D. G. Hardie, AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function, Genes Dev, vol.25, pp.1895-1908, 2011.

D. G. Hardie, F. A. Ross, and S. A. Hawley, AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nat Rev Mol Cell Biol, vol.13, pp.251-262, 2012.

D. Carling, C. Thornton, A. Woods, and M. J. Sanders, AMP-activated protein kinase: new regulation, new roles?, Biochem J, vol.445, pp.11-27, 2012.

B. Viollet, L. Lantier, J. Devin-leclerc, S. Hebrard, and C. Amouyal, Targeting the AMPK pathway for the treatment of Type 2 diabetes, Front Biosci, vol.14, pp.3380-3400, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00367501

G. R. Steinberg and B. E. Kemp, AMPK in Health and Disease, Physiol Rev, vol.89, pp.1025-1078, 2009.

B. B. Zhang, G. Zhou, and C. Li, AMPK: an emerging drug target for diabetes and the metabolic syndrome, Cell Metab, vol.9, pp.407-416, 2009.

D. Neumann, A. Woods, D. Carling, T. Wallimann, and U. Schlattner, Mammalian AMP-activated protein kinase: functional, heterