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Summary 
 

  The use of a three dimensional Discrete Element Method (DEM) is proposed to study 

concrete submitted to rock-fall impacts. The model has already been validated through quasi-

static, as well as dynamic simulations such as SHPB tests. The simulation of four-point beam 

bending tests has validated the introduction of the reinforcement in the model. With this 

approach all the local parameters can be identified through a well defined procedure: thus, 

computations are real predictive simulations. This paper shows how rock-fall impacts have 

been simulated and compared with experimental results. The numerical and experimental 

results agree quite well both qualitatively and quantitatively, which confirms that the 

proposed approach can be used reliably. 

 

Keywords: Discrete Element Method, reinforced concrete, rock-fall impacts, dynamic 

simulation, structure. 

 

1. Introduction 
 

    The design of concrete safety structures is a big challenge for engineers; for example some 

structures present in mountainous areas are dedicated to protection against natural hazards 

such as avalanches, rock falls, etc... and thus may be submitted to impact loads and high 

deformation. Despite their geometry which is usually massive, with an extremely high ratio of 

reinforcement, and of course a design satisfying common building standards, some are found 

to be totally damaged. This inconsistency demands the use of a model with high predicting 

abilities. 

 

Impact Phenomena 

 

    The response of a structure submitted to impacts depends on many parameters, but may be 

classified according to the following quantities: 

 

 The relative values of both the projectile and target acoustic impedance [GERADIN & 

RIXEN, 1994], where this impedance is the product of the medium density by its 

celerity: if the projectile impedance is much higher than the target impedance, the 

projectile may undergo very little deformation but induces important deformation in 

the target, meaning penetration or perforation. 

 The impact speed ranges: at low speeds (order of magnitude 100 ms-1), local 

phenomena are coupled with the global deformation of the structure; the 



characteristic durations of the loading and its associated response are typically on the 

order of 1.10-3s. At higher speeds (order of magnitude several hundred ms-1), the 

structure response becomes negligible with respect to the local behaviour in the 

impact zone; the loading path is usually uniaxial strain, which may induce high 

hydrostatic pressure, and plastic flow. The shock front is important and the structure 

response may be considered as discontinuous; the characteristic durations of the 

loading and its associated response are typically on the order of 1.10-6s. At even 

higher speeds (order of magnitude 1000 ms-1), the pressure may be higher than ten 

times the material strength and the solids may be considered as fluids. 

 

    Rock-fall impacts occur at low speeds, and as far as concrete structures are concerned, the 

acoustic impedances of both the impactor and the target are comparable. This means that 

penetration will not occur and compaction will only be very superficial. Then, the structure 

response may still be considered as continuous: the shock front does not need any particular 

treatment. But at this speed range, strain rates may reach 1.102s-1, and one cannot neglect the 

rate effect any more. A large number of experimental results can be found in the literature 

(Fig.1), in terms of the ratio dynamic strength over static strength of concrete in uniaxial 

tension and compression. Two distinct types of behaviour can be observed: The first one 

shows a linear dependence of the ratio with log( )  and is now well explained by the presence 

of free water in concrete, inducing an effect similar to the Stefan effect {Rossi at al., 94}. The 

second one is a sharp rise in the rate dependence, and is not fully understood yet. The limit 

between the two is around 1 13.10 s   in compression and around 0 110 s   in tension. 

 

 
Fig. 1 - Strain rate dependency of the compressive strength, (Bischoff & Perry 1991) 

 

Concrete modelling 

 

    Concrete has been extensively modelled, mainly by two approaches: constitutive modelling 

and Fracture Mechanics (LEMAITRE & CHABOCHE, 1992). The latter considers that all non-

linearities take place at the propagating crack tip and even if dynamical models exist [OH, 

1990], it may not be used to describe the occurrence of a large number of discontinuities. In 

addition, in the frame of constitutive modelling, numerous laws are available; in particular, 

considering the impact speeds of interest here (which lead to few compaction and a mostly 



deviatoric stress state), damage and/or elasto-plastic models are mostly used. They differ in 

particular in the way strain rate dependency is represented. 
 

