
βiπ

i
(
wj (σt+1)

)∑
s∈wj(σt+1)

u′i(c
i(σt;s))

u′i(c
i(σt+1))π

i
(
s | wj (σt+1)

)
βjπ

j (wj (σt+1))
∑
s∈wj(σt+1)

u′j(c
j(σt;s))

u′j(c
j(σt+1))π

j (s | wj (σt+1))

u′i
(
ci (σt+1)

)
u′j (cj (σt+1))

=
u′i
(
ci (σt+1)

)
u′j (cj (σt+1))

βi
βj

πi
(
wj (σt+1)

)
πj (wj (σt+1))

r̂jj (σt)

r̂ji (σt)

It follows that:

u′i
(
ci (σt+1)

)
u′j (cj (σt+1))

=
u′i
(
ci (σt)

)
u′j (cj (σt))

βj
βi

πj
(
wj (σt+1)

)
πi (wj (σt+1))

r̂ji (σt)

r̂jj (σt)

Proof of Proposition 12:
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Using the fact that π is i.i.d.,

lim
t→∞

V arπ

[
πj (σt | σt−1)

πi (σt | σt−1)

yji (σt)

yji (σt−1)
| σt−1

]
= 0

is equivalent to

lim
t→∞

[
πj (s)

πi (s)

yji (σt−1; s)

yji (σt−1)
− Eπ

[
πj (s̃)

πi (s̃)

yji (σt−1; s̃)

yji (σt−1)
| σt−1

]]
= 0, (23)

for all s ∈ S, or, since βi = βj and by (6),

lim
t→∞

πj (s)

πi (s)

πi
(
wjs
)

πj
(
wjs
) r̂jj (σt−1; s)

r̂ji (σt−1; s)
− Eπ

πj (s̃)

πi (s̃)

πi
(
wjs̃

)
πj
(
wjs̃

) r̂jj (σt−1; s̃)

r̂ji (σt−1; s̃)
| σt−1

 = 0

lim
t→∞

 πj (s | wjs)
πi
(
s | wjs

) r̂jj (σt−1; s)

r̂ji (σt−1; s)
− Eπ

πj (s̃)

πi (s̃)

πi
(
wjs̃

)
πj
(
wjs̃

) r̂jj (σt−1; s̃)

r̂ji (σt−1; s̃)
| σt−1

 = 0

(24)
where wjs is used to denote the element of j’s partitions containing state s.
Denote by

λ (σt−1) = Eπ

πj (s̃)

πi (s̃)

πi
(
wjs̃

)
πj
(
wjs̃

) r̂jj (σt−1; s̃)

r̂ji (σt−1; s̃)
| σt−1

 (25)

For every σ and every ε > 0, there is a t (ε;σ) such that for all t > t (ε;σ) and
all s ∈ S, ∣∣∣∣∣∣ π

j
(
s | wjs

)
πi
(
s | wjs

) r̂jj (σt−1; s)

r̂ji (σt−1; s)
− λ (σt−1)

∣∣∣∣∣∣ < ε, or

(λ (σt−1)− ε) r̂ji (σt−1; s)πi
(
s | wjs

)
< πj

(
s | wjs

)
r̂jj (σt−1; s) <

< (λ (σt−1) + ε) r̂ji (σt−1; s)πi
(
s | wjs

)
Thus, for any wj , summing over s ∈ wj , we obtain:

(λ (σt−1)− ε)
∑
s∈wj

r̂ji (σt−1; s)πi
(
s | wj

)
<
∑
s∈wj

πj
(
s | wj

)
r̂jj (σt−1; s) <

< (λ (σt−1) + ε)
∑
s∈wj

r̂ji (σt−1; s)πi
(
s | wj

)
and since by the definition of r̂ji ,

∑
s∈wj r̂

j
i (σt−1; s)πi

(
s | wj

)
= 1 and

∑
s∈wj π

j
(
s | wj

)
r̂jj (σt−1; s) = 1,

(λ (σt−1)− ε)πi
(
wj
)
< πj

(
wj
)
< (λ (σt−1) + ε)πi

(
wj
)
.
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Finally, summing once again over all wj , λ (σt−1) − ε < 1 < λ (σt−1) + ε, or
limt→∞ λ (σt) = 1. It follows by equations (23), (24) and (25) that

lim
t→∞

πj (σt | σt−1)

πi (σt | σt−1)

yji (σt)

yji (σt−1)
= 1 π-a.s. on σ satisfying

lim
t→∞

V arπ

[
πj (σt | σt−1)

πi (σt | σt−1)

yji (σt)

yji (σt−1)
| σt−1

]
= 0.

We next prove a Lemma, which is analogous to Proposition 3 in BC (2010)
and which characterizes equilibrium prices in an i.i.d. economy with two agents
on a path on which one of the agents disappears. This Lemma will be subse-
quently used in the proofs of Propositions 13 and 14.
In the case of two agents, even when financial constraints are different, both

agents can effectively trade on those events that are measurable w.r.t. both
partitions. We can thus denote the finest common coarsening of W i and W j by
W and consider an incomplete market with generalized unit securities paying
on w ∈W .

Lemma 17 Consider an IDC equilibrium. Let I = {i; j}. Assume that the
initial endowment of the economy is i.i.d. Let J =

{
σ ∈ Ω | limt→∞ cj (σt) = 0

}
be the set of paths on which j vanishes. Let W be the finest common coarsening
of W i and W j. Then, π-a.s. on J , for w ∈W

lim
t→∞

q (σt;w) = qi (s (σt) ;w) =:
βiπi (w)

∑
s̃∈wj u

′
i (e (s̃))πi (s̃ | w)

u′i (e (s (σt)))

Proof of Lemma 17:
For ε > 0, define the set

Jε =:
{{
σ |
∣∣q (σt;w)− qi (s (σt) ;w)

∣∣ > ε
}
i.o.
}
∩ J (26)

On σ ∈ J , ci (σt) → e (s (σt)) and so there exists a T (σ) such that if
t ≥ T (σ),

1− 1
2
ε
βi

u′i(m
′)

u′i(m̃)

1− ε
βi

u′i(m
′)

u′i(m̃)

≥
u′i
(
ci (σt)

)
u′i (e (s (σt)))

≥ 1

Note that

q (σt;w)− qi−− (s (σt) ;w) = βi
∑
s∈wj

πi (s)

[
u′i
(
ci (σt; s)

)
u′i (ci (σt))

− u′i (e (s))

u′i (e (s (σt)))

]

and hence, (26) combined with the fact that πi (s) > π > 0 for all s ∈ S imply
that there is a subsequence {tk}∞k=1 with t1 ≥ T (σ) such that either

πi

(
s |

u′i
(
ci (σtk ; s)

)
u′i (ci (σtk))

− u′i (e (s))

u′i (e (s (σtk)))
>

ε

βi

)
> π and hence, (27)

π

(
s |

u′i
(
ci (σtk ; s)

)
u′i (ci (σtk))

− u′i (e (s))

u′i (e (s (σtk)))
>

ε

βi

)
> π
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for all k ≥ 1, or

πi

(
s |

u′i
(
ci (σtk ; s)

)
u′i (ci (σtk))

− u′i (e (s))

u′i (e (s (σtk)))
< − ε

βi

)
> π and hence, (28)

π

(
s |

u′i
(
ci (σtk ; s)

)
u′i (ci (σtk))

− u′i (e (s))

u′i (e (s (σtk)))
< − ε

βi

)
> π

for all k ≥ 1.
Suppose (27) holds for all k ≥ 1. Then there is a σ′ s.t. σ′t = σt for all t ≤ tk

such that:
u′i
(
ci
(
σ′tk+1

))
u′i (ci (σ′t))

−
u′i
(
e
(
s
(
σ′tk+1

)))
u′i (e (s (σ′t)))

>
ε

βi

u′i
(
ci
(
σ′tk+1

))
u′i (ci (σ′t))

>
u′i
(
e
(
s
(
σ′tk+1

)))
u′i (e (s (σ′t)))

(
u′i (e (s (σ′t)))

u′i
(
e
(
s
(
σ′tk+1

))) ε
βi

+ 1

)

u′i
(
ci
(
σ′tk+1

))
u′i
(
e
(
s
(
σ′tk+1

))) >
u′i
(
ci (σ′t)

)
u′i (e (s (σ′t)))︸ ︷︷ ︸

≥1


u′i (e (s (σ′t)))

u′i
(
e
(
s
(
σ′tk+1

)))︸ ︷︷ ︸
≥u
′
i(m
′)

u′
i
(m̃)

ε

βi
+ 1


≥ u′i (m′)

u′i (m̃)

ε

βi
+ 1

Let ε′ = 1
2

u′i(m
′)

u′i(m̃)
ε
βi
> 0, we obtain:

π

(
s |

u′i
(
ci (σtk ; s)

)
u′i (e (s))

≥ 1 + ε′

)
> π for all k ≥ 1 on σ ∈ Jε.

Symmetrically, if (28) holds, then one obtains:

π

(
s |

u′i
(
ci (σtk ; s)

)
u′i (e (s))

≤ 1− ε′
)
> π for all k ≥ 1 on σ ∈ Jε.

Hence, for each σ ∈ Jε, either
∞∑
t=0

π

(
s |

u′i
(
ci (σt; s)

)
u′i (e (s))

≥ 1 + ε′

)
≥
∞∑
k=1

π

(
s |

u′i
(
ci (σtk ; s)

)
u′i (e (s))

≥ 1 + ε′

)
=∞

or

∞∑
t=0

π

(
s |

u′i
(
ci (σt; s)

)
u′i (e (s))

≤ 1− ε′
)
≥
∞∑
k=1

π

(
s |

u′i
(
ci (σtk ; s)

)
u′i (e (s))

≤ 1− ε′
)

=∞
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which, by the EBC-Lemma in BC (2010) implies

σ ∈
{{

σ̃ |
u′i
(
ci (σt)

)
u′i (e (s (σt)))

≤ 1− ε′
}
i.o.

}
∪
{{

σ̃ |
u′i
(
ci (σt)

)
u′i (e (s (σt)))

≥ 1 + ε′

}
i.o.

}

and since u′i is continuous, c
i (σt) 6→ e (σt) π-a.s. Since Jε ⊆ J , it follows that

π (Jε) = 0. �
Proof of Proposition 13:
Extrapolating, (6) over t, we obtain:

lim
T→∞

1

T
ln
u′j (σT )

u′i (σT )
= ln

βi
βj

+
∑

wj∈W j

π
(
wj
)

ln
πi
(
wj
)

πj (wj)
+ lim
T→∞

1

T

T∑
t=1

ln
r̂jj (σt)

r̂ji (σt)

If r̂jj (σt) = 1 for all σt,

lim
T→∞

1

T

T∑
t=1

ln
r̂jj (σt)

r̂ji (σt)
= lim
T→∞

1

T

T∑
t=1

ln

∑
s∈wj(σt+1) u

′
i

(
ci (σt; s)

)
πi
(
s | wj (σt+1)

)
u′i (ci (σt+1))

(i) In particular, if as in (i), βi = βj and π
i = πj = π, then in expectations,

−Eπ

(
ln

u′i
(
ci (σt+1)

)∑
s∈wj(σt+1) u

′
i (ci (σt; s))π (s | wj (σt+1))

)

≥ − lnEπ
u′i
(
ci (σt+1)

)∑
s∈wj(σt+1) u

′
i (ci (σt; s))π (s | wj (σt+1))

= 0

and since the economy faces aggregate risk, there is at least one w̃j such
that the inequality is strict whenever wj (σt+1) = w̃j is as in the statement
of the proposition. Since w̃j occurs i.o. π-a.s. on every path σ, it follows
that a.s.

lim
T→∞

1

T

T∑
t=1

ln
r̂jj (σt)

r̂ji (σt)
> 0

and hence, a.s.,

lim
T→∞

1

T
ln
u′j
(
cj (σT )

)
u′i (ci (σT ))

> ln
βi
βj

+
∑

wj∈W j

π
(
wj
)

ln
πi
(
wj
)

πj (wj)
= 0.

However, limT→∞
1
T ln

u′j(c
j(σT ))

u′i(c
i(σT )) > 0 can only obtain if u′j

(
cj (σt)

)
→ ∞, or

if cj (σt)→ 0. It follows that in this case j a.s. vanishes.

(ii) If i and j are the only agents in the economy, then Lemma 17 above implies
that on the set of paths, on which j vanishes, asset prices converge to
equilibrium prices in an economy with a representative agent i. Hence, i’s
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consumption converges towards the total endowment of the economy not
just on the path on which j vanishes, σt as t→∞, but also on (σt; s) for
any s ∈ S as t→∞. This in turn implies

lim
T→∞

1

T

T∑
t=1

ln
r̂jj (σt)

r̂ji (σt)
= lim

T→∞

1

T

T∑
t=1

ln

∑
s∈wj(σt+1) u

′
i

(
ci (σt; s)

)
πi
(
s | wj (σt+1)

)
u′i (ci (σt+1))

=
∑
s∈S

π (s) ln

∑
s∈wjs u

′
i (e (s))πi

(
s | wjs

)
u′i (e (s))

Hence, the condition for j not to vanish provided that he is fully insured
across the states within the elements of his partition W j is:

ln
βi
βj

+
∑

wj∈W j

π
(
wj
)

ln
πi
(
wj
)

πj (wj)
<
∑
s∈S

π (s) ln

∑
s∈wjs u

′
i (e (s))πi

(
s | wjs

)
u′i (e (s))

Proof of Proposition 14:
As above, let W denote the finest common coarsening of W i and W j , that

is, the set of tradeable events. By the assumption on W j , there is an element
w̄ ∈W with two distinct states sw̄ and s′w̄. W.l.o.g., we show the result for j —
the same argument applies for agent i.

Lemma 18 Under the assumptions of Proposition 14, on the set of paths, on
which j vanishes, asset prices satisfy:

lim
t→∞

q (σt;w) = qi (s;w) = βi

∑
s̃∈w u

′
i (e (s̃))πi (s̃)

u′i (e (s))

and
∑
w∈W qi (s;w) ≤ 1 for any s ∈ S.

Proof of Lemma 18:

The convergence result follows from Lemma 17. Since βi <
u′i(m

′)
u′i(m̃) , it follows

that for any s ∈ S,∑
w∈W

qi (s;w) = βi

∑
s̃∈S u

′
i (e (s̃))πi (s̃)

u′i (e (s))
<
u′i (m′)

u′i (m̃)

∑
s̃∈S u

′
i (e (s̃))πi (s̃)

u′i (e (s))
≤ 1.

For each w ∈W , choose an sw ∈ w such that sw̄ is the relevant state for w̄.
Define (θ∗ (w))w∈W as the solution to the system of equations:

θ∗ (w) + ej (sw) =
∑
w̃∈W

θ∗ (w̃) qi (sw; w̃) for all sw, w ∈W . (29)

Note that a solution exists and is unique except on a measure-0 set of parameters
of the economy.
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Furthermore, except for a set of initial endowments with measure 0,∑
w̃

θ∗ (w̃) qi (sw̄; w̃)− ej (sw̄)−
∑
w̃

θ∗ (w̃) qi (s′w̄; w̃) + ej (s′w̄) = d̂ 6= 0. (30)

Let d > 0. Choose

ε (d) = min

{
d

2

(
1−max

s∈S

∑
w∈W

qi (s;w)

)
;

1−maxs∈S
∑
w∈W qi (s;w)

4
8N |W |

}
.

Let ξ (d) = πk̄(d), where k̄ (d) is the smallest positive integer such that:[
min
s∈S

1∑
w∈W qi (s;w) +

1−maxs∈S
∑
w∈W qi(s;w)

2

]k̄
> max

{
N −minw∈W θ∗ (w)

d− ε (d)
;
N + minw∈W θ∗ (w)

d− ε (d)

}
.

Suppose in a manner of contradiction that j vanishes a.s. conditional on
node σ̄t̄. Then, there exists a t̂ (ε (d) ; ξ (d)) = t̂ (d) such that

π

(
σ | σt̄ = σ̄t̄, cj (σt) <

ε(d)
2 and∣∣q (σt;w)− qi (s (σt) ;w)

∣∣ < ε(d)
8N |W j | for all t ≥ t̂ (d)

)
> 1− ξ (d) . (31)

The condition on q (σt;w) together with those on ε (d) imply that for any
θ (σt;w) ∈ [−N ;N ]

|W | (including θ (σt;w) = θ∗ (w)) and for all t ≥ t̂ (d) on the
set of paths in the set on the l.h.s. of (31),∣∣∣∣∣ ∑

w∈W
θ (σt;w) q (σt;w)−

∑
w∈W

θ (σt;w) qi (s;w)

∣∣∣∣∣ < ε (d)

4
(32)

Since for any t̃ > t̂ (d), the number of nodes σt̃ such that σt̄ = σ̄t̄ is finite, it
follows that there is at least one node σ̃t̃ such that:

π (Ξ (σ̃t̃; d)) =

= π

 σ | σt̄ = σ̄t̄, σt̃ = σ̃t̃, cj (σt) <
ε(d)

2 and∣∣∑
w∈W θ (σt;w) q (σt;w)−

∑
w∈W θ (σt;w) qi (s;w)

∣∣ < ε(d)
4

for all t ≥ t̃

 > 1−ξ (d) .

(33)
Denote by Ω̃ (d) the set of all nodes σ̃t̃ satisfying these properties. Note that

for any given path σ, on which j vanishes, σt ∈ Ω̃ (d) occurs i.o. Furthermore,
if d′ < d, then ε (d′) ≤ ε (d) and ξ (d′) ≤ ξ (d), so that Ω̃ (d′) ⊆ Ω̃ (d).

Lemma 19 A.s., on every path σ with σt̄ = σ̄t̄, |θj (σt; w̄)− θ∗ (w̄)| < d for
every σt ∈ Ω̃ (d).
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Proof of Lemma 19:
Given σ̃t̃ ∈ Ω̃ (d), consider its continuations σ with σt̃ = σ̃t̃ which belong

to Ξ (σ̃t̃; d) in (33). Note that w
(
σt̃+1

)
= w̄ occurs with probability at least

π. Suppose first in a manner of contradiction, that θj (σt̃; w̄) ≥ d+ θ∗ (w̄) and
sw1 = sw̄ = s

(
σt̃+1

)
. j’s budget constraint together with the definition of

(θ∗ (w))w∈W in (29) implies that:

∑
w∈W

θj (σt̃; sw1 ;w) q (σt̃; sw1 ;w) ≥ d− ε (d)

2
+
∑
w∈W

θ∗ (w) qi (sw1 ;w)

and hence, by (32),∑
w∈W

θj (σt̃; sw1 ;w) q (σt̃; sw1 ;w) ≥ d− ε (d) +
∑
w∈W

θ∗ (w) q (σt−1; sw1 ;w)

Since by the definition of ε (d), d > 2ε (d) and

∑
w∈W

q (σt̃; sw1 ;w) <
∑
w∈W

qi (sw1 ;w) +
1−maxs∈S

∑
w∈W qi (s;w)

2
< 1,

we have that for at least one w2 ∈W j ,

θj
(
σt̃; sw1 ;w2

)
≥ θ∗

(
w2
)

+
d− ε (d)∑

w∈W q (σt̃; sw1 ;w)

> θ∗
(
w2
)

+ ε (d) .

Recursively, noting that by assumption, for every κ,

d >
ε (d)

1−maxs∈S
∑
w∈W qi (s;w)

≥ ε (d) + max
s∈S

∑
w∈W

qi (s;w) ε (d) + ...+

(
max
s∈S

∑
w∈W

qi (s;w)

)κ
ε (d) > ε (d) ,

there is a sequence of k̄ (d) states such that

θj

(
σt̃; sw1 ...swk̄ ;wk̄(d)+1

)
≥ θ∗

(
wk̄(d)+1

)
+

d−ε(d)∑
w∈W q(σt̃;sw1 ;w)

−ε(d)

∑
w∈W q(σt̃;sw1 ;s

w2 ;w)
−ε(d)

... − ε (d) ...∑
w∈W q (σt̃; sw1 ; sw2 ; ...swk ;w)

− ε (d)

≥ min
w∈W

θ∗ (w) +
d− ε (d)

Πk̄
κ=1

[∑
w∈W qi (swκ ;w) +

1−maxs∈S
∑
w∈W qi(s;w)

2

]
> N

Note, furthermore, that by assumption, the probability of such a sequence
occurring conditional on σ̃t̃ is at least π (sw1 ...swk̄(d)) ≥ πk̄(d) = ξ (d) > 0 and
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hence, the choice of σ with σt̃+k̄(d) = (σ̃t̃; sw1 ...swk̄(d)) belonging to the set
Ξ (σ̃t̃; d) is non-vaccuous. Furthermore, θj (σ̃t̃; sw1 ...swk̄(d) ;w) > N for some
w ∈W , in contradiction to Lemma 2.
A symmetric argument shows that if θj (σ̃t̃; w̄) ≤ −d+ θ∗ (w̄) for some σ̃t̃ ∈

Ω̃ (d), there is a path σ with σt̃ = σ̃t̃ such that σt̃+k̄(d) = (σ̃t̃; sw1 ...swk̄(d)) has
probability larger than ξ (d) and thus belongs to Ξ (σ̃t̃; d) and θj (σ̃t̃; sw1 ...swk̄(d) ;w) <
−N for some w ∈W , in contradiction to Lemma 2
It follows that a.s. on every path σ with σt̄ = σ̄t̄, |θj (σt; w̄)− θ∗ (w̄)| < d

holds for any σt ∈ Ω̃ (d), establishing the result of the Lemma.
To conclude the proof of Proposition 14, we now establish that if |θj (σt; w̄)− θ∗ (w̄)| <

d̂
4 for some σt ∈ Ω̃

(
d̂
4

)
, then the subsequent occurrence of state s′w̄ implies that

j’s asset holdings will violate Lemma 2 in finite time with strictly positive prob-
ability. This generates the necessary contradiction.

Indeed, let d = d̂
4 . By Lemma 19, there is a finite period t0

(
d̂
4

)
such that

π
(

Ξ̃ (σ̃t̃)
)

=

= π


σ | σt̄ = σ̄t̄, cj (σt) <

ε
(
d̂
4

)
2 ,∣∣∑

w∈W θ (w) q (σt;w)−
∑
w∈W θ∗ (w) qi (s;w)

∣∣ < ε
(
d̂
4

)
4

and, for σt ∈ Ω̃
(
d̂
4

)
, |θj (σt; w̄)− θ∗ (w̄)| < d̂

4

for all t ≥ t0
(
d̂
4

)

 > 1−ξ
(
d̂

4

)
.

(34)

As above, for any t̃ > t0

(
d̂
4

)
, there exists at least one node σ̃t̃ ∈ Ω̃

(
d̂
4

)
such

that |θj (σ̃t̃; w̄)− θ∗ (w̄)| < d̂
4 . Note that the state s

′
w̄ satisfying condition (30)

occurs with a probability of at least π conditional on σ̃t̃ and hence, combining the
budget constraint of j at (σ̃t̃; sw1 = s′w̄) with condition (30) and the conditions

imposed on σ̃t̃ ∈ Ω̃
(
d̂
4

)
, we obtain25∣∣∣∣∣ ∑

w∈W
θj (σ̃t̃; sw1 = s′w̄;w) q (σ̃t̃; sw1 = s′w̄;w)−

∑
w∈W

θ∗ (w) qi (sw1 = s′w̄;w)

∣∣∣∣∣ ≥ d̂

2

Replacing sw1 = sw̄ by sw1 = s′w̄ and d by
d̂
4 in the argument used in the

proof of Lemma 19 implies that there exists a path σ
t̃+k̄

(
d̂
4

) =

(
σ̃t̃; sw1 = s′w̄; ...s

w
k̄( d̂4 )

)
which has a probability strictly larger than ξ

(
d̂
4

)
and thus belongs to Ξ̃ (σ̃t̃)

25Note that ε
(
D
4

)
< D

4
, and hence, cj (σt) <

ε(D4 )
2

< D
8
,∣∣∑

w∈W θ (w) q (σt;w)−
∑
w∈W θ∗ (w) qi (s;w)

∣∣ < ε(D4 )
4

< D
16
and

∣∣θj (σt;w1
)
− θ∗

(
w1
)∣∣ <

D
4
.
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and on which
(
σ̃t̃; sw1 = s′w̄; ...s

w
k̄( d̂4 )

)
6∈ [−N ;N ], violating Lemma 2. We

thus obtain a contradiction to the condition that
∣∣θj (σt;w1

)
− θ∗

(
w1
)∣∣ < d̂

4 for

all σ̃t̃ ∈ Ω̃
(
d̂
4

)
and all t̃ > t0

(
d̂
4

)
established in Lemma 19.

We thus conclude that if βi <
u′i(m

′)
u′i(m̃) , there is no node σ̄t̄ conditional on

which j vanishes with probability 1, except for a set of initial endowments with
measure 0. Since i and j effectively trade on the same set of assets W , the
argument for i is symmetric.
Proof of Proposition 15:
Let

w1 ∈ arg max
w∈W i

min
s∈w

ei (s) .

Lemma 20 Under the conditions of the Proposition, the parameter of the econ-
omy satisfy:

− min
s∈w1

ei (s)−q̄ max
w∈W i

min
s∈w

ei (s) >
−maxw∈W i mins∈w e

i (s)

1− q̄ > −max
s∈w1

ei (s)−q min
w∈W i

max
s∈w

ei (s)

(35)
and

q̄
maxs∈w1 ei (s) + minw∈W i maxs∈w e

i (s)

maxs∈w1 ei (s) + minw∈W i maxs∈w ei (s)−maxw∈W i mins∈w ei (s)
< 1. (36)

Proof of Lemma 20:
Note that

− min
s∈w1

ei (s)− q̄ max
w∈W i

min
s∈w

ei (s) > −maxw∈W i mins∈w e
i (s)

1− q̄

is equivalent to q̄2 maxw∈W i mins∈w e
i (s) > 0, which is always satisfied.

Since maxw∈W i mins∈w e
i (s) <

(
1− q

)
(1− q̄) minw∈W i maxs∈w e

i (s),

− max
w∈W i

min
s∈w

ei (s) > −
(
1− q

)
(1− q̄) min

w∈W i
max
s∈w

ei (s) , or

−maxw∈W i mins∈w e
i (s)

1− q̄ > −max
s∈w1

ei (s)− q min
w∈W i

max
s∈w

ei (s)

and we obtain (35).
Since q < 1, the second inequality in (35) then implies:

−maxw∈W i mins∈w e
i (s)

1− q̄ > −max
s∈w1

ei (s)− min
w∈W i

max
s∈w

ei (s)

which is equivalent to

0 <

[
(1− q̄) max

s∈w1
ei (s) + (1− q̄) min

w∈W i
max
s∈w

ei (s)− max
w∈W i

min
s∈w

ei (s)

]
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and thus to (36).
Choose ε such that ε < m̃ and by (35) such that

−maxw∈W i mins∈w e
i (s)

1− q̄ > −max
s∈w1

ei (s)− q min
w∈W i

max
s∈w

ei (s) + ε
(
1− q

)
(37)

Let k̄ be the smallest natural number such that: 1

q̄
maxw∈Wi mins∈w ei(s)+minw∈Wi maxs∈w ei(s)

maxs∈w1 ei(s)+minw∈Wi maxs∈w ei(s)−maxw∈Wi mins∈w ei(s)

k̄ > N

m̃− ε . (38)

By (36) k̄ is finite and since, clearly

maxw∈W i mins∈w e
i (s) + minw∈W i maxs∈w e

i (s)

maxs∈w1 ei (s) + minw∈W i maxs∈w ei (s)−maxw∈W i mins∈w ei (s)
> 1,

(38) implies [
1

q̄

]k̄
>

N

m̃− ε and 1

q̄
maxs∈w1 ei(s)+minw∈Wi maxs∈w ei(s)

maxs∈w1 ei(s)+minw∈Wi maxs∈w ei(s)−mins∈w1 ei(sw1)


k̄

>
N

m̃
.

Let26 ξ ∈
(

0;πk̄+2
)
.

