J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer, vol.136, pp.359-386, 2015.

R. Siegel, D. Naishadham, and A. , Cancer statistics, vol.62, pp.10-29, 2012.

W. Brugger and M. Thomas, EGFR-TKI resistant non-small cell lung cancer (NSCLC): new developments and implications for future treatment, Lung Cancer Amst. Neth, vol.77, pp.2-8, 2012.

B. Busser, L. Sancey, V. Josserand, C. Niang, M. C. Favrot et al., Amphiregulin promotes BAX inhibition and resistance to gefitinib in non-small-cell lung cancers, Mol. Ther. J. Am. Soc. Gene Ther, vol.18, pp.528-535, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00425468

A. Hurbin, M. Wislez, B. Busser, M. Antoine, C. Tenaud et al., Insulin-like growth factor-1 receptor inhibition overcomes gefitinib resistance in mucinous lung adenocarcinoma, J. Pathol, vol.225, pp.83-95, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00598462

T. Kosaka, E. Yamaki, A. Mogi, and H. Kuwano, Mechanisms of resistance to EGFR TKIs and development of a new generation of drugs in non-small-cell lung cancer, J. Biomed. Biotechnol, p.165214, 2011.

J. Wang, B. Wang, H. Chu, and Y. Yao, Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations, OncoTargets Ther, vol.9, pp.3711-3726, 2016.

G. Hrustanovic, B. J. Lee, and T. G. Bivona, Mechanisms of resistance to EGFR targeted therapies, Cancer Biol. Ther, vol.14, pp.304-314, 2013.

B. Busser, L. Sancey, V. Josserand, C. Niang, S. Khochbin et al., Amphiregulin promotes resistance to gefitinib in nonsmall cell lung cancer cells by regulating Ku70 acetylation, Mol. Ther. J. Am. Soc. Gene Ther, vol.18, pp.536-543, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00425467

V. Jeannot, B. Busser, E. Brambilla, M. Wislez, B. Robin et al., The PI3K/AKT pathway promotes gefitinib resistance in mutant KRAS lung adenocarcinoma by a deacetylase-dependent mechanism, Int. J. Cancer, vol.134, pp.2560-2571, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02349444

V. Jeannot, B. Busser, L. Vanwonterghem, S. Michallet, S. Ferroudj et al.,

M. Coll, A. Ozturk, and . Hurbin, Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma, OncoTargets Ther, vol.9, pp.6843-6855, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02347748

W. S. Xu, R. B. Parmigiani, and P. A. Marks, Histone deacetylase inhibitors: molecular mechanisms of action, Oncogene, vol.26, pp.5541-5552, 2007.

L. M. Butler, X. Zhou, W. Xu, H. I. Scher, R. A. Rifkind et al., The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.11700-11705, 2002.

T. Sanda, T. Okamoto, Y. Uchida, H. Nakagawa, S. Iida et al., Proteome analyses of the growth inhibitory effects of NCH-51, a novel histone deacetylase inhibitor, on lymphoid malignant cells, Leukemia, vol.21, pp.2344-2353, 2007.

T. Hideshima, J. E. Bradner, J. Wong, D. Chauhan, P. Richardson et al., Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.8567-8572, 2005.

M. Mackmull, M. Iskar, L. Parca, S. Singer, P. Bork et al., Histone Deacetylase Inhibitors (HDACi) Cause the Selective Depletion of Bromodomain Containing Proteins (BCPs), Mol. Cell. Proteomics, vol.14, pp.1350-1360, 2015.

A. Martín-bernabé, R. Cortés, S. G. Lehmann, M. Seve, M. Cascante et al., Quantitative proteomic approach to understand metabolic adaptation in nonsmall cell lung cancer, J. Proteome Res, vol.13, pp.4695-4704, 2014.