    Some authors introduce viscosity [BISCHOFF & PERRY, 1991] sometimes combined with 

inertia, [GARY & BAILLY, 1998]. Some micromechanics-based fracture models have led to the 

following type of dependence: n

d  , where d  is the strength. It is also the case of the 

CEB formulation [CEB, 1993], which is one of the most comprehensive model which takes 

into account most of the experimental observations described in the previous section (See 

figure Fig. 1). This model will be discussed later in this paper. 

When it comes to computational modelling, the first class of numerical techniques uses fixed 

meshes, like well-known Finite Elements/Volumes/Differences methods. But the treatment of 

discontinuities with such methods demands the use of costly techniques like remeshing. The 

second class of techniques, the meshless methods [JONHSON & STRYK 1989, BELYTSCHKO ET 

AL. 1994, MONAGHAN 1992], allows an easy modelling of discontinuities, but not of 

phenomena like cycles of occurrence/loss of contact, as well as crack friction. Moreover, the 

loss of objectivity with respect to the mesh in dynamic problems (due to the softening 

behaviour of all these continuous laws) has to be solved by the use of a regularization 

technique [BAZANT & OH 1983, DE BORST & SLUYS 1990, PIJAUDIER-CABOT & BENALLAL 

1993]. 

1.1. Objectives 

 

    In this paper the Discrete Element Method (DEM) [CUNDALL & STRACK, 1979], which is 

an alternative to continuum-type methods of increasing complexity as previously seen, is used 

to study structures submitted to impacts. This method does not rely upon any assumption 

about where and how a crack or several cracks occur and propagate, as the medium is 

naturally discontinuous and is very well adapted to dynamic problems. 

    Nevertheless, when one uses a DEM model, one has to address the issue of the modelling 

scale: the DEM is particularly adapted to the modelling of granular material [CUNDALL, 1989, 

IWASHITA & ODA 2000, KUHN & BAGI 2002], where one element represents one grain. 

Numerous authors have also used the DEM to simulate cohesive geomaterials like concrete, at 

the scale of the heterogeneity [POTAPOV ET AL. 1995, POTYONDY ET AL. 1996], that is to say 

the size of one element is of the order of the biggest heterogeneity. This approach allows a 

better understanding of concrete fracture, but makes real structures modelling impossible, as 

the computation cost becomes "gigantic" (see Lilliu & Van Mier [2003] with Lattice-type 

models). Another approach consists in using a higher scale model, which considers that the 

whole assembly of elements must reproduce the macroscopic behaviour of concrete. Thus 

some authors like [MEGURO & HAKUNO 1989, KUSANO ET AL. 1992, SAWAMOTO ET AL. 1998, 

CAMBORDE ET AL. 2000] have simulated impacts on concrete structures, but usually, the model 

parameters are identified directly on the impact tests, and the different components of the 

model are not validated through reference tests. 

    In this paper an impact on a real 3D reinforced concrete structure has been simulated with a 

DE model and a quantitative comparison with experimental results is performed. Before this 

last step was possible, the model had to go through a validation process: Firstly, the model has 

been validated through quasi-static uniaxial tests, through which a parameter identification 

process could be defined [HENTZ ET AL. 2003B;C]: thus, the modelling scale imposed by the 

available computing power is controlled, and the simulations are real predictive computations. 

Then the model validation, and in particular the reproduction of the rate effect has been 

extended through dynamic tests [HENTZ ET AL. 2003A]. Last before the simulation of real 

structures, the introduction of the reinforcement has been validated through the simulation of 



beam bending tests. This paper will firstly describe the model, and then will present the 

structure impact results. 

 

2. DEM model used 
 

    The discrete model should be able to reproduce two particular points of behaviour of  

concrete, with a low computation cost: 

 

1. Common concrete behaviour is linear, elastic, isotropic and homogeneous. 

2. The non-linear behaviour of concrete is closer to the behaviour of a nearly non-porous 

medium than to that of a granular material. 

