
HAL Id: hal-02004378
https://hal.univ-grenoble-alpes.fr/hal-02004378

Submitted on 25 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending specification patterns for verification of
parametric traces

Yoann Blein, Yves Ledru, Lydie Du-Bousquet, Roland Groz

To cite this version:
Yoann Blein, Yves Ledru, Lydie Du-Bousquet, Roland Groz. Extending specification patterns for
verification of parametric traces. the 6th Conference on Formal Methods in Software Engineering
(FormaliSE’18), Jun 2018, Gothenburg, Sweden. pp.10-19, �10.1145/3193992.3193998�. �hal-02004378�

https://hal.univ-grenoble-alpes.fr/hal-02004378
https://hal.archives-ouvertes.fr

Extending Specification Patterns for Verification of Parametric
Traces

Yoann Blein
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG

Grenoble, France
yoann.blein@imag.fr

Yves Ledru
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG

Grenoble, France
yves.ledru@imag.fr

Lydie du-Bousquet
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG

Grenoble, France
lydie.du-bousquet@imag.fr

Roland Groz
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG

Grenoble, France
roland.groz@imag.fr

ABSTRACT
This article proposes a temporal and parametric specification lan-
guage (ParTraP) developed for the verification of execution traces.
The language extends specification patterns with nested scopes,
real-time and first-order quantification over the data inside a JSON
trace, while remaining pragmatic. Its design was directed by a case
study in the medical field (computer aided surgery). The paper
briefly presents the case study and details the design rationale,
syntax and semantics of the language. The language has been im-
plemented and several properties have been successfully evaluated
over a corpus of 100 surgery traces.

CCS CONCEPTS
• Software and its engineering → Specification languages;
Formal software verification;

KEYWORDS
Runtime Verification, Parametric Events, Temporal Specification,
Trace Analysis
ACM Reference Format:
Yoann Blein, Yves Ledru, Lydie du-Bousquet, and Roland Groz. 2018. Extend-
ing Specification Patterns for Verification of Parametric Traces. In FormaliSE
’18: FormaliSE ’18: 6th Conference on Formal Methods in Software Engineering
, June 2, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3193992.3193998

1 INTRODUCTION
Numerous industrial fields (air and space, transportation, energy,
. . .) have made significant progress in the last decades in order to
improve the quality of their systems and software. Although formal
methods appear as a way to achieve high quality, their adoption is
limited to critical applications. Daniel Jackson and Jeannette Wing
have advocated the adoption of lightweight formal methods [20].
Runtime Verification of execution traces appears as one way to
achieve such a transition. In this paper, we report on the design of a
trace specification language in the context of the design of Medical

FormaliSE ’18, June 2, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in FormaliSE ’18:
FormaliSE ’18: 6th Conference on Formal Methods in Software Engineering , June 2, 2018,
Gothenburg, Sweden, https://doi.org/10.1145/3193992.3193998.

Devices, which provide support for complex medical surgeries.
Fortunately, these systems can easily be instrumented to provide
execution traces enabling us to observe their usage in the field.

In this work, we consider traces of surgical operations. They
record the surgery workflow, the inputs captured from sensors and
the interactions with the surgeon. The verification of execution
traces will serve the following purposes: verify the correctness and
the robustness of an implementation when used in real conditions,
validate the hypotheses made on the environment and the con-
ditions of use of a device, and understand the device usage in a
perspective of product improvement.

One of the main challenges is to make trace properties writable
by software engineers with no training in formal methods and
readable by domain experts. For this purpose, we are developing
ParTraP, a language dedicated to property specification for finite
traces. The language extends the specification patterns originally
proposed by Dwyer et al. [15] with parametrized constructs, nested
scopes, real-time and first-order quantification over the data inside
a JSON trace. A prototype interpreter has been implemented and
experimented on traces provided by our industrial partner.

Section 2 motivates the need for a parametric language for prop-
erty specification by presenting our industrial case study. We in-
troduce the ParTraP language by giving an overview of its major
features and some real-world examples in section 3. Section 4 for-
mally describes the semantics of ParTraP and section 5 discusses
a prototype implementation of the language. Finally, we discuss
related work in section 6 and draw conclusions in section 7.

2 CONTEXT AND MOTIVATION
This work originates from an industrial collaboration aimed at
pushing runtime verification techniques into the Medical Devices
industry. After briefly presenting the case study, we describe the
trace format in use and illustrate the nature of the requirements.

2.1 Case Study Presentation
The case study focuses on a computer assisted guidance system for
total knee arthroplasty: TKA, designed by the BlueOrtho company
for Exactech implant manufacturer. Total knee arthroplasty is a
surgical procedure that involves replacing parts of the knee with
a prosthesis. To install the prosthesis, it is necessary to cut off
parts of the tibia and the femur. TKA helps the surgeon achieve
these cuts with the required precision, through the supervised

https://doi.org/10.1145/3193992.3193998
https://doi.org/10.1145/3193992.3193998

FormaliSE ’18, June 2, 2018, Gothenburg, Sweden Yoann Blein, Yves Ledru, Lydie du-Bousquet, and Roland Groz

installation of cutting guides at the “right” position. The position
of cutting guides is automatically computed on the basis of several
measurements performed by the surgeon using the sensors of TKA,
and of additional parameters chosen by the surgeon. This system
is currently used worldwide and thousands of surgeries have been
conducted with it.

Figure 1: Pointer and trackers

TKA consists of several components: a computer able to commu-
nicate with the surgeon via a touch screen, a stereoscopic camera,
a set of sensors, named trackers, that can be localized in 3D by the
stereoscopic camera, and a set of mechanical instruments to attach
trackers and cutting guides to the bones of the patient. Fig. 1 shows
several trackers, during a tutorial session, using a fake skeleton.
The “trackers” have a diamond shape with four blinking LEDs. The
stereoscopic camera is synchronized with the LEDs and is able to
capture the 3D position, and the orientation of the tracker. The
“pointer” is a hand-held tracker whose length has been calibrated.
The surgeon uses the pointer to acquire the position of anatomic
points of the patient. The other trackers are mechanically attached
to the bones, so that they provide a reference when placing the
cutting guides.

The surgery process involves a sequence of steps to be performed
by the surgeon. The nature of these steps and the order in which
they are performed are, to some extent, configurable. In every case,
the sequence of steps takes the following macroscopic form: sensor
calibration, acquisition of anatomical points using the pointer, check
of acquisitions, adjustment of target parameters, positioning of the
cutting guides, bones cut, and finally, digitization of the performed
cut.

2.2 Traces
BlueOrtho systematically collects the logs of performed surgeries.
Each log is composed of a sequence of about 3000 parametric events.
The nature of these events is very diverse and includes hardware
events (communication with the sensors), user input or complex
computation results. They carry values of various types: numeric
values, lists, 3D points. . .To this day, the company has collected a

corpus of about 10 000 traces of surgeries that took place in real
conditions.