Suppose in a manner of contradiction that i vanishes a.s. conditional on
node σ̄t̄. Then, there exists a t̂ (ε; ξ) such that

π
(
σ | σt̄ = σ̄t̄, cj (σt) < ε for all t ≥ t̂ (ε; ξ)

)
> 1− ξ.

Since for any t̃ > t̂ (ε; ξ), the number of paths σt̃ such that σt̄ = σ̄t̄ is finite,
it follows that there is at least one path σ̃t̃ such that:

π (Ξ (σ̃t̃; ε; ξ)) = π
(
σ | σt̄ = σ̄t̄, σt̃ = σ̃t̃, cj (σt) < ε and for all t ≥ t̃

)
> 1− ξ.

(39)
Denote by Ω̃ (ε; ξ) the set of all nodes σ̃t̃ satisfying these properties. Note

that as in the proof of Proposition 14, σt ∈ Ω̃ (ε; ξ) occurs i.o. a.s. on every
path such that σt̄ = σ̄t̄.

Lemma 21 For any σ̃t̃ ∈ Ω̃ (ε; ξ), θi
(
σ̃t̃;w

1
)
< −maxs∈w1 ei (s)+ε−q[minw∈W i maxs∈w e

i (s)−
ε] must hold.

26Clearly, the definition of both ξ and k̄ depends on ε. However, since the value of ε will
remain fixed for this proof, this dependence is omitted in the notation for brevity.
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Proof of Lemma 21:
Suppose in a manner of contradiction that θi

(
σ̃t̃;w

1
)
≥ −maxs∈w1 ei (s) +

ε − q[minw∈W i maxs∈w e
i (s) − ε] for some σ̃t̃ ∈ Ω̃ (ε; ξ). Given σ̃t̃, w

1 occurs
with probability at least π > ξ. According to the budget constraint of agent i,
and since i’s consumption is lower than ε,∑

w∈W i

θi (σ̃t̃; sw1 ;w) q (σ̃t̃; sw1 ;w) ≥ θi
(
σ̃t̃;w

1
)

+ ei (sw1)− ε.

Since q ≤
∑
w∈W i q (σ̃t̃; sw1 ;w) ≤ q̄ < 1, it follows that there exists a state

realization sw1 and w2 such that:

θi
(
σ̃t̃; sw1 ;w2

)
≥
θi
(
σ̃t̃;w

1
)

+ ei (sw1)− ε∑
w∈W i q (σ̃t̃; sw1 ;w)

> − min
w∈W i

max
s∈w

ei (s) + ε

and (σ̃t̃; sw1) belongs to the set Ξ (σ̃t̃; ε; ξ) in (39).
By a similar argument, there exists a state realization sw2 ∈ w2 and a w3

such that (σ̃t̃; sw1 ; sw2) occurs with conditional probability of at least π2 > ξ
and hence belongs to Ξ (σ̃t̃; ε; ξ) and

θi
(
σ̃t̃; sw1 ;w2;w3

)
≥
θi
(
σ̃t̃; sw1 ;w2

)
+ ei (sw2)− ε∑

w∈W i q (σ̃t̃; sw1 ; sw2 ;w)
> 0

Then there exists sw3 ∈ w3 and w4 such that (σ̃t̃; sw1 ; sw2) occurs with condi-
tional probability of at least π3 > ξ and hence belongs to Ξ (σ̃t̃; ε; ξ) and:

θi
(
σ̃t̃; sw1 ;w2;w3

)
≥ ei (sw3)− ε∑

w∈W i q (σ̃t̃; sw1 ; sw2 ; sw3 ;w)

We obtain by induction that there exists a sequence w1...wk̄+2 such that (σ̃t̃; sw1 ...swk̄+2)

occurs with conditional probability at least π (sw1 ...swk̄+1) ≥ πk̄+2 > ξ and
hence belongs to Ξ (σ̃t̃; ε; ξ) and

θi

(
σ̃t̃; sw1 ; sw2 ...swk̄+2 ;wk̄+3

)
>
θi

(
σ̃t̃; sw1 ; ...swk̄+1 ;wk̄+2

)
+ ei (swk̄+2)− ε∑

w∈W i q (σ̃t̃; sw1 ; ...swk̄+2 ;w)

>
θi

(
σ̃t̃; sw1 ; ...swk̄ ;wk̄+1

)
+ ei (swk̄+1)− ε∑

w∈W i q (σ̃t̃; sw1 ; ...swk̄+1 ;w)
∑
w∈W i q (σ̃t̃; sw1 ; ...swk̄+2 ;w)

+
ei (swk̄+2)− ε∑

w∈W i q (σ̃t̃; sw1 ; ...swk̄+2 ;w)

...

