
HAL Id: hal-02004420
https://hal.univ-grenoble-alpes.fr/hal-02004420v1

Submitted on 25 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

An Environment for the ParTraP Trace Property
Language (Tool Demonstration)

Ansem Ben Cheikh Ben Cheikh, Yoann Blein, Salim Chehida, German Vega,
Yves Ledru, Lydie Du Bousquet

To cite this version:
Ansem Ben Cheikh Ben Cheikh, Yoann Blein, Salim Chehida, German Vega, Yves Ledru, et al.. An
Environment for the ParTraP Trace Property Language (Tool Demonstration). Runtime Verification
- 18th International Conference, RV 2018, Nov 2018, Limassol, Cyprus. pp.437-446, �10.1007/978-3-
030-03769-7_26�. �hal-02004420�

https://hal.univ-grenoble-alpes.fr/hal-02004420v1
https://hal.archives-ouvertes.fr

An Environment for the ParTraP Trace Property Language
(Tool Demonstration)

Ansem Ben Cheikh, Yoann Blein, Salim Chehida, German Vega, Yves Ledru,

and Lydie du Bousquet
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000, Grenoble, France

{Yoann.Blein,Yves.Ledru}@univ-grenoble-alpes.fr

Abstract

We present ParTraP and its associated toolset, supporting a lightweight approach to formal
methods. In critical systems, such as medical systems, it is often easy to enhance the code
with tracing information. ParTraP is an expressive language that allows to express properties
over traces of parametric events. It is designed to ease the understanding and writing of
properties by software engineers without background in formal methods. In this tool
demonstration, we will present the language and its toolset: compiler, syntax directed editor,
and a prototype generator of examples and counter-examples.

A. Ben Cheikh, Y. Blein, S. Chehida, G. Vega, Y. Ledru, and L. du Bousquet. An Environment for the
ParTraP Trace Property Language (Tool Demonstration) In Runtime Verification - 18th International
Conference (RV 2018), LNCS 11237, Pages 437-446, Springer, 2018

This material is presented to ensure timely dissemination of scholarly and
technical work. Copyright and all rights therein are retained by authors or
by other copyright holders. All persons copying this information are
expected to adhere to the terms and constraints invoked by each author's
copyright. In most cases, these works may not be reposted without the
explicit permission of the copyright holder.

This is an author-created version of this contribution.
The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-03769-7_26

An environment for the ParTraP trace property
language (tool demonstration)?

Ansem Ben Cheikh, Yoann Blein, Salim Chehida, German Vega, Yves Ledru),
and Lydie du Bousquet

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000, Grenoble, France
{Yoann.Blein,Yves.Ledru}@univ-grenoble-alpes.fr

Abstract. We present ParTraP and its associated toolset, supporting
a lightweight approach to formal methods. In critical systems, such as
medical systems, it is often easy to enhance the code with tracing infor-
mation. ParTraP is an expressive language that allows to express prop-
erties over traces of parametric events. It is designed to ease the under-
standing and writing of properties by software engineers without back-
ground in formal methods. In this tool demonstration, we will present
the language and its toolset: compiler, syntax directed editor, and a pro-
totype generator of examples and counter-examples.

1 Introduction

Many applications, such as software intensive medical devices, require high qual-
ity software but their criticality does not mandate the use of formal proofs.
Therefore, the formal methods community has promoted a lightweight approach
to formal methods [17]. The ParTraP language [8] goes into that direction.
Most computer systems can easily be augmented to produce traces of their ac-
tivity. ParTraP allows to express properties of these traces which are evaluated
by monitoring. ParTraP and its associated toolset are designed to support soft-
ware engineers not trained in formal methods. The language supports a unique
combination of features: it is parametric and provides temporal operators to in-
crease expressiveness; it is declarative and uses descriptive keywords to favour
user-friendliness. It reuses Dwyer's speci�cation patterns [14] to express intu-
itive properties. Properties of parameters can be expressed in Python, a lan-
guage familiar to our target users. Its toolset includes a syntax-directed editor.
It generates detailed explanations to help understand why a property evaluates
to true or false on a given trace. We also prototyped a generator of examples
and counter-examples, to help users understand the meaning of their properties.

Section 2 gives an overview of the ParTraP language. Section 3 presents its
associated toolset, and section 4 draws the conclusions and perspectives of this
study. On the ParTraP web site1, you will �nd a companion video demonstrat-
ing the tool, links to reference documents describing the syntax and semantics of
ParTraP, and instructions on how to download the ParTraP eclipse plugin.

? This work is funded by the ANR MODMED project (ANR-15-CE25-0010).
1 http://vasco.imag.fr/tools/partrap/

00. [{"state": "Connect", "id": "EnterState", "time": 4042.7},

01. {"state": "Connect", "id": "ExitState", "time": 4042.7},

...

04. {"id": "CameraConnected", "time": 4747.34},

...

13. {"ty": "P", "id": "TrackerDetected", "time": 4783.8},

14. {"ty": "T", "id": "TrackerDetected", "time": 4798.0},

15. {"v1": 41.44, "id": "Temp", "time": 4816.6},

16. {"state": "Save", "id": "EnterState", "time": 4816.611},

...

20. {"v1": 55.62, "id": "Temp", "time": 4847.6}]

Fig. 1. A trace excerpt in JSON Format

2 The ParTraP Language

Context. The design of ParTraP was performed in cooperation with Blue Or-
tho, a medical devices manufacturer, and MinMaxMedical, a software company.
Together, we considered a medical system (TKA) that guides Total Knee Arthro-
plasty surgeries, i.e. the replacement of both tibial and femoral cartilages with
implants. TKA produces traces of the sensors acquisitions and interactions with
the surgeon. Over time, more than 10 000 traces of actual surgeries have been
collected by Blue Ortho. Each trace counts about 500 signi�cant events. Fig. 1
gives a simpli�ed excerpt of such a trace, in JSON format.

We identi�ed 15 properties, listed in [19], representative of such medical de-
vices for assisted surgery. These properties specify the TKA traces. A careful
analysis of the properties revealed that they express temporal relations between
events, involve event parameters, and may apply to a restricted scope of the
trace. A few properties also refer to physical time or involve 3D calculations.
Based on these properties, we designed ParTraP (Parametric Trace Property
language)[8, 9]. The language is aimed at being used for o�ine trace checking.
In [19], we discussed how the language can be used during development to ex-
press and check properties of traces produced by system tests, but also during
exploitation in order to identify how the system is used or mis-used.

2.1 Structure of ParTraP Properties

A ParTraP temporal property is described by its scope in the trace, and a tem-
poral pattern over events satisfying some predicate. For example, the following
property expresses that �once the camera is connected, the device temperature

does not go below 45oC�.

VAlidTemp1 : after first CameraConnected,

absence_of Temp t where t.v1 < 45.0

The �rst line de�nes the scope of the property, here it is the su�x of the
trace starting after the �rst event of type CameraConnected. The second line
expresses a temporal pattern. Here, it is an absence pattern, stating that no
event should be a Temp whose v1 parameter is less than 45.0. t is a local variable
designating an event of type Temp. The where clause refers to this event and its
parameter. The evaluation of this property on the trace of Fig. 1 yields false and
returns the following message2:

[WARNING] False on trace unit-tests_Trace.json:

-In the scope from 5 to 20 with the environment:{}

found 1 event that should not occur:

{trace_occ_index=15, time=4816.6, id=Temp, v1=41.44}

Actually, event CameraConnected appears on line 4 of Fig. 1. So the scope of
the property ranges from lines 5 to 20 which corresponds to the last event of the
trace. The error message tells that line 15 features a Temp event which violates
the property because its v1 has value 41.44 which is actually below 45oC.

ParTraP allows to express more complex properties. For example, property
ValidTrackers in Fig. 3 features nested scopes and universal quanti�cation to
express that all types of trackers have been detected before entering a state
whose name includes `TrackersVisibCheck'.

ParTraP o�ers a variety of operators to express scopes and patterns. Scopes
refer to events located before or after an event or between two events. The
scope may consider the �rst or the last occurrence of the event, but also be
repeated for each occurrence of the event. Patterns may refer to the absence or
occurrence of an event, but may also refer to pairs of events where one event
enables or disables the occurrence of the other. Moreover, it is possible to express
physical time constraints stating that a property holds within a time interval.
Finally, expressions occurring in the where clause may be written either in a
basic language with support for numeric and string expressions, or in Python as
in [3]. Python allows to take advantage of software libraries to express complex
or domain dependent properties, e.g. properties based on 3D calculations.

Basic ParTraP temporal properties can be combined using propositional
logic connectors (and, or, implies, equiv) or quanti�ers (exists and forall).
ParTraP properties are de�ned on �nite traces and evaluated after completion
of the trace. A detailed description of the language is given in [8] or [9].

2.2 Related Work

Several languages based on temporal logic have been proposed to express trace
properties. In [8], we compared ParTraP to several temporal speci�cation lan-
guages using multiple criteria. Table 1 summarizes this study and groups lan-
guages with similar features combination. Please refer to [8] for detailed expla-
nations about this table. The �Parametric� column indicates whether a language

2 The message has been slightly simpli�ed to �t in the size of the paper. See the
console in Fig. 3 for the actual message.

Table 1. Comparison of ParTraP with several temporal speci�cation languages

Language Para-
metric

Comp.
values

Quan-
ti�ca-
tion

Ref.
past
data

Wall-
clock
time

Style

Dwyer's patterns [14],
Propel [23], LTLf [6], CFLTL [21]

7 n/a n/a n/a 7 decl.

RSL [22], Salt [7], TLTLf [6] 7 n/a n/a n/a 3 decl.
Eagle [2] 3 7 global 3 7 decl.
Stolz's Param. Prop. [24] 3 7 local 7 7 decl.
FO-LTL+ [15] 3 3 local 7 7 decl.
MFOTL/MONPOLY [5, 11] 3 7 global 3 3 decl.
JavaMOP [18] 3 7 global 3 7 mixed
QEA/MarQ [1, 20], Mu�n [13] 3 7 global 3 7 oper.
Ruler [4], Log�re [16] 3 7 n/a 3 7 oper.
LogScope [3] 3 7 global 7 7 mixed
ParTraP 3 3 local 3 3 decl.

supports parametric events, i.e. events carrying data. If so, �Comp. values� spec-
ify if compound values in parameters (e.g. records or lists) may be exploited. If
quanti�cation is supported, it may be global, i.e. the domain value of a quanti-
�ed variable is de�ned as the values taken by this variable in a whole trace, or
local, where the quanti�cation domain may only depend on the current state.
The �Ref. past data� column indicates whether it is possible to use parameters
values of past events. We also consider if physical time (�wall-clock time�) is
supported at the language level, in which case speci�cations involving timing
constraints are easier to express. Finally, the speci�cation style of a language
can be declarative, operational, or mixed between the two and o�ers the choice
to the user. As shown in Table 1, ParTraP supports a unique combination of
these features, appropriate for our industrial context and motivated by the need
for expressiveness. Other approaches, like [12], have similar goals as ours, and
use a controlled natural language. However, the resulting language is domain
speci�c and can not be applied to our industrial application.

3 Associated Toolset

ParTraP-IDE is a toolset designed to edit and execute the ParTraP language
directly on a set of trace �les. Given a set of properties, the tool provides the
set of traces violating them and an explanation of the error causes.

ParTraP-IDE relies on the Eclipse IDE and the XText framework3. Xtext
provides a complete infrastructure including: parser, lexer, typechecker and a
compiler generator. Fig. 2 shows the ParTraP-IDE architecture. Part A presents
how XText generates the toolset. Part B presents the usage of the tool.

3 https://www.eclipse.org/Xtext

Python
Interpreter

User

CompilerPartrap Editor

partrap‐util.jar
json.jar
jep.jar

Python‐utils

Property
model

file library
Functional
component

External
environment

Structured
files

Legend:

Java class

B

Language
Grammar

CompilerPartrap Editor

Xtext

UI configuration
Code Generation

Grammar
GenerationA

1 2

3

Traces
(json) Results files

Xtext artifacts
(AST metamodel, Java code, class diagram)

Fig. 2. Architecture of the ParTraP toolset

3.1 Tool Generation (Part A of Fig. 2)

This section deals with the tool generation architecture (Part A). The Par-
TraP Language grammar is de�ned in EBNF (XText's default grammar lan-
guage). After being parsed, a set of language models is generated (AST meta-
model, Java code and class diagram). These Xtext artifacts are used to con�g-
ure the language editor and to generate a compiler that transforms each Par-
TraP property to a Java monitor. When a large set of properties is considered,
ParTraP-IDE allows to compute the whole set of properties at the same time. It
is less time consuming than executing separate Java classes for each property.

3.2 ParTraP-IDE by Example (Part B of Fig. 2)

The ParTraP Editor (1) helps the user to write syntactically correct proper-
ties. The con�gured editor provides syntax coloring according to concepts (name,
keyword, python script,..) as shown in Fig. 3 under the editor window. Python ex-
pressions are delimited by dollars signs (`$') as featured by property VAlidTemp2

in Fig. 3. Moreover, some validation constraints are enforced by the editor in or-
der to forbid undesired language expressions like double use of property names
or recursivity when referencing properties. Saving the �le automatically calls
the ParTraP compiler (2) and produces the set of Java classes under package
`src-gen' (see project explorer in Fig. 3).

Fig. 3. Screen capture of the environment

Execution and Results. Execution takes two forms: running individual java
classes or evaluating all properties simultaneously. The user provides a set of
traces to be evaluated. Executing the property (3) produces a set of results �les.
Short logs only display the result (true or false) and an explanation for false
cases. Detailed logs give information on calculated scopes, patterns and expres-
sions results. A summary of false and true traces is provided for each property.

The example property presented in section 2.1 is typed in the editor of Fig. 3
and named VAlidTemp1. When applied on the trace of Fig. 1, the console reports
that one event having the temperature value `41.44' violates this property.

Python Expressions Property VAlidTemp2 is an alternate expression of the same
property whose where clause is expressed in Python and uses the Python math

module. As it is important for our envisioned users to de�ne complex calcula-
tions in properties expressions, ParTraP properties support the integration of
Python expressions using declared Python libraries. As a consequence, the de-
signed IDE allows the import of Python modules and the execution of Python
scripts. This is made possible by the use of JEP (Java Embedded Python)4 which
is a Python package generating a jar �le `jep.jar' added in the Java build path
to exchange data and scripts between the JVM and the Python Interpreter.

Performance Although we traded performance o� against expressiveness of the
language, we carried out several experiments to check that the generated mon-
itors featured su�cient performance in the context of our industrial partner,
who typically collects and analyzes several dozens of traces every day. Therefore,
we collected 100 traces from our partner5. The traces range from 304 to 1163

4 https://github.com/ninia/jep
5 These traces are not publicly available for con�dentiality reasons.

Table 2. Performance evaluation (times in seconds)

Property 100 traces 1 trace with 521 events
with Python with Python

1 0.307 2.988 0.064 0.105
2 0.326 2.378 0.064 0.088
3 n/a 1.736 n/a 0.070
4 17.605 51.639 0.255 0.728
5 0.674 2.170 0.065 0.116
6 1.517 4.969 0.074 0.118

events, with an average of 530 events. We evaluated the 6 ParTraP properties
presented in chapter 5 of [10]. These properties typically combine a scope with
a temporal pattern. For each property, we constructed a variant whose where

clause is expressed in Python (except property 3 which already has its assertion
in Python). We led the experiments on a Windows 10 machine with an Intel(R)
Core(TM) i7-6600U CPU @ 2.60GHz, and 16 Go of RAM. Each experiment was
performed 50 times and the average execution times are reported in table 2.

Column 2 reports the time in milliseconds to evaluate the property on 100
traces. The 100 traces are covered in a few seconds for each property. Property
4 takes longer because it features a complex scope involving pairs of events.
Column 3 reports on the same properties but with their where clause expressed
in Python. Their evaluations are slower because of the extra cost of interactions
between the java monitor and the Python interpreter.

Columns 4 and 5 report on the time needed to evaluate a property on a
single trace. Actually, the initialisation of the monitor involves some overhead
independently of the number of traces. Hence, we arbitrarily selected one of the
traces whose length, 521 events, was close to the average length of our set. As
expected, the average time to evaluate each property is signi�cantly longer than
one hundredth of the time of columns 2 or 3.

In summary, these experiments show that ParTraP monitors perform well
on traces provided by our partner. Most results are computed in less than one
second, even if they involve Python assertions. These performances match the
needs of our industrial partner. But further experiments should be led to evaluate
how these performances scale up for much longer traces.

3.3 Example and Counter-Example Generator

To help software engineers understand or write ParTraP formulae, we are
working on a prototype that generates examples and counter-examples and lets
engineers check that they match their intuition of the meaning of the formula. We
use the Z3 SMT solver6. Its input is a script composed of declarations (constants
or functions) and assertions. Z3 computes whether the current assertions are
satis�able or not, and gives a valuation of the variables, for satis�able formulae.

6 https://github.com/Z3Prover/z3

We have de�ned the semantics of ParTraP operators as Z3 functions. Par-
TraP properties are translated as Z3 assertions which use these functions. Z3
then checks these assertions for satis�ability and, if possible, produces a trace sat-
isfying the property. For example, the following Z3 assertion expresses property
VAlidTemp1 (absence of temperature below 45oC after the camera is connected).

(assert (afterFirst "CameraConnected"

(absence_of_where "Temp" t (< (v1 t) 45.0))))

This property is satis�able and the solver generates the following example, which
trivially satis�es the property by avoiding Temp events.

[{"id": "CameraConnected", "time": 5263, "v1": 2.0},

{"id": "C", "time": 5264, "v1": 0.0},

{"id": "CameraConnected", "time": 5853, "v1": 4.0},]

Counter-examples are generated by evaluating satis�ability of the negation of
the property. In our example, it produces the following trace where a Temp event
with low temperature (0.0) is generated after the CameraConnected event.

[{"id": "C", "time": 8, "v1": 5.0},

{"id": "a", "time": 9, "v1": 7.0},

{"id": "CameraConnected", "time": 2436, "v1": 2.0},

{"id": "Temp", "time": 2437, "v1": 0.0},]

This part of the tool is currently at a prototyping stage. It will be included in
the ParTraP distribution in the coming months. A major limitation of this
tool is that it does not support Python expressions.

4 Conclusion

This paper has brie�y presented ParTraP and its associated toolset. Par-
TraP is aimed at software engineers with poor knowledge of formal meth-
ods. Hence, we designed a keyword oriented language based on intuitive con-
structs such as Dwyer's patterns. We also integrated Python expressions in Par-
TraP properties to give access to domain speci�c libraries. Moreover, the evalu-
ation of ParTraP expressions produces detailed logs to explain why a property
was veri�ed or failed. An examples and counter-examples generator is currently
prototyped to help engineers understand the meaning of their formulae.

The companion video of this paper illustrates the main constructs of the
language and shows how the toolset helps to edit them, generates Java monitors,
evaluates properties and explains the result of their evaluation. The tool was
successfully experimented on 6 properties evaluated on 100 traces of surgical
operations, provided by our partner. Work in progress applies the tool to home
automation traces. Future work will apply the tool to other medical devices.

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.E.: Quan-
ti�ed event automata: Towards expressive and e�cient runtime monitors. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012: Formal Methods - 18th In-
ternational Symposium, Paris, France, August 27-31, 2012. Proceedings. Lec-
ture Notes in Computer Science, vol. 7436, pp. 68�84. Springer (2012).
https://doi.org/10.1007/978-3-642-32759-9_9

2. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime veri�ca-
tion. In: Veri�cation, Model Checking, and Abstract Interpretation, 5th Interna-
tional Conference, VMCAI 2004, Venice, January 11-13, 2004, Proceedings. pp.
44�57 (2004). https://doi.org/10.1007/978-3-540-24622-0_5

3. Barringer, H., Groce, A., Havelund, K., Smith, M.H.: Formal analysis of log �les.
JACIC 7(11), 365�390 (2010). https://doi.org/10.2514/1.49356

4. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time
monitoring: from Eagle to RuleR. J. Log. Comput. 20(3), 675�706 (2010).
https://doi.org/10.1093/logcom/exn076

5. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric �rst-order
temporal properties. J. ACM 62(2), 15 (2015). https://doi.org/10.1145/2699444

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime veri�cation for LTL
and TLTL. ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011).
https://doi.org/10.1145/2000799.2000800

7. Bauer, A., Leucker, M., Streit, J.: SALT - structured assertion language for tempo-
ral logic. In: Liu, Z., He, J. (eds.) Formal Methods and Software Engineering, 8th
International Conference on Formal Engineering Methods, ICFEM 2006, Macao,
China, November 1-3, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 4260, pp. 757�775. Springer (2006). https://doi.org/10.1007/11901433_41

8. Blein, Y., Ledru, Y., du Bousquet, L., Groz, R.: Extending speci�cation pat-
terns for veri�cation of parametric traces. In: Proceedings of the 6th Confer-
ence on Formal Methods in Software Engineering, FormaliSE 2018, collocated
with ICSE 2018, Gothenburg, Sweden, June 2, 2018. pp. 10�19. ACM (2018).
https://doi.org/10.1145/3193992.3193998

9. Blein, Y., Ledru, Y., du Bousquet, L., Groz, R., Clère, A., Bertrand, F.: MODMED
WP1/D1: Preliminary De�nition of a Domain Speci�c Speci�cation Language.
Tech. rep., LIG, MinMaxMedical, BlueOrtho (2017)

10. Blein, Y., Tabikh, M.A., Ledru, Y.: MODMED WP4/D1: Test assessment - pre-
liminary study and tool prototype. Tech. rep., LIG, MinMaxMedical, BlueOrtho
(2017)

11. Bversiooasin, D.A., Harvan, M., Klaedtke, F., Zalinescu, E.: MONPOLY: monitor-
ing usage-control policies. In: Khurshid, S., Sen, K. (eds.) Runtime Veri�cation -
Second International Conference, RV 2011, San Francisco, CA, USA, September 27-
30, 2011, Revised Selected Papers. Lecture Notes in Computer Science, vol. 7186,
pp. 360�364. Springer (2011). https://doi.org/10.1007/978-3-642-29860-8_27

12. Calafato, A., Colombo, C., Pace, G.J.: A controlled natural language for tax fraud
detection. In: Controlled Natural Language - 5th International Workshop, CNL
2016, Aberdeen, UK, July 25-27, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 9767, pp. 1�12. Springer (2016). https://doi.org/10.1007/978-3-319-
41498-0_1