At the conceptual level, a trace is viewed as a timed sequence of
events. Each event is characterized by a name and a set of named
parameters. Those parameters can be simple literals such as strings,
or compounds values such as records. The original traces are mainly
textual and poorly structured. Therefore, original traces are trans-
formed into JSON files, where the top-level element is an array of
objects, representing events. Each object must include the “time”
and “name” keys, and may have other parameters.

Fig. 2 shows a simplified example of such a trace. The first event
registers a tracker of type F (attached to the Femur), whose id is 0.
This event took place at time 5. The second event declares that the
current surgery needs trackers P and F. The third event corresponds
to the registration of the P tracker (P stands for Pointer). The fourth
event records the beginning of the acquisition phase. During this
phase, the coordinates of the medial and the lateral malleolus are
recorded (at times 9 and 20). Also, from 14 to 16, the pointer is
replaced by another pointer which is registered and then activated.

[
...
{"time": 5, "name": "RegisterTracker", "type": "

F", "id": 0 },
{"time": 6, "name": "SearchTrackers", "types":

["P", "F"]},
{"time": 7, "name": "RegisterTracker", "type": "

P", "id": 1 },
{"time": 8, "name": "StartAcquisitions "},
{"time": 9, "name": "MedialMalleolus", "point":

[0.5, 1.0, 0.8] },
...
{"time": 14, "name": "ReplaceTracker", "id": 1

},
{"time": 15, "name": "RegisterTracker", "id": 2,

"type": "P" },
{"time": 16, "name": "ActivateTracker", "id": 2

},
...
{"time": 20, "name": "LateralMalleolus", "point

": [0.6, 0.9, 0.9] }
...

]

Figure 2: Example of JSON trace

2.3 Requirements for a Trace Property
Language

To design a property specification language accessible to engineers
with no training in formal methods, we gathered a corpus of prop-
erties that BlueOrtho developers would like to verify on the traces
produced by TKA. These properties come from three sources: inter-
views with BlueOrtho developers, reviews of the technical specifi-
cation documents of TKA, and reviews of some usual and unusual
existing traces. Usual traces correspond to surgeries which fol-
lowed the expected process, and where no problem was reported.

Extending Specification Patterns for Verification of Parametric Traces FormaliSE ’18, June 2, 2018, Gothenburg, Sweden

Unusual traces were mainly identified after a report of the surgeon,
signalling that something went wrong during the surgery. These
reports and the associated traces are analysed by the Blue Ortho
engineers. Traces help understand what went wrong during the
surgery, and what was the cause of the problem. For example, this
analysis may reveal that the camera was positioned on the same
side of the patient than the knee being cured (see property 1).

The resulting corpus is composed of about 50 properties. They
include constraints on event ordering, invariant checking on 3D
points and soft real-time constraints. The following examples illus-
trate some types of properties found in this corpus.

Runtime Property 1. If the medial malleolus is further away
from the camera than the lateral malleolus, a warning is issued within
100 milliseconds.

The inversion of malleolus distances could reveal that the 3D
camera was installed on the wrong side of the patient (the one of
the leg being cured). This property requires the occurrence of a
warning event in response to the observation of a set of events that
fulfills a predicate. Also, this response is bounded in time and the
two malleolus events may happen in any order. Note that geometric
computation is out of scope of the language, and we assume that
functions such as 3D euclidean distance are defined externally.

Runtime Property 2. A replaced tracker is no longer used until
it is registered again.

The system should no longer try to use a tracker that is not
currently registered. Trackers registration, replacement and usage
can be observed through the events RegisterTracker, Replace-
Tracker and ActivateTracker, respectively. Each tracker has a
unique identifier that appears as parameter in all those events.

Runtime Property 3. All the necessary trackers are detected
before starting the acquisitions.

To proceed, the system requires a set of trackers which depends
on the profile in use. This set is logged in the parameters of the
SearchTrackers event. Each of these trackers should be detected
at least once before starting the acquisitions. The set of required
trackers may be modified during the surgery (according to the
selected profile) and, upon search for the new set, any tracker
already detected should not be detected again.

As said previously, we identified about 50 such properties during
the requirements analysis. Considering this corpus, we conclude
that the specification language should have at least the following
properties:

Parametric From the example properties, one can notice that
using event parameters is necessary. For instance, Runtime
Property 3 relies on a list of values given as parameter of
events SearchTrackers. Moreover, it should be possible to
access the values of structured parameters such as list and
records.

Temporal The three example properties constrain the occur-
rence and ordering of events. Most of the properties from
the collected corpus also have this trait.

Timed A few properties from the corpus, such as Runtime
Property 1, refer to physical time. Although time can be

treated as regular data, a first class support for it can help
write properties that are easier to understand and more effi-
cient to process.

3 LANGUAGE FEATURES
ParTraP (Parametric Trace Property language) is a new property
specification language for finite parametric traces, designed to meet
the properties stated in the previous section. Although it was mostly
influenced by the specification patterns proposed by Dywer et al.
[15], it differs from them by being event-based, featuring parametric
events, allowing nested scopes and providing timed properties.

In spite of the inspiration from specification patterns, the lan-
guage does not restrict properties to pairs composed of a scope and
a pattern. Instead, most of the property expressions are built on
top of other properties, and can be freely nested. The inner prop-
erty and the outer part are always separated by commas. Nested
properties are evaluated from the outermost property towards the
innermost. This is important since each one may modify the evalu-
ation environment that will be used to evaluate any inner property.
This mechanism allows relating different events, possibly according
to their parameters.

3.1 Events Descriptors
Event descriptors allow matching events from a trace. At the sim-
plest, events are designated by their name, such as in absence_of
A where A is the name of the event. Additionally, an event can be
bound to a variable x as in A x. In this case, it is also possible to add
a condition on the event thanks to the where construct: A x where
c. This expression describes the set of events having the name A

and fulfilling the condition c when bound to the variable x.
It is also possible to designate an unordered collection of events

with the set construct: set(E1 x1, ..., En xn) where c. This
event set will be triggered after seeing all of the events E1. . . En in
any order, provided that they respect the guard c when E1. . . En
are bound to x1. . . xn, respectively.

3.2 Temporal Properties
3.2.1 Scopes. The range of a trace where a property should hold

can be restricted through scopes. In the absence of such construct,
a property must hold on the whole trace. Scopes are delimited by
events and, as properties themselves, can be nested. If the event
delimiting a scope never occurs, the scope does not exist and the
whole property is considered satisfied. Scopes can be classified
according to their arity, i.e. the number of events they involve.
Unary scopes, illustrated in Fig. 3, are the building blocks of the
language.

All scopes are strict, i.e., delimiter events are not included in
the interval they define. The “each” variants may describe several
intervals and happen to be useful combinators. For instance, we
can express that the property P should be true for all the segments
of a trace between an event A and an event B by nesting two scope
expressions: after each A, before first B, P. For convenience,
we included this scope in the language as between A and B, as well
as its weak variant since A until B. Those two binary scopes are
illustrated in Fig. 3 and formally defined later. As a consequence of

FormaliSE ’18, June 2, 2018, Gothenburg, Sweden Yoann Blein, Yves Ledru, Lydie du-Bousquet, and Roland Groz

since 𝐴 until 𝐵

between 𝐴 and 𝐵

after each 𝐵

after last 𝐵

after first 𝐵

before each 𝐵

before last 𝐵

before first 𝐵

𝐴 𝐵 𝐴 𝐴 𝐵 𝐴

Unary

Binary

Figure 3: Graphical representation of scopes

being defined on top of nested scopes, the event delimiting the end
of a binary scope may depend on the one starting it.