≥ ei (sw3)− ε
q̄k̄

≥ m̃− ε
q̄k̄

> N

Since θj
(
σ̃t̃; sw1 ...swk̄+2 ;wk̄+3

)
> N contradicts Lemma 2, we obtain the de-

sired result.
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Lemma 22 For any σ̃t̃ ∈ Ω̃ (ε; ξ), θi
(
σ̃t̃;w

1
)
≥ −maxs∈w1 ei (s)+ε−q[minw∈W i maxs∈w e

i (s)−
ε] must hold.

Proof of Lemma 22:
Suppose in a manner of contradiction that for some σ̃t̃ ∈ Ω̃ (ε; ξ), θi

(
σ̃t̃;w

1
)
≤

−maxs∈w1 ei (s) + ε − q
(
minw∈W i maxs∈w e

i (s)− ε
)
and hence, by (35) and

(37),

θi
(
σ̃t̃;w

1
)
<
−maxw∈W i mins∈w e

i (s)

1− q̄ (40)

and

θi
(
σ̃t̃;w

1
)
< − min

s∈w1
ei (s)− q̄ max

w∈W i
min
s∈w

ei (s) = − (1− q̄) max
w∈W i

min
s∈w

ei (s)

Hence, there is a state realization sw1 , which occurs w.pr. at least π > ξ
and w2, such that the budget constraint of agent i implies

θi
(
σ̃t̃; sw1 ;w2

)
≤
θi
(
σ̃t̃;w

1
)

+ minsw1∈w1 ei (sw1)

q̄

and (σ̃t̃; sw1) belongs to Ξ (σ̃t̃; ε; ξ).
Let q̃1 be defined as:

θi
(
σ̃t̃; sw1 ;w2

)
=
θi
(
σ̃t̃;w

1
)

q̃1

Note that

θi
(
σ̃t̃;w

1
)

q̃1
<

θi
(
σ̃t̃;w

1
)

+ minsw1∈w1 ei (sw1)

q̄

q̃1 < q̄
θi
(
σ̃t̃;w

1
)

θi (σ̃t̃;w
1) + minsw1∈w1 ei (sw1)

< 1

where the last inequality follows from (40).
Note further that

q̄
θi
(
σ̃t̃;w

1
)

θi (σ̃t̃;w
1) + minsw1∈w1 ei (sw1)

< q̄
maxs∈w1 ei (s) + minw∈W i maxs∈w e

i (s)

maxs∈w1 ei (s) + minw∈W i maxs∈w ei (s)−minsw1∈w1 ei (sw1)
< 1,

where the second inequality was shown in (36).
We conclude:

θi
(
σ̃t̃; sw1 ;w2

)
< θi

(
σ̃t̃;w

1
)
< −maxw∈W i minsw∈w e

i (sw)

1− q̄ .

Hence, there exists an s2
w and w

3 such that according to i’s budget constraint:

θi
(
σ̃t̃; sw1 ; sw2 ;w3

)
≤
θi
(
σ̃t̃; sw1 ;w2

)
+ mins2w∈w2 ei

(
s2
w

)
q̄
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and the conditional probability of (σ̃t̃; sw1 ; sw2) is at least π2 > ξ implying that
it belongs to Ξ (σ̃t̃; ε; ξ). Define q̃2 as:

θi
(
σ̃t̃; sw1 ; sw2 ;w3

)
=
θi
(
σ̃t̃; sw1 ;w2

)
q̃2

and note that

q̃2 ≤ q̄
θi
(
σ̃t̃; sw1 ;w2

)
θi (σ̃t̃; sw1 ;w2) + mins2w∈w2 ei (s2

w)
< q̄

θi
(
σ̃t̃;w

1
)

θi (σ̃t̃;w
1) + minw1∈w1 ei (sw1)

< 1.

Proceeding iteratively, we conclude that there exists a sequence sw1 ...swk̄ with
conditional probability at least π (sw1 ...swk̄) ≥ πk̄ > ξ so that σt̃+k̄ = (σ̃t̃; sw1 ...swk̄+2)

belongs to Ξ (σ̃t̃; ε; ξ) and a w
k̄+1 such that

θi

(
σ̃t̃; sw1 ...swk̄ ;wk̄+1

)
<

θi
(
σ̃t̃;w

1
)[

q̄
maxs∈w1 ei(s)+minw∈Wi maxs∈w ei(s)

maxs∈w1 ei(s)+minw∈Wi maxs∈w ei(s)−mins
w1∈w1 ei(sw1)

]k̄
<

−m̃[
q̄

maxs∈w1 ei(s)+minw∈Wi maxs∈w ei(s)

maxs∈w1 ei(s)+minw∈Wi maxs∈w ei(s)−mins
w1∈w1 ei(sw1)

]k̄ < −N

However, θi
(
σ̃t̃; sw1 ...swk̄ ;wk̄+1

)
< −N contradicts Lemma 2, thus establishing

the result of the Lemma.
Combining the results of Lemmata 21 and 22, we conclude that there is no

node σ̄t̄ conditional on which agent i a.s. vanishes.
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