S. G. Lehmann, S. Bourgoin-voillard, M. Seve, and W. Rachidi, Tubulin Beta-3 Chain as a New Candidate Protein Biomarker of Human Skin Aging: A Preliminary Study, Oxid. Med. Cell. Longev, p.5140360, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02013107

F. P. Breitwieser, A. Müller, L. Dayon, T. Köcher, A. Hainard et al., General statistical modeling of data from protein relative expression isobaric tags, J. Proteome Res, vol.10, pp.2758-2766, 2011.

T. Hulsen, J. Vlieg, and W. Alkema, BioVenn -a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams, BMC Genomics, vol.9, p.488, 2008.

J. A. Vizcaíno, E. W. Deutsch, R. Wang, A. Csordas, F. Reisinger et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination, Nat. Biotechnol, vol.32, pp.223-226, 2014.

H. Mi, A. Muruganujan, and P. D. Thomas, PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees, Nucleic Acids Res, vol.41, pp.377-386, 2013.

M. Kutmon, M. P. Van-iersel, A. Bohler, T. Kelder, N. Nunes et al., PLoS Comput. Biol, vol.11, p.1004085, 2015.

A. M. Curran, C. Draper, M. Scott-boyer, A. Valsesia, H. M. Roche et al., Sexual Dimorphism, Age, and Fat Mass Are Key Phenotypic Drivers of Proteomic Signatures, J. Proteome Res, vol.16, pp.4122-4133, 2017.

H. S. Kim and M. Lee, STAT1 as a key modulator of cell death, Cell. Signal, vol.19, pp.454-465, 2007.

N. C. Reich, STATs get their move on, vol.2, p.27080, 2013.

W. Abbas, A. Kumar, and G. Herbein, The eEF1A Proteins: At the Crossroads of Oncogenesis, Apoptosis, and Viral Infections, Front. Oncol, vol.5, p.75, 2015.

Y. Yang, S. Zhang, K. Howe, D. B. Wilson, F. Moser et al., A Comparison of nLC-ESI-MS/MS and nLC-MALDI-MS/MS for GeLC-Based Protein Identification and iTRAQ-Based Shotgun Quantitative Proteomics, J. Biomol. Tech. JBT, vol.18, pp.226-237, 2007.

S. L. Shirran and C. H. Botting, A comparison of the accuracy of iTRAQ quantification by nLC-ESI MSMS and nLC-MALDI MSMS methods, J. Proteomics, vol.73, pp.1391-1403, 2010.

R. Moulder, S. D. Bhosale, D. R. Goodlett, and R. Lahesmaa, Analysis of the plasma proteome using iTRAQ and TMT-based Isobaric labeling, Mass Spectrom. Rev

S. Gonfloni, V. Caputo, and V. Iannizzotto, P63 in health and cancer, Int. J. Dev. Biol, vol.59, pp.87-93, 2015.

F. Boisvert, Y. W. Lam, D. Lamont, and A. I. Lamond, A Quantitative Proteomics Analysis of Subcellular Proteome Localization and Changes Induced by DNA Damage, Mol. Cell. Proteomics MCP, vol.9, pp.457-470, 2010.

A. Gurtner, E. Falcone, F. Garibaldi, and G. Piaggio, Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity, J. Exp. Clin. Cancer Res, vol.35, p.45, 2016.

S. Lin and R. I. Gregory, MicroRNA biogenesis pathways in cancer, Nat. Rev. Cancer, vol.15, pp.321-333, 2015.

K. Mizuno, H. Mataki, N. Seki, T. Kumamoto, K. Kamikawaji et al., MicroRNAs in non-small cell lung cancer and idiopathic pulmonary fibrosis, J. Hum. Genet, vol.62, pp.57-65, 2017.

T. K. Sin, F. Wang, F. Meng, S. C. Wong, W. C. Cho et al., Implications of MicroRNAs in the Treatment of Gefitinib-Resistant Non-Small Cell Lung Cancer, Int. J. Mol. Sci, vol.17, p.237, 2016.