Scopes implicitly extend the evaluation environment for the
inner property with all the events that are associated to a variable
name. For instance, the property

after first A v where v.x != 0, P

will evaluate P on the scope starting after the first event A with a
non-zero x parameter, and in an environment where the value of
the variable v is this first event. This is especially useful with the
each variants of after and before as the sub-property to verify
may depend on the events delimiting each scope. For instance, the
following ParTraP property encodes the fact that each entered
state should be exited eventually:

after each EnterState e,

occurrence_of ExitState x where e.state == x.state

By delimiting the range of a trace where a property should hold,
and providing access to the parameters of a delimiter event at the
same time, scopes allow to concisely express temporal properties.

3.2.2 Patterns. The only mandatory components of properties
are patterns. They rule the occurrences of events in a trace. There
are two unary patterns: occurrence_of n A, where n is optional,
and its dual absence_of A. The first one requires the occurrence
of at least n events A in the current range of the trace. If n is omitted,
it defaults to 1. The second one simply prevents an event from
occurring. As usual, the event descriptor A may be bound to a
variable and filtered with the where construct.

Following Dwyer’s specification patterns, the language also in-
cludes the response pattern A followed_by B and the precedence
pattern A precedes B. The first one requires an occurrence of the
event 𝐵 after each occurrence of an event 𝐴, while the second one
prevents the event 𝐵 from occurring until the event 𝐴 occurs (but
𝐴 may occur without 𝐵). The language also features another con-
venient pattern: A prevents B, which prevents any occurrence of
the event 𝐵 after an occurrence of the event 𝐴. Note that the three
binary patterns are later defined as combinations of scopes and
unary patterns. A direct consequence is that the event descriptor

on the right-hand side may depend on the event matched on the
left-hand side.

3.2.3 Timed Variants. Unary scopes and binary patterns may
be additionally constrained by a duration expressed in common
time units.

Unary scopes can be prefixed with the within keyword and a
duration expression, like in the property

within 2ms before each A, absence_of B

The inner property only has to hold for the given duration starting
immediately at the delimiter event for the after scope, or ending
exactly at the delimiter event in the before case. In the previous
example, the event 𝐵 should not occur during the two milliseconds
preceding any occurrence of an event 𝐴.

Binary patterns may also be extendedwith a suffix and a duration
expression. For instance, the response pattern becomes bounded in
time: A followed_by B within 2s.

3.3 Non-Temporal Properties
3.3.1 Quantifiers. The trace format allows compound values

in event parameters. In particular, they can be lists of values. The
language allows exploiting them through quantified properties.

The universal quantifier takes the following form: forall a in
L, P, where a is an identifier and L is a list. For each value in L, P
must be satisfied in an environment where a is bound to that value.
The existential quantifier exists is also defined as usual.

Since quantified properties are themselves properties, they can
be arbitrarily nested. In particular, it is convenient to use a quantifier
inside a scope property: if a parameter of the event delimiting the
scope is a list, it can be used as a quantification domain.

3.3.2 Event Selection. The only way to extract the parameters
of an event so far is to bind the event in a scope. However, the
associated restriction of the trace range might not be wanted.

The given expression takes the same syntactic form as scopes,
i.e. suffixed with an occurrence specifier (first, last or each) and
an event descriptor. It wraps another property that will be evaluated
in an environment extended with the selected event. In the each
case, the property must be true for all events matching the event

Extending Specification Patterns for Verification of Parametric Traces FormaliSE ’18, June 2, 2018, Gothenburg, Sweden

descriptor. Like scopes, a property constructed with given will be
true if no event matches the descriptor.

3.4 Examples
Let us illustrate the language features by formalizing the examples
introduced in subsection 2.3. Runtime Property 1 can be expressed
as follows:
set(LateralMalleolus l, MedialMalleolus m)

where norm(m.point) > norm(l.point)

followed_by WarningMalleolusInverted within 100 ms

This expression states that any unordered pair of misplaced malle-
olus events should result in a warning.

Runtime Property 2 simply combines a since/until scope de-
limiting the range of a trace where a specific tracker is replaced,
with an absence pattern preventing the activation of this tracker:

since ReplaceTracker rep

until RegisterTracker reg where reg.id == rep.id,

absence_of ActivateTracker act

where act.id == rep.id

Note that the event delimiting the end of the scope depends on the
one starting it. If several trackers are replaced, the property will be
enforced for all of them because of the since/until semantics (see
Fig. 3).

Finally, Runtime Property 3 is captured by the following expres-
sion:
before each StartAcquisitions ,

given last SearchTrackers st,

forall type in st.types ,

occurrence_of TrackerDetected td

where td.type == type

This expression captures the property concisely by combining four
constructs: a past scope, an event selector, an universal quantifier
and a pattern.

4 LANGUAGE SEMANTICS
This section formalizes the semantics of ParTraP. It is defined in
terms of inference rules over traces instead of translating it into an
existing formalism because there is no well-established formalism
for parametric specification.

For space reasons, we describe the semantics of all ParTraP
constructs except events sets. This construct adds a layer of com-
plexity but does not change the global shape of the semantic rules.
The simpler and shorter version presented here is close to the com-
plete rules, which can be found in the language reference [10]. The
additional complexity mainly comes from the two following points:

(1) Contrary to single events, events sets last in time; scopes
must be updated accordingly.

(2) The first and last events sets matching a set description
must be defined carefully.

Some elements of the language such as the where clause rely
on predicate expressions. Since the language producing those ex-
pressions is orthogonal to the definition of ParTraP, we will not
specify it here. Instead, we will assume that any well-typed expres-
sion 𝑒 can be evaluated in the environment 𝜂 to the value 𝑣 with

the judgement form
𝜂 ⊢ 𝑒 ↓ 𝑣 .

Additionally, we require this language to provide at least an in-
fix “.” operator allowing to access the fields of a record, as in
record.field. Such a construct is necessary to inspect the param-
eters of an event.

4.1 Preliminary Definitions
We use 𝑋 → 𝑌 and 𝑋 ⇁ 𝑌 to denote sets of total and partial
functions from 𝑋 to 𝑌 , respectively. We write maps (partial func-
tions) as [𝑥0 ↦→ 𝑣0, . . . , 𝑥𝑖 ↦→ 𝑣𝑖] and the empty map as []. We note
𝑚[𝑦 ↦→ 𝑣] the map which is the same as𝑚 except that the mapping
for 𝑦 is updated to refer to 𝑣 :

𝑚[𝑦 ↦→ 𝑣] (𝑥) =
{
𝑣 if 𝑥 = 𝑦

𝑚(𝑥) otherwise.

If 𝑍 is a set, let 𝑍 ∗ be the set of finite sequences of elements of 𝑍 .
Equipped with these notations, we may now formalize the traces

content and format. The set of values is the smallest set Val such
that:

(1) literals (booleans, integers, strings and floating-point num-
bers) are values;

(2) if 𝑣1, . . . , 𝑣𝑛 are values, then the sequence (𝑣𝑘)𝑛𝑘=1 is a value;
(3) if 𝑣1, . . . , 𝑣𝑛 are values and 𝑓1, . . . , 𝑓𝑛 are names, then the

map, or record, [𝑓1 ↦→ 𝑣1, . . . , 𝑓𝑖 ↦→ 𝑣𝑖] is a value.
An environment is a map from variable names to values:

Env = Var ⇁ Val,

where Var is a set of variable names.
An event is characterized by a name, an occurrence time and a

set of named parameters. Formally an event is defined as a triplet:

Event = Σ × N × (𝑃 ⇁ Val),

where Σ and 𝑃 are finite sets of event names and parameter names,
respectively. Note that this definition permits events to have the
same name and yet different parameters. This provides more flexi-
bility with the input traces and allows, for instance, to have optional
parameters. For convenience, we define the three following pro-
jections on an event 𝑒 = ⟨𝜎, 𝑡, 𝑝⟩: name(𝑒) = 𝜎 , time(𝑒) = 𝑡 and
param(𝑒) = 𝑝 .

Finally, a trace is a sequence of events (𝑒𝑖)𝑛𝑖=1 with non-decreasing
occurrence times. We can formally define the set of possible traces
as follows:

Trace = { (𝑒𝑖)𝑛1=𝑖 ∈ Event∗ | ∀𝑖 ∈ 1 . . 𝑛−1, time(𝑒𝑖) ≤ time(𝑒𝑖+1) }.

In the following, traces are also denoted as 𝜏 when the indices are
irrelevant.

4.2 Events Extraction and Time Slicing
Finding events that satisfy some constraints expressed in ParTraP
properties is a basic necessity to define the semantics of the lan-
guage. We first introduce a dedicated function that handles that
matter. The semantic rules of ParTraP are built upon that function
and focus on the temporal aspect.

FormaliSE ’18, June 2, 2018, Gothenburg, Sweden Yoann Blein, Yves Ledru, Lydie du-Bousquet, and Roland Groz

The function 𝑀 computes the events of a trace that match an
event description with a name and a condition on the event, and re-
spect an occurrence specifier, i.e. an element of {first, last, each}.
More precisely, given a trace (𝑒𝑖)𝑚𝑖=1, 𝑀 ((𝑒𝑖)𝑚𝑖=1, 𝜎, 𝑥, 𝑐, 𝜂, 𝑜) is the
set of indices 𝑖 of the trace such that:

• 𝑒𝑖 has the name 𝜎 ,
• the condition 𝑐 evaluates to true in the environment 𝜂 ex-
tended with 𝑥 associated to 𝑒𝑖 , and

• 𝑒𝑖 respects the occurrence specifier 𝑜 .
This set can be computed in two steps: finding𝑀desc, the set of all
the indices that match the event description, and then selecting
the ones that respect the occurrence specifier. The definition of the
function𝑀 is based on that idea:

𝑀 ((𝑒𝑖)𝑚𝑖=1, 𝜎, 𝑥, 𝑐, 𝜂, 𝑜)

=

𝑀desc if 𝑜 = each

{min 𝑀desc} if 𝑜 = first and𝑀desc ≠ ∅
{max 𝑀desc} if 𝑜 = last and𝑀desc ≠ ∅
∅ otherwise

where

𝑀desc = { 𝑗 ∈ 1 . . 𝑛 | name(𝑒 𝑗) = 𝜎∧𝜂 [𝑥 ↦→ param(𝑒 𝑗)] ⊢ 𝑐 ↓ true}.

𝑀desc is the result of the first step, i.e. it is the set of indices that
match the event description given by the name𝜎 and the condition 𝑐 .
The subset of𝑀desc that is actually returned is computed according
to the occurrence specifier 𝑜 . For instance, if 𝑜 = first, only the
minimal index in𝑀desc is returned, which indeed corresponds to
the first event of the trace that matches the description.

We also need the ability to slice a trace according to a time limit.
If (𝑒𝑖)𝑚𝑖=1 is a trace and 𝑙 a natural, the function

upto((𝑒𝑖)𝑚𝑖=1, 𝑙) = (𝑒𝑖)
max({ 𝑗 ∈ [1..𝑚] | time(𝑒 𝑗) < 𝑙 } ∪ {0})
𝑖=1

slices the trace (𝑒𝑖)𝑚𝑖=1 from its beginning and up to the time limit 𝑙 .
The union with the singleton {0} in the upper bound ensures that
an empty sequence is returned if there are no events occurring
before the time limit.

4.3 Semantic Rules
Properties are evaluated over finite traces and in a specific environ-
ment. The satisfaction relation between a trace 𝜏 , an environment
𝜂 and a property 𝑝 is the smallest relation 𝜏 �𝜂 𝑝 satisfying the 8
rules given in Fig. 4. We say that a trace 𝜏 satisfies a property 𝑃

when 𝜏 �[] 𝑃 .
The semantics of the original pattern system proposed by Dwyer

et al. was given through translation rules manually defined for each
pair of pattern and scope. Because of the number of combinations,
there are numerous rules and they have been shown to be incon-
sistent by Taha et al. [28]. Since ParTraP scopes can be arbitrarily
nested, the number of combinations is infinite and defining an
exhaustive set of rules is impossible. Instead, the satisfaction rela-
tion � is defined through recursive rules derived from its informal
meaning, and where each rule only handle a single construct.

The first three rules are straightforward. The next one, Forall,
handles universally quantified properties by first evaluating the
expression that represents the quantification domain, and then

evaluating the subsequent property for all values in that domain.
The ruleOcc asserts the occurrence of a particular event description
by measuring the size of𝑀 , i.e. counting the number of events that
match this description in the current trace, and checking that is
is greater than the computed value of 𝑛𝑒 . The rules for the after
scope are Aft and AftT for its timed variant. They rely on the
results of the 𝑀 function to slice the trace after the end of each
event set matching the description and to update the evaluation
environment. Additionally, AftT evaluates a duration expression
and slices the trace so that it lasts at most for this duration. The
rule for the given expression is the same as Aftwithout slicing the
trace. The rules Bef and BefT for the before scope are not given
here for space reasons. They are symmetrical to Aft and AftT,
respectively.

The previous rules allow defining the additional logical expres-
sions with the usual identities:

• 𝑃1 and 𝑃2 ≡ not (not 𝑃1 or not 𝑃2)
• 𝑃1 implies 𝑃2 ≡ not 𝑃1 or 𝑃2
• 𝑃1 equiv 𝑃2 ≡ (𝑃1 implies 𝑃2) and (𝑃2 implies 𝑃1)
• exists 𝑥 in 𝑒, 𝑃1 ≡ not (forall 𝑥 in 𝑒, not 𝑃1),

and the additional temporal expressions:
• absence_of 𝐸 ≡ not (occurrence_of 𝐸)
• 𝐴 followed_by 𝐵 within 𝛿 ≡
within 𝛿 after each 𝐴, occurrence_of 𝐵

• 𝐴 precedes 𝐵 within 𝛿 ≡
within 𝛿 before each 𝐵, occurrence_of 𝐴

• 𝐴 prevents 𝐵 within 𝛿 ≡
within 𝛿 after each 𝐴, absence_of 𝐵

• between 𝐴 and 𝐵, 𝑃 ≡ after each 𝐴, before first
𝐵, P

• since 𝐴 until 𝐵, 𝑃 ≡
(between 𝐴 and 𝐵, 𝑃) and (after last 𝐵, after
first 𝐴, 𝑃)

When events that are not explicitly associated to a variable name,
they are bound to the empty variable name. Finally, omitted where
conditions on events default to true.

5 IMPLEMENTATION AND VALIDATION
We implemented a trace verification tool based on the proposed lan-
guage. It is written in Haskell and freely available online1. It checks
the conformance of JSON-formatted traces to property expressions.
All the proposed features have been implemented. However, the
expressions allowed in where clauses are currently limited to sim-
ple boolean and arithmetic expressions along with access to event
parameters. We plan to complete them with a foreign function in-
terface to call routines written in Python, which is well suited for
data manipulation and numeric computations.

Since we are performing offline verification only, we consider
complete execution traces and not a prefix of them as in online
monitoring. Having access to a full trace allows exploring it back
and forth and not just sequentially. A direct consequence is that
it is possible to interpret properties naively, in the sense that an
interpreter may follow their syntactic structure. For instance, to
check the property before first A, P, the interpreter may simply

1https://gricad-gitlab.univ-grenoble-alpes.fr/modmed/partrap

https://gricad-gitlab.univ-grenoble-alpes.fr/modmed/partrap

Extending Specification Patterns for Verification of Parametric Traces FormaliSE ’18, June 2, 2018, Gothenburg, Sweden

𝜏 �𝜂 𝑃1

𝜏 �𝜂 𝑃1 or 𝑃2
DisjL

𝜏 �𝜂 𝑃2

𝜏 �𝜂 𝑃1 or 𝑃2
DisjR

𝜏 2𝜂 𝑃

𝜏 �𝜂 not 𝑃
Neg

𝜂 ⊢ expr ↓ 𝐿 ∀𝑣 ∈ 𝐿, 𝜏 �𝜂 [𝑥 ↦→𝑣] 𝑃

𝜏 �𝜂 forall 𝑥 in expr, 𝑃
Forall

𝜂 ⊢ 𝑛𝑒 ↓ 𝑛 𝑛 ≤ |𝑀 (𝜏, 𝜎, 𝑥, 𝑐, 𝜂, each) |
𝜏 �𝜂 occurrence_of 𝑛𝑒 𝜎 𝑥 where 𝑐

Occ

∀𝑗 ∈ 𝑀 (𝜏, 𝜎, 𝑥, 𝑐, 𝜂, 𝑜), (𝜏𝑖)𝑖> 𝑗 �𝜂 [𝑥 ↦→param(𝜏 𝑗)] 𝑃

𝜏 �𝜂 after 𝑜 𝜎 𝑥 where 𝑐, 𝑃
Aft

𝜂 ⊢ 𝛿𝑒 ↓ 𝛿 ∀𝑗 ∈ 𝑀 (𝜏, 𝜎, 𝑥, 𝑐, 𝜂, 𝑜), upto((𝜏𝑖)𝑖> 𝑗 , time(𝜏 𝑗)+𝛿) �𝜂 [𝑥 ↦→param(𝜏 𝑗)] 𝑃

𝜏 �𝜂 within 𝛿𝑒 after 𝑜 𝜎 𝑥 where 𝑐, 𝑃
AftT

∀𝑗 ∈ 𝑀 (𝜏, 𝜎, 𝑥, 𝑐, 𝜂, 𝑜), 𝜏 �𝜂 [𝑥 ↦→param(𝜏 𝑗)] 𝑃

𝜏 �𝜂 given 𝑜 𝜎 𝑥 where 𝑐, 𝑃
Given

Figure 4: Operational semantics for property satisfaction

process the input trace forward, looking for an event A, and then
process the trace until A again to check for P. This approach avoids
the typical bookkeeping overhead of parametric monitoring and
performs well in our context. For instance, verifying the moder-
ately complex Runtime Property 3 on a trace of 11 120 events takes
202.63 µs on a first generation mobile Intel Core i5 (M520). This
result does not include trace parsing, which account for about 6ms.

We used the ParTraP interpreter to verify a dozen properties
over the same corpus. Those properties encode requirements for
TKA, hypotheses made on the device usage or usage queries. No
errors were found in TKA software, but we discovered abnormal
events and suspicious behaviors in the usage of the system. For
instance, the periodically reported temperature of the 3D camera
occasionally reaches the extreme value of −273. It is the result
of a failure when querying the temperature sensor. Although not
critical, this error illustrates an issue between the software and its
execution environment.

Using a temporal usage query we also noticed that for 11% of the
traces in the corpus, the user performs an action within less than
100ms after a new screen is displayed. Even experienced users could
miss information in such a short time. After further investigation,
the manufacturer attributed this issue to a defect in the pointer
device or a poor handling of that same device. This defect is not
critical because the surgeon may always go back to the missed
screen.

6 RELATEDWORK
We first present several specification formalisms classified by style
and then offer some elements of comparison with ParTraP.

6.1 Overview
6.1.1 Pattern Systems. An important challenge in the design of

ParTraP was to make temporal specification accessible. A famous
technique to assist users with finite-state verification is to provide
high-level temporal patterns with a verbose syntax. Dwyer et al.

proposed a major step in that direction with a pattern system cov-
ering the temporal requirements of a very large study [15]. Those
patterns are domain agnostic and relatively simple to use. Propel re-
fines themwith additional mandatory clauses which help to remove
ambiguities due to the english-like syntax [26]. The Requirement
Specification Language (RSL) is another pattern systemwith limited
temporal relations but a high emphasis on real-time [13].

While being relatively easy to use, pattern systems have a se-
verely limited expressiveness. The Salt language [9] addresses that
issue with composable patterns and common temporal operators
behind a natural syntax. It features many constructs, ranging from
timed temporal operators to star-free regular expressions. All those
systems share a common limitation as a consequence of supporting
finite-state verification: they do not support parametric events.

6.1.2 Temporal Logics. The Linear Temporal Logic (LTL) is a
widely accepted temporal logic with a precise semantics [22]. How-
ever, it targets infinite traces and its semantics is not adapted to
runtime verification. Bauer et al. offer a formal treatment on adapt-
ing LTL for runtime verification, LTL𝑓 , as well as its timed variant,
TLTL𝑓 , and discuss different trade-offs and their implications [7, 8].
The Counting Fluent Temporal Logic (CFLTL) is another interesting
adaptation of LTL to event-based traces [25]. It features a simple
and powerful mean of counting event occurrences and compar-
ing them. However, none of those adaptations support parametric
traces.

To deal with parametric traces, many first order temporal logics
have been proposed, most of them also deriving from LTL. Stolz
introduced free variables and quantification in next-free LTL with
parametrized propositions [27]. FO-LTL+ [17] is another approach
adding quantification to LTL. It targets data-rich XML traces and
events parameters may exhibit a hierarchical structure, similarly
to ParTraP. Parameters can be accessed through quantifiers over
a domain described with XPath queries. In spite of the additional
capabilities, FO-LTL+ retains the simplicity and conciseness of LTL.

FormaliSE ’18, June 2, 2018, Gothenburg, Sweden Yoann Blein, Yves Ledru, Lydie du-Bousquet, and Roland Groz

However, we argue that the resulting elegance impairs pragma-
tism: the only way to access events is through quantification over
their parameters. In consequence, single-valued parameters must
also be quantified, which makes formulas harder to understand.
Basin et al. proposed a semantics and algorithm for the Metric First
Order Temporal Logic (MFOTL) [6] and implemented it with the
MONPOLY tool [11]. They further extended MFOTL with SQL-like
aggregation operators [5]. Eagle [2] is a radically different and
powerful temporal logic as it does not derive from LTL, but still
encompasses it. This very succint logic also features parametric
events and data quantifiers.

6.1.3 Finite State Machines. Finite State Machines (FSM) form
another popular specification formalism in runtime verification.
Transitions are labelled with event descriptions and taken when-
ever a matching event is observed. Whereas pattern systems and
temporal logics are declarative, FSM encode specifications in an
operational style.

FSM are especially popular in the parametric trace slicing frame-
work [12], where events are composed of a name and a tuple of
parameters. For instance, FSM constitute the core of the expressive
Quantified Event Automata [1] and its efficient implementation
MarQ [23]. Mufin [14] also uses parametric trace slicing and relies
exclusively on FSM. It is faster but less expressive than QEA/MarQ.

6.1.4 Rule-Based Systems. The use of rule-based systems for
runtime verification has also received some interest. This model
seems well suited for processing data rich events, as exemplified
by the RuleR system [4] or the more efficient Logfire [18]. Rules
take the form

condition1, . . . , condition𝑛 =⇒ action,

where the conditions depend on a memory of facts and the action
can add or remove facts, or yield a verdict. Constantly managing
a database of facts through action rules makes rule-based system
highly operational.

6.1.5 Hybrid. Some formalisms or monitoring tools support
several specification styles.

LogScope [3] is a solution proposed in a context similar to the
one of ParTraP. It targets offline verification for data-rich traces.
LogScope is composed of a higher-level pattern language that com-
piles down to FSM, which can also be used to encode more complex
properties. Despite some common characteristics with ParTraP,
the higher-level language is different in many ways: its scoping
mechanism is much more limited as there is a single scope (equiv-
alent to our before first scope), quantification is completely
implicit, time is not handled at language-level and specification of
event sequences is much easier. This kind of two-levels systems
have the advantage of providing a very simple high-level language.
However, they also force the user to learn two formalisms, includ-
ing a low-level one, often with different paradigms (e.g. declarative
and operational for LogScope).

JavaMOP [21] also supports several formalisms, called “logics”.
It is another incarnation of parametric trace slicing, being famous
for making it efficient. Contrary to the two-level hierarchy found
in LogScope, logics in JavaMOP are not cleary ordered and com-
plement each other.

6.1.6 Stream Computation. All the solutions presented so far
check properties on the execution of a system by observing events
or state changes of the system. Lola is a runtime monitor for syn-
chronous systems which takes a radically different approach: spec-
ification are written as computations over the stream of values
manipulated by a synchronous system. This unique approach al-
lows specification to resemble a synchronous program. Besides
checking logical properties, Lola also supports numeric queries
over streams. Lola was specifically designed for synchronous sys-
tems and adapting it for event traces is not obvious. For this reason,
we omit Lola in the rest of this section.

6.2 Comparison and Discussion
Comparing the expressiveness of various temporal specification
formalisms is difficult. For instance, Reger and Rydeheard showed
that the relationship betwen First-Order Linear Temporal Logic for
finite traces and parametric trace slicing is not trivial [24]. Instead
of establishing a formal relation between ParTraP and the afore-
mentioned formalisms, we propose to compare several aspects that
are important when writing specifications.

Parametric Events. Supporting parametric events was a critical
requirement for ParTraP. Although pattern systems and adapta-
tions of LTL for finite traces do not support parametric events, most
temporal specification formalisms designed for runtime verification
do.

Compound Values. Parametric events may carry compound val-
ues such as lists and records. To the best of our knowledge, only
a few of the formalism presented previously, including ParTraP,
support further inspection of compound values.

Local vs. Global Quantification. We can distinguish two types of
quantification in formalisms for parametric monitoring. In global
quantification the domain value of a quantified variable is defined as
the values taken by this variable in a whole trace. On the contrary, in
local the quantification domain of a variablemay only depend on the
current state. Local quantification is mostly useful in combination
with support for compound values as it allows quantifying over
lists that are carried as event parameters. While ParTraP and a few
others uses local quantification, all approaches based on parametric
trace slicing use global quantification.

Reference to Past Data. It is well-known that adding past opera-
tors to LTL does not increase its expressiveness [16]. However, this
result no longer holds when LTL is extended with quantifiers. To
see why, consider the following informal specification: "for each
value 𝑥 in the parameter 𝑝1 of an event 𝑒1, there must be an occur-
rence of an event 𝑒2 before 𝑒1 and with a parameter 𝑝2 equal to
𝑥" (this specification constitutes the core of Runtime Property 3).
Because the occurrences of the event 𝑒2 are constrained by the pa-
rameters of another event that is yet to occur, this property cannot
be captured in a future-only LTL extended to first order. Monitoring
such a property is expensive and many specification formalisms do
not include past operators for efficiency and simplicity reasons. A
possible approach – as taken in QEA [1] – is to explicitly store the
data for future use, e.g. the set of values taken by the parameter 𝑝2.
In ParTraP, there is no notion of past or future because properties

Extending Specification Patterns for Verification of Parametric Traces FormaliSE ’18, June 2, 2018, Gothenburg, Sweden

Table 1: Comparison of several temporal specification languages

Language Parametric Comp. Values Quantification Ref. Past Data Real-Time Paradigm

Dwyer’s Patterns ✗ n/a n/a n/a ✗ declarative
Propel ✗ n/a n/a n/a ✗ declarative
RSL ✗ n/a n/a n/a ✓ declarative
Salt ✗ n/a n/a n/a ✓ declarative
LTL𝑓 ✗ n/a n/a n/a ✗ declarative
TLTL𝑓 ✗ n/a n/a n/a ✓ declarative
CFLTL ✗ n/a n/a n/a ✗ declarative
Eagle ✓ ✗ global ✗ ✓ declarative
Stolz’s Param. Prop. ✓ ✗ local ✗ ✗ declarative
FO-LTL+ ✓ ✓ local ✗ ✓ declarative
MFOTL/MONPOLY ✓ ✗ global ✓ ✓ declarative
JavaMOP ✓ ✗ global ✓ ✗ mixed
QEA/MarQ ✓ ✗ global ✓ ✗ operational
Mufin ✓ ✗ global ✓ ✗ operational
Ruler ✓ ✗ n/a ✓ ✗ operational
Logfire ✓ ✗ n/a ✓ ✗ operational
LogScope ✓ ✓ global ✗ ✗ mixed
ParTraP ✓ ✓ local ✓ ✓ declarative

are evaluated over whole slices of trace. In consequence, events and
their data never belong to the past and always remain accessible.
The aforementioned specification can be formalised with ParTraP
as demonstrated in the encoding of Runtime Property 3.

Language Support for Real-Time. Real-time support can be classi-
fied according to three levels: unsupported, supported as regular
data, supported at language-level. We argue that supporting time at
language-level is critical since it allows much clearer specifications
and more efficient implementation thanks to the monotonicity of
time. For instance, one can stop checking a bounded safety property
once the time bound has passed.

Paradigm. Specification formalisms may be classified according
to their paradigm: declarative or operational. Even if they both have
their strengths, as exemplified by Havelund and Reger [19], we
argue that an operational style introduces additional complexity for
the user. For instance, in rule-based system each rulemay impact the
behavior of the others by adding or removing shared facts, which
requires careful attention. This problem is similar to imperative
code routines where side-effects interplay is often critical. ParTraP
uses a declarative style to operate at a higher level.

Summary. Table 1 summarises the comparison between Par-
TraP and the other specification languages mentioned previously.
It appears from this table that ParTraP has a unique combination
of features.

7 CONCLUSION
ParTraP is a specification language for parametric execution traces
that is designed to be simple to use by software engineers thanks to
a declarative style and a verbose syntax. Its development originated
from an industrial cooperation with Medical Devices manufactur-
ers. A large majority of the requirements of the studied system

involves temporal constraints and data values. ParTraP allows
formalising these requirements concisely, yet remaining readable.
It was inspired by specification patterns and extends them with
nested scopes, real-time and first-order quantification. Event param-
eters have a centric role and all ParTraP constructs may extract or
exploit them.

A prototype implementation for verification of JSON traces is
available online. This implementation has been used to verify sev-
eral representative requirements for a medical device over a hun-
dred surgery traces. It also showed promising results in spotting
unusual behaviors of the system or the user.

Although ParTraP was developed in the context of offline run-
time verification, we believe it could be adapted for online monitor-
ing. This will require to rework the language semantics or remove
some operators from the language. For example, constructs such
as last may refer to different events while the trace is produced.
Also, an absence_of property will only have a definitive verdict
when the trace is completed (unless the events appears in the trace,
falsifying the property). Moreover, intuitiveness and flexibility had
higher priority than efficiency in the development of the language.
While this is fine for offline verification, it may induce a significant
overhead over the monitored system in the online case.

Although the design of ParTraP was driven by logs and require-
ments from the medical field, it is not specific to that particular field.
The generation and gathering of execution traces is already a stan-
dard practice in many industries, but their systematic and automatic
exploitation is not generalized. ParTraP should be transposable
to any of them, and would be particularly useful for traces with
complex structured data. We are currently working on a case study
in the field of home automation, where traces include parametric
information from sensors, and actions performed by the inhabi-
tants and by the control system. At longer term, we have contacts

FormaliSE ’18, June 2, 2018, Gothenburg, Sweden Yoann Blein, Yves Ledru, Lydie du-Bousquet, and Roland Groz

with another medical devices manufacturer, and also envision log
analysis of access control systems.

Finally, temporal specification in a flexible language remains
delicate regardless of the efforts put into its ease of use. To help with
this issue, we believe that the language should be complemented
with tools to help writing and understanding properties. We are
working on providing the means to analyze the verdict of ParTraP
properties and to evaluate their coverage over a set of traces. In
particular, we are studying the transformation of properties into
disjunctive normal form, in order to measure the coverage of the
sub-properties and get a finer understanding of the property.

ACKNOWLEDGMENTS
This work is funded by the ANR MODMED project (ANR-15-CE25-
0010). We also thanks our partners Arnaud Clère (MinMaxMedical)
and Fabrice Bertrand (BlueOrtho) for the fruitful discussions about
TKA and the design of software for medical devices.

REFERENCES
[1] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E.

Rydeheard. 2012. Quantified Event Automata: Towards Expressive and Efficient
Runtime Monitors. In FM 2012: Formal Methods - 18th International Symposium,
Paris, France, August 27-31, 2012. Proceedings (Lecture Notes in Computer Science),
Dimitra Giannakopoulou and Dominique Méry (Eds.), Vol. 7436. Springer, 68–84.
https://doi.org/10.1007/978-3-642-32759-9_9

[2] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. 2004.
Rule-Based Runtime Verification. In Verification, Model Checking, and Abstract
Interpretation, 5th International Conference, VMCAI 2004, Venice, January 11-13,
2004, Proceedings. 44–57. https://doi.org/10.1007/978-3-540-24622-0_5

[3] Howard Barringer, Alex Groce, Klaus Havelund, and Margaret H. Smith. 2010.
Formal Analysis of Log Files. JACIC 7 (2010), 365–390.

[4] Howard Barringer, David E. Rydeheard, and Klaus Havelund. 2010. Rule Systems
for Run-time Monitoring: from Eagle to RuleR. J. Log. Comput. 20, 3 (2010),
675–706. https://doi.org/10.1093/logcom/exn076

[5] David A. Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zalinescu. 2015.
Monitoring of temporal first-order properties with aggregations. Formal
Methods in System Design 46, 3 (2015), 262–285. https://doi.org/10.1007/
s10703-015-0222-7

[6] David A. Basin, Felix Klaedtke, Samuel Müller, and Eugen Zalinescu. 2015.
Monitoring Metric First-Order Temporal Properties. J. ACM 62, 2 (2015), 15.
https://doi.org/10.1145/2699444

[7] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2010. Comparing
LTL Semantics for Runtime Verification. J. Log. Comput. 20, 3 (2010), 651–674.
https://doi.org/10.1093/logcom/exn075

[8] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime Ver-
ification for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20, 4 (2011), 14.
https://doi.org/10.1145/2000799.2000800

[9] Andreas Bauer, Martin Leucker, and Jonathan Streit. 2006. SALT - Structured
Assertion Language for Temporal Logic. In ICFEM (Lecture Notes in Computer
Science), Vol. 4260. Springer, 757–775.

[10] Yoann Blein, Yves Ledru, Lydie du Bousquet, Roland Groz, Arnaud Clère, and
Fabrice Bertrand. 2017. MODMED WP1/D1: Preliminary Definition of a Domain
Specific Specification Language. Technical Report. LIG, MinMaxMedical, Blue-
Ortho.