 

    The present numerical model has been implemented within the "Spherical Discrete Element 

Code" [DONZÉ & MAGNIER, 1997]. It uses discrete spherical elements of individual radius and 

mass, which allows a quick computation of the contacts. But the orientation distribution of 

these has to be as homogeneous as possible to satisfy the first condition, and the assembly of 

elements has to be as compact as possible to satisfy the second condition. This is obtained 

through the use of a particular "disorder" technique, based on an algorithm described in 

Jodrey & Tory [1985] which gives a polydisperse assembly with a particular size distribution. 

Once the assembly has been set, pairs of initially interacting discrete elements are identified. 

The interactions between these elements have been chosen to represent the elastic-brittle 

behaviour of concrete. To do this, elastic interaction laws with a rupture criterion are applied 

between two interacting elements. 

    Using the constitutive equations for each interaction, the numerical model solves the 

equations of motion. The explicit time integration of the laws of motion will provide the new 

displacement and velocity for each discrete element. 

    As time proceeds during the evolution of the system, change in the packing of discrete 

elements may occur and new interactions be created. One of the features of this numerical 

model will then be to determine the interacting neighbours of a given element. This will be 

achieved by defining an interaction range and identifying all elements within it which are 

interacting. 

 

2.1. Interaction Range 

 

    The overall behavior of a material can be reproduced by means of this model by associating 

a simple constitutive law to each interaction. An interaction between elements a and b of 

radius Ra and Rb respectively, is defined within an interaction range γ and does not necessarily 

imply that two elements are in contact. Then, these elements will interact if 

 

 ,( )a b a bR R D        (1) 

 

    where Da,b is the distance between the centroids of elements a and b and γ ≥ 1. This is an 

important difference from classical discrete element methods which use spherical elements 

where only contact interactions are considered (γ = 1). This choice was made so that the 

method could simulate materials other than simple granular materials in particular those 

which involve a matrix as found in concretes. Moreover, it helps in modelling with DE model 

materials which may be considered as continuous at this scale. 



     

2.2. Elastic properties 

 

The interaction force vector F which represents the action of element a on element b may be 

decomposed into a normal and a shear vector Fn and Fs respectively, which may be 

classically linked to relative displacements, through normal and tangential stiffnesses, Kn and 

Ks, 

.

.

n n

n

s s

s

F K U

F K U

 

  

        (2) 

 

where Un is the relative normal displacement between two elements, and ΔUs is the 

incremental tangential displacement. The strain energy stored in a given interaction cannot be 

assumed to be independent of the size of the interacting elements. Therefore interaction 

stiffnesses are not identical over the sample, but follow a certain distribution, which is another 

important particularity of the SDEC model. The macroscopic elastic properties, here Poisson's 

ratio ν, and Young's modulus E, are thus considered to be the input parameters of the model. 

    "Macro-micro" relations are then needed to deduce the local stiffnesses from the 

macroscopic elastic properties and from the size of the interacting elements. Compression 

tests have been run with one given sample and values linking Poisson's ratio ν, and Young's 

modulus E to the dimensionless values of 
s

n
K

K
 were obtained. To fit these values, relations 

based on the best-fit model [LIAO ET AL., 1997] are used: 
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where ,a b

initD  is the initial distance between two interacting elements a and b, coefficients α1, α2 

and α3 are the fitted values and 
intA  is an "interaction surface": 

  
2

int min ,a bA R R         (4) 

  

These relations are simply inverted to obtain the local stiffnesses. 

 

2.3. Inelastic behaviour 

 

2.3.1. Before rupture 

 



    To reproduce the behaviour of geomaterials like rocks and concrete, a modified Mohr-

Coulomb rupture criterion is used. Thus, for a given interaction, a maximum tensile strength T 

(with T > 0) is given and defines a maximum normal force
max int

nF T A  . 

    The maximum shear force can be calculated as 

 

max int tans n

iF cA F          (5) 

 

    where c is the cohesion and 
i is the interparticle friction angle. If the absolute value of the 

shear force is |Fs|, and if it is greater than
max

sF , then the shear force is reduced to the limiting 

value and written as 

 

max /s s s s

reducedF F F F 
 

       (6) 

 

    Finally the model is consistent with the behaviour of concrete. Failure comes with the 

coalescence of micro-cracks undergoing tension. 