13. Decker, N., Harder, J., Sche�el, T., Schmitz, M., Thoma, D.: Runtime monitor-
ing with union-�nd structures. In: TACAS. Lecture Notes in Computer Science,

vol. 9636, pp. 868�884. Springer (2016). https://doi.org/10.1007/978-3-662-49674-
9_54

14. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property speci�cations
for �nite-state veri�cation. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.)
Proceedings of the 1999 International Conference on Software Engineering,
ICSE' 99, Los Angeles, CA, USA, May 16-22, 1999. pp. 411�420. ACM (1999).
https://doi.org/10.1145/302405.302672

15. Hallé, S., Villemaire, R.: Runtime monitoring of message-based work�ows with
data. In: 12th International IEEE Enterprise Distributed Object Computing Con-
ference, ECOC 2008, 15-19 September 2008, Munich, Germany. pp. 63�72. IEEE
Computer Society (2008). https://doi.org/10.1109/EDOC.2008.32

16. Havelund, K.: Rule-based runtime veri�cation revisited. STTT 17(2), 143�170
(2015). https://doi.org/10.1007/s10009-014-0309-2

17. Jackson, D., Wing, J.: Lightweight formal methods. ACM Comput. Surv. 28(4),
121 (1996). https://doi.org/10.1145/242224.242380

18. Jin, D., Meredith, P.O., Lee, C., Rosu, G.: JavaMOP: E�cient parametric run-
time monitoring framework. In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.)
34th International Conference on Software Engineering, ICSE 2012, June 2-
9, 2012, Zurich, Switzerland. pp. 1427�1430. IEEE Computer Society (2012).
https://doi.org/10.1109/ICSE.2012.6227231

19. Ledru, Y., Blein, Y., du Bousquet, L., Groz, R., Clère, A., Bertrand, F.:
Requirements for a trace property language for medical devices. In: 2018
IEEE/ACM International Workshop on Software Engineering in Healthcare Sys-
tems, SEHS@ICSE 2018, Gothenburg, Sweden, May 28, 2018. pp. 30�33. ACM
(2018), http://ieeexplore.ieee.org/document/8452638

20. Reger, G., Cruz, H.C., Rydeheard, D.E.: MarQ: Monitoring at runtime with QEA.
In: TACAS. Lecture Notes in Computer Science, vol. 9035, pp. 596�610. Springer
(2015). https://doi.org/10.1007/978-3-662-46681-0_55

21. Regis, G., Degiovanni, R., D'Ippolito, N., Aguirre, N.: Specifying event-based sys-
tems with a counting �uent temporal logic. In: ICSE (1). pp. 733�743. IEEE Com-
puter Society (2015). https://doi.org/10.1109/ICSE.2015.86

22. Reinkemeier, P., Stierand, I., Rehkop, P., Henkler, S.: A pattern-based require-
ment speci�cation language: Mapping automotive speci�c timing requirements. In:
Reussner, R.H., Pretschner, A., Jähnichen, S. (eds.) Software Engineering 2011 -
Workshopband (inkl. Doktorandensymposium), Fachtagung des GI-Fachbereichs
Softwaretechnik, 21.-25.02.2011, Karlsruhe. LNI, vol. 184, pp. 99�108. GI (2011),
http://subs.emis.de/LNI/Proceedings/Proceedings184/article6316.html

23. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: PROPEL: an approach
supporting property elucidation. In: Proceedings of the 24th International Con-
ference on Software Engineering, ICSE 2002, 19-25 May 2002, Orlando, Florida,
USA. pp. 11�21 (2002). https://doi.org/10.1145/581339.581345

24. Stolz, V.: Temporal assertions with parametrised propositions. In: Sokolsky,
O., Tasiran, S. (eds.) Runtime Veri�cation, 7th International Workshop, RV
2007, Vancouver, Canada, March 13, 2007, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 4839, pp. 176�187. Springer (2007).
https://doi.org/10.1007/978-3-540-77395-5_15