M. Serizawa, M. Kusuhara, V. Zangiacomi, K. Urakami, M. Watanabe et al., Identification of Metabolic Signatures Associated with Erlotinib Resistance of Non-small Cell Lung Cancer Cells, Anticancer Res, vol.34, pp.2779-2787, 2014.

S. L. Blair, P. Heerdt, S. Sachar, A. Abolhoda, S. Hochwald et al., Glutathione metabolism in patients with non-small cell lung cancers, Cancer Res, vol.57, pp.152-155, 1997.

P. Yang, J. O. Ebbert, Z. Sun, and R. M. Weinshilboum, Role of the glutathione metabolic pathway in lung cancer treatment and prognosis: A review, J. Clin. Oncol, vol.24, pp.1761-1769, 2006.

A. Stephanou and D. S. Latchman, STAT-1: a novel regulator of apoptosis, Int. J. Exp. Pathol, vol.84, pp.239-244, 2003.

K. Meissl, S. Macho-maschler, M. Müller, and B. Strobl, The good and the bad faces of STAT1 in solid tumours, Cytokine, vol.89, pp.12-20, 2017.

E. A. Stronach, A. Alfraidi, N. Rama, C. Datler, J. B. Studd et al., HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer, Cancer Res, vol.71, pp.4412-4422, 2011.

C. Kaewpiboon, R. Srisuttee, W. Malilas, J. Moon, S. Oh et al., Upregulation of Stat1-HDAC4 confers resistance to etoposide through enhanced multidrug resistance 1 expression in human A549 lung cancer cells, Mol. Med. Rep, vol.11, pp.2315-2321, 2015.

G. Kulkarni, D. A. Turbin, A. Amiri, S. Jeganathan, M. A. Andrade-navarro et al., Expression of protein elongation factor eEF1A2 predicts favorable outcome in breast cancer, Breast Cancer Res. Treat, vol.102, pp.31-41, 2007.

R. Li, H. Wang, B. N. Bekele, Z. Yin, N. P. Caraway et al., Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach, Oncogene, vol.25, pp.2628-2635, 2006.

N. Anand, S. Murthy, G. Amann, M. Wernick, L. A. Porter et al., Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer, Nat. Genet, vol.31, pp.301-305, 2002.

D. E. Pinke, S. E. Kalloger, T. Francetic, D. G. Huntsman, and J. M. Lee, The prognostic significance of elongation factor eEF1A2 in ovarian cancer, Gynecol. Oncol, vol.108, pp.561-568, 2008.

H. Duanmin, X. Chao, and Z. Qi, eEF1A2 protein expression correlates with lymph node metastasis and decreased survival in pancreatic ductal adenocarcinoma, Hepatogastroenterology, vol.60, pp.870-875, 2013.

L. Ruest, R. Marcotte, and E. Wang, Peptide Elongation Factor eEF1A-2/S1 Expression in Cultured Differentiated Myotubes and Its Protective Effect against Caspase-3-mediated Apoptosis, J. Biol. Chem, vol.277, pp.5418-5425, 2002.

R. Chang and E. Wang, Mouse translation elongation factor eEF1A-2 interacts with Prdx-I to protect cells against apoptotic death induced by oxidative stress, J. Cell. Biochem, vol.100, pp.267-278, 2007.

A. Losada, M. J. Muñoz-alonso, C. García, P. A. Sánchez-murcia, J. F. Martínez-leal et al., Translation Elongation Factor eEF1A2 is a Novel Anticancer Target for the Marine Natural Product Plitidepsin, Sci. Rep, vol.6, p.35100, 2016.

A. Amiri, F. Noei, S. Jeganathan, G. Kulkarni, D. E. Pinke et al., eEF1A2 activates Akt and stimulates Akt-dependent actin remodeling, invasion and migration, vol.26, pp.3027-3040, 2007.

Z. Li, C. Qi, D. Shin, A. Zingone, H. J. Newbery et al., Eef1a2 promotes cell growth, inhibits apoptosis and activates JAK/STAT and AKT signaling in mouse plasmacytomas, PloS One, vol.5, p.10755, 2010.