 

2.3.2. After rupture 

 

    New interactions between elements may form after the initial ones have failed, but they are 

not cohesive anymore: they are merely "contact" interactions, and cannot undergo any tension 

force. Then a classical Coulomb criterion is used, with a "contact" friction angle c . The 

rupture criteria used in the model is presented in Fig. 2. In the initial state, the interparticle 

friction 
i  takes into account the intact cemented nature of the matrix, while after failure the 

combined effects of the broken-up cement and the granulates are accounted for by c . 

    It is to be noted that the model is enriched with a local softening factor β, so the obtained 

macroscopic fracture energy can be controlled. The DE approach used considers effects at the 

scale of the structure and all smaller scaled energy effects which are disregarded because of 

computational cost are expressed by means of the softening factor.  

 

 
Fig. 2 - Rupture criteria used in the model 

 



2.4. Local parameters identification process 

 

    The problem is the following: how can a structure be modelled, in which the material and 

macroscopic properties (Young's modulus, Poisson's ratio, tensile and compressive strengths, 

as well as fracture energy) are known? The structure geometry is discretized with an assembly 

of discrete elements. Then, what value is to be given to each local parameter (T, 
i , c , c, β 

and γ), so that the set “assembly” and “parameters” are representative of the real material, 

while taking into account the element size distribution, and the random aspect of the assembly 

generation? A procedure, fully described in HENTZ ET AL. [2003b], has been established and is 

based on the simulation of quasi-static uniaxial compression/traction tests: 

    For a standard-sized specimen: 

 

1. A compact, polydisperse discrete element assembly is generated. 

2. An elastic compression test is run with elastic local parameters given by the "macro-

micro" relations (see 2.2). These relations give only a good approximation of the 

macroscopic elastic properties, because of the random aspect of the generation of the 

assembly. 

3. A correction is applied according to an energy-based criterion, in relation with the 

characteristic size of the elements. 

4. Compressive and tensile rupture axial tests are simulated to deduce the remaining local 

parameters. 

 

    This procedure not only allows the determination of a set of parameter values, but also 

ensures that the quasi-static concrete behaviour is well represented [HENTZ ET AL. 2003c]. For 

a large structure, it is then possible to extract a standard-sized specimen from it, and to run the 

procedure on this specimen. Thus, the expected properties are obtained. 

 

2.5. Strain rate dependency 

 

    Compressive Split Hopkinson Pressure Bar (SHPB) tests on concrete specimens have been 

carried out [GARY & ZHAO, 1996, GARY, 1990] to investigate the range of high strain rates 

(see Fig. 1). Among these tests, three were simulated with the DE model, at different strain 

rates (350, 500 and 700 s-1).  

The results (detailed in DONZE ET AL. [1999], HENTZ ET AL. [2003A]) show that the model is 

able to reproduce the concrete rate effect in compression at these strain rates, and this, without 

requiring the use of any viscosity or any characteristic time. This result confirms the inertia-

based hypothesis first proposed by BRACE & JONES [1971] and JANACH [1976]: In this range 

of high strain rates the material responds by bulking in the radial direction at a rate lower than 

the one applied, giving rise to inertial forces. The outer region of the specimen then plays a 

confining role, preventing the central core from unloading and thus giving the specimen a 

greater apparent load carrying capacity. 

    The conclusion is different in tension [HENTZ ET AL., 2003A]: tensile SHPB test carried out 

by BRARA [1999], KLEPACZKO & BRARA [2001] at different strain rates (36 and 108 s-1) were 

simulated. This time, the model has been completed with a local strain rate dependency, so 

the tensile rate effect, which seems to be a material-intrinsic effect at these strain rates, is well 

reproduced. This dependency is based on the CEB formulation: The model is modified so that 

the local tensile strength T depends on the strain rate : 
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    where tdT  is the local dynamic tensile strength at  , tsT is the local static tensile strength 

at 6 110stat s   ,    
1

log log
3
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, and 
1

38
  . 

    Considering an interacting couple of discrete elements a and b, of velocity vectors Va and 

Vb, and of position vectors xa and xb, the discrete strain rate is given by : 
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2.6. Introduction of the reinforcement 

 

Like MEGURO & HAKUNO [1989], MASUYA ET AL. [1994], MAGNIER & DONZÉ [1998], the 

reinforcement is introduced in the model as lines of elements placed next to each other. The 

diameter of the elements is that of the real reinforcement and the local behaviour is considered 

as elastic, perfectly plastic. Thus, the local parameters may be easily identified through the 

simulation of a tension test on the line of elements alone. This way of modelling the 

reinforcement is very convenient and is very well integrated in the DEM. A cross-section of 

the discrete setup for the simulation of a 4-point beam bending test (the dark line is the 

reinforcement) is shown in Fig. 3; the results obtained validate the model with reinforcement. 
 

 
Fig. 3 - Beam cross-section going through a reinforcement bar 

 

3. Simulation of impacts on a real reinforced concrete 
structure 

 

A rockfall gallery used to protect roads is studied. These structures are generally composed of 

reinforced concrete sub-structural elements (walls, columns, and foundations) and a roof slab 

covered by a thick backfilling layer. The roof slab is rigidly connected to sub-structural 

elements, and the backfilling layer is used to dissipate the impact energy; therefore, the 

gallery design only takes into account static dead loads (its own weight, the backfilling and 

rock weights): the structure is not designed to resist the impact of blocks but only to provide 

support for the backfilling layer. With such techniques oversized reinforced concrete elements 

are required. The foundations, which must be dimensioned consequently, often cause some 

site construction problems. Considering that the request for this type of equipment will be 



increasing, an investigation was carried out to improve the design and limit the costs. The 

basic idea was to eliminate the backfilling layer and to use a semi-probabilistic approach with 

the notion of "acceptable damage" to the structure. For the purpose of finding an optimal 

solution, a new system was proposed by the French consulting company TONELLO IC, 

which consists in a roof slab pin supported (no continuity) on the sub-structural elements. The 

roof slab is subjected to the direct impact of falling rocks and slab reactions are transmitted to 

the sub-structures throughout ductile steel supports that act as dissipating energy fuses and 

protect the sub-structural elements (see Figs. 4 and 5). The slab is then designed to resist 

directly a falling rock impact that causes local damage limited to the shock zone. The first 

example of this protection system was built in 1999 at "les Essariaux" between Albertville 

and Chamonix in the French Alps. The design of such a structure and its reinforcement is 

performed using a simplified method based on the principle of momentum and energy 

conservations [PERROTIN ET AL., 2002]. Experiments were needed to validate the assumptions 

made along with this simplified method, and evaluate the response and the performances of 

this new system. 

3.1. Experiments 

 

    The experiments consisted in dropping a concrete block from a crane above the 

experimental slab (see Fig. 6). The experimental slab has been designed by the TONELLO IC 

Company, and built by the Leon GROSSE Company. Experiments were carried out during the 

summer 2001 by the LOCIE (University of Chambery). For a complete description, see 

MOUGIN ET AL. [2003], DELHOMME ET AL. [2003]. 

 



 
Fig. 4 - Rockfall gallery of a new kind built in the nineties in the French Alps - Tonello IC - 

dossier IVOR 

 

The slab: it is a one third reduced scale model: it is 12 m long (three 4 m test zones have then 

been defined), 4.4 m wide, 0.28 m thick, and weighs roughly 40 t. Concrete properties are: 

Young's modulus E = 29 GPa, compressive strength σc = 31 MPa. It is densely reinforced, 

with longitudinal (2*19 HA14, and 2*16 HA20) and transversal (2*118 HA16) reinforcement 

bars, as well as vertical frames (1947 HA8). 

 

The block: it is a reinforced concrete block, a 0.56 m side cube, weighing 450 kg. The 

concrete properties are the same as for the slab. 

 

The fuses: the slab lies on two lines of 11 fuses, regularly spaced every 1.14 m. They consist 

in thin steel cylinders, which may buckle and then dissipate the shock energy. Their known 

properties are their stiffness (1.109 N), and their critical load in compression (250000 N). 



 
Fig. 5 - Fuse - support of the slab - Tonello IC - dossier IVOR 

 

 
Fig. 6 - General view of the experimental setup: the impactor falling. LOCIE-ESIGEC 

 



The tests: three impacts were carried out: the first and the second from 15 and 30 m high in 

the inner part of the slab and the third from 30m on the edge of the slab (above the support 

line). 