[11] David A. Bversiooasin, Matús Harvan, Felix Klaedtke, and Eugen Zalinescu. 2011.
MONPOLY: Monitoring Usage-Control Policies. In Runtime Verification - Second
International Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011,
Revised Selected Papers (Lecture Notes in Computer Science), Sarfraz Khurshid
and Koushik Sen (Eds.), Vol. 7186. Springer, 360–364. https://doi.org/10.1007/
978-3-642-29860-8_27

[12] Feng Chen and Grigore Rosu. 2009. Parametric Trace Slicing and Monitor-
ing. In Tools and Algorithms for the Construction and Analysis of Systems, 15th
International Conference, TACAS 2009, York, UK, March 22-29, 2009. Proceedings
(Lecture Notes in Computer Science), Stefan Kowalewski and Anna Philippou (Eds.),
Vol. 5505. Springer, 246–261. https://doi.org/10.1007/978-3-642-00768-2_23

[13] Werner Damm, Hardi Hungar, Bernhard Josko, Thomas Peikenkamp, and Ingo
Stierand. 2011. Using contract-based component specifications for virtual
integration testing and architecture design. In Design, Automation and Test
in Europe, DATE 2011, Grenoble, France, March 14-18, 2011. IEEE, 1023–1028.
https://doi.org/10.1109/DATE.2011.5763167

[14] Normann Decker, Jannis Harder, Torben Scheffel, Malte Schmitz, and Daniel
Thoma. 2016. RuntimeMonitoring with Union-Find Structures. In TACAS (Lecture
Notes in Computer Science), Vol. 9636. Springer, 868–884. https://doi.org/10.1007/
978-3-662-49674-9_54

[15] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in
Property Specifications for Finite-State Verification. In Proceedings of the 1999
International Conference on Software Engineering, ICSE’ 99, Los Angeles, CA, USA,
May 16-22, 1999., Barry W. Boehm, David Garlan, and Jeff Kramer (Eds.). ACM,
411–420. http://portal.acm.org/citation.cfm?id=302405.302672

[16] Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. 1980. On
the Temporal Basis of Fairness. In Conference Record of the Seventh Annual ACM
Symposium on Principles of Programming Languages, Las Vegas, Nevada, USA,
January 1980, Paul W. Abrahams, Richard J. Lipton, and Stephen R. Bourne (Eds.).
ACM Press, 163–173. https://doi.org/10.1145/567446.567462

[17] Sylvain Hallé and Roger Villemaire. 2008. Runtime Monitoring of Message-Based
Workflows with Data. In 12th International IEEE Enterprise Distributed Object
Computing Conference, ECOC 2008, 15-19 September 2008, Munich, Germany. IEEE
Computer Society, 63–72. https://doi.org/10.1109/EDOC.2008.32

[18] Klaus Havelund. 2015. Rule-based runtime verification revisited. STTT 17, 2
(2015), 143–170. https://doi.org/10.1007/s10009-014-0309-2

[19] Klaus Havelund and Giles Reger. 2015. Specification of Parametric Moni-
tors. In SyDe Summer School. Springer, 151–189. https://doi.org/10.1007/
978-3-658-09994-7_6

[20] Daniel Jackson and Jeannette Wing. 1996. Lightweight Formal Methods. ACM
Comput. Surv. 28, 4 (1996), 121. https://doi.org/10.1145/242224.242380

[21] Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Rosu. 2012.
JavaMOP: Efficient parametric runtime monitoring framework. In ICSE. IEEE
Computer Society, 1427–1430.

[22] Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977. IEEE Computer Society, 46–57. https://doi.org/10.1109/SFCS.
1977.32

[23] Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. 2015. MarQ: Mon-
itoring at Runtime with QEA. In TACAS (Lecture Notes in Computer Science),
Vol. 9035. Springer, 596–610. https://doi.org/10.1007/978-3-662-46681-0_55

[24] Giles Reger and David E. Rydeheard. 2015. From First-order Temporal Logic to
Parametric Trace Slicing. In Runtime Verification - 6th International Conference,
RV 2015 Vienna, Austria, September 22-25, 2015. Proceedings. 216–232. https:
//doi.org/10.1007/978-3-319-23820-3_14

[25] Germán Regis, Renzo Degiovanni, Nicolás D’Ippolito, and Nazareno Aguirre. 2015.
Specifying Event-Based Systems with a Counting Fluent Temporal Logic. In ICSE
(1). IEEE Computer Society, 733–743. https://doi.org/10.1109/ICSE.2015.86

[26] Rachel L. Smith, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil. 2002.
PROPEL: an approach supporting property elucidation. In Proceedings of the
24th International Conference on Software Engineering, ICSE 2002, 19-25 May 2002,
Orlando, Florida, USA. 11–21. https://doi.org/10.1145/581339.581345

[27] Volker Stolz. 2007. Temporal Assertions with Parametrised Propositions. In
Runtime Verification, 7th International Workshop, RV 2007, Vancouver, Canada,
March 13, 2007, Revised Selected Papers (Lecture Notes in Computer Science), Oleg
Sokolsky and Serdar Tasiran (Eds.), Vol. 4839. Springer, 176–187. https://doi.org/
10.1007/978-3-540-77395-5_15

[28] Safouan Taha, Jacques Julliand, Frédéric Dadeau, Kalou Cabrera Castillos, and
Bilal Kanso. 2015. A compositional automata-based semantics and preserving
transformation rules for testing property patterns. Formal Asp. Comput. 27, 4
(2015), 641–664. https://doi.org/10.1007/s00165-014-0328-5

https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1093/logcom/exn076
https://doi.org/10.1007/s10703-015-0222-7
https://doi.org/10.1007/s10703-015-0222-7
https://doi.org/10.1145/2699444
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-00768-2_23
https://doi.org/10.1109/DATE.2011.5763167
https://doi.org/10.1007/978-3-662-49674-9_54
https://doi.org/10.1007/978-3-662-49674-9_54
http://portal.acm.org/citation.cfm?id=302405.302672
https://doi.org/10.1145/567446.567462
https://doi.org/10.1109/EDOC.2008.32
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1007/978-3-658-09994-7_6
https://doi.org/10.1007/978-3-658-09994-7_6
https://doi.org/10.1145/242224.242380
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-319-23820-3_14
https://doi.org/10.1007/978-3-319-23820-3_14
https://doi.org/10.1109/ICSE.2015.86
https://doi.org/10.1145/581339.581345
https://doi.org/10.1007/978-3-540-77395-5_15
https://doi.org/10.1007/978-3-540-77395-5_15
https://doi.org/10.1007/s00165-014-0328-5

	Abstract
	1 Introduction
	2 Context and Motivation
	2.1 Case Study Presentation
	2.2 Traces
	2.3 Requirements for a Trace Property Language

	3 Language Features
	3.1 Events Descriptors

	4 Language Semantics
	5 Implementation and Validation
	6 Related Work
	6.1 Overview
	6.2 Comparison and Discussion

	7 Conclusion
	Acknowledgments
	References