 

The measures: strain gauges were placed in the slab, and displacement cells recorded the 

maximum deflections of the sub-surface of the slab at different positions. 

 

3.2. Discrete Element Modelling 

 

The slab: note that only a third of the slab has been modelled, for reasons of symmetry, and 

computation cost. The influence of this choice will be discussed later. The reinforcement is 

identical to the experimental one (see Fig. 7, 77 329 elements), and then the isotropic and 

polydisperse packing of "concrete" elements (110 160) is obtained through the 

aforementioned disorder technique around the reinforcement. Local parameters are identified 

with the quasi-static procedure already defined: fundamental uniaxial tests are simulated on a 

numerical sample extracted from the slab (see Fig. 8) so the expected concrete properties are 

obtained. This step is particularly important, as it ensures the predictive aspect of the 

computation: no parameter has been identified directly on the impact test. As for the 

reinforcement parameters, they have been identified with a traction test on a reinforcement 

bar alone. 

 
Fig. 7 - The whole reinforcement 

 

The block: its geometry is as close to the experimental one as possible, the local parameters 

are identical to the slab ones. 10976 elements were used. 

 

The fuses: they are placed at their experimental positions, and need to be very precisely 

defined (see Fig. 9). They are hollow cylinders, made of 2430 elements each. Considering the 

poor experimental information available concerning the fuses, a compression test has been 

simulated to obtain the expected stiffness and critical force. As in reality, plates have been 

placed between the fuses and the slab, which avoids problems due to the difference in 

granulometry. 

    Finally, 221000 elements were used for this computation (the simulation of 0.01s real time 

demands roughly 10h on a P IV 2.8GHz). Table 1 shows the local parameters. 
 



Parameter concrete steel block fuse 

 ( kg.m3) 2500 7800 2500 7800 

 1,4 1,05 1,4 1,05 

E (GPa) 30 210 30 72 

 0,2 0,25 0,2 0,25 

i(degrees) 30 0 30 0 

c (MPa) 3 250 6 27 

T (MPa) 1,5 500 3 55 

 100  100  

c (degrees) 30 30 30 30 

Table 1. - Local parameters used for each computation entity 

 

Computation conditions: gravity is applied to the slab until equilibrium is reached prior to 

any computation. The block is initially placed just above the slab surface, with the initial 

velocity corresponding to its free fall. The impact configuration (position and orientation) has 

been set as close as possible to the observed experimental configuration. The block is 

submitted to gravity as well. Displacements were measured at the cells positions, on the sub-

surface of the slab. The numerical setup ready for computation is shown in Fig. 10. 

 
Fig. 8 - Sample extraction for the parameters identification 

 

 
Fig. 9 – DEM model of the fuse support 



 

 
Fig. 10 - The numerical setup 

 

3.3. Results 

 

    Table 2 summarizes the results obtained with the simulation of the three tests, and 

compares the maximum displacement obtained, and the yielding of both reinforcement and 

fuses. The numerical results agree quite well with experimental results with relative errors on 

the maximum displacements ranging from to 5 to 8 %. 

 



Test Experiment Simulation 

Centered 30 m high 

 

Maximum displacement: 

22,5 mm 

No fuse buckling 

No horizontal reinforcement 

yielding ; yielding of vertical 

frames 

Maximum displacement: 

21.4 mm 

No fuse buckling 

Yielding of reinforcement 

 

Centered 15 m high 

 

Maximum displacement: 

14,5 mm 

No fuse buckling 

No horizontal reinforcement 

yielding, no information on 

the vertical frames 

 

Maximum displacement: 

13,9 mm 

No fuse buckling 

No reinforcement yielding 

 

30 m high on the edge 

 

Maximum displacement: 

21,5 mm 

Buckling of three fuses 

No horizontal reinforcement 

yielding, no information on 

the vertical frames 

Maximum displacement: 

19,9 mm 

Buckling of four fuses 

Reinforcement yielding 

 

Table 2. - Comparison of numerical and experimental results 

 

    As far as the centred 30 m high test is concerned, Fig. 11 shows the impact force and the 

deflection versus time for the first 50 ms, and Fig. 12 shows the force of the slab acting on a 

particular fuse. One can observe that the maximum displacement is reached in two phases: the 

first rise occurs right at the moment of the impact, until roughly 4 ms, then some fluctuation 

occurs, and around t = 13 ms, the second rise appears. Looking at the force on the fuse, it is 

noticeable that during this first phase, the fuse undergoes very little effort, whereas most of 

the force occurs during the second phase. This means that the first phase of the deflection 

corresponds to a local depression of the slab, which is not coupled with the rest of the slab, 

whereas the second phase is due to the global movement of the slab, and is very much 

dependent on the boundary conditions. This second part of the displacement may then be 

influenced by the fact that only a third of the slab has been modelled. On the other hand, it is 

very likely that this impact mainly activates a simple flexion mode, i.e. between the two lines 

of fuses, and then independent on the length of the slab. Moreover, the vibration frequency of 

the slab determined after the impact is roughly 7.6 Hz, close to the experimental measure, 10 

Hz. It seems then that this modelling is representative of the real structure, and that the 

comparison of the maximum displacement is legitimate. 



 
Fig. 11 - Impact force and deflection versus time 

 
Fig. 12 - Force of the slab acting on a particular fuse versus time 

 

    The damage of the slab impact face after the shock is shown on Fig. 13, and Fig. 14 shows 

the damage in a vertical cross-section of the slab (the damage is computed per element, and is 

the ratio number of broken links over the number of initial links; the darker the element, the 

higher the damage). Note that the damage occurs very quickly, during the local phase of the 

impact. At the beginning of the impact, the solicitation is mainly due to the corner of the 

block and the damage has a cone-like shape. The impact face is very much damaged, and 



locally crushed. Some spalling occurs on the sub-surface, leaving some reinforcement visible. 

A little part of this reinforcement has yielded. 

  
Fig. 13 - Damage of the impact face. Above view and close-up 

 
Fig. 14 - Damage of the block and the slab at t = 20 ms. Cross section going through the 

impact point 

 

    During the 30 m high test on the edge, the three fuses closest to the position of impact have 

buckled. The computation has shown the same results (see Fig. 15): these three fuses have 

buckled, as well as a fourth one, on the opposite corner, no doubt as a result of a violent 

reflecting wave (the slab bounces off the fuses, and on again). This may be a limit to the fact 

that a third of the slab has been modelled. 



 
Fig. 15 - Buckled fuse 

 

4. Conclusion 
 

    In previous work, a three-dimensional Discrete Element approach was proposed to study 

the dynamic behaviour of concrete. The main specificities of this approach are the following: 

the modelling scale is higher than the heterogeneity scale, so the model may be used to 

simulate real structures, which means the DEM is mainly used here for its ability to treat 

discontinuities; the introduced interaction laws are then very simple and are close to 

macroscopic laws; last, an identification process based on quasi-static tests is used, so the 

quasi-static behaviour of concrete is reproduced. This identification process is the key point, 

as it allows predictive computations. The model validation is extended through the simulation 

of dynamic tests, like SHPB compressive and tensile tests: the rate effect is then taken into 

account. The way the reinforcement is introduced was validated through the simulation of a 

four-point beam-bending test. 

    In this work, three rock-fall tests were simulated with this model, from different heights 

and at different positions, on a reinforced concrete slab at a real scale. Results were compared 

with experimental results: Qualitatively, kinematics, damage, and fuses deformation are very 

coherent with respect to experimental results. Moreover, quantitatively, maximum deflections 

are very close to the experimental results, despite the fact that only a third of the slab has been 

modelled. This fact confirms that this approach may be used as a powerful predictive tool for 

the design of safety structures. 

    The Discrete Elements Method is of particular interest in the zone where damage occurs, 

which in the presented impact case, remains relatively small, whereas the rest of the slab 

remains elastic. This suggests that in this case, optimizing the discretization and/or coupling a 

continuous method with a discrete method would be particularly efficient in terms of 

computation cost. Moreover, the coupling would facilitate the computation implementation. 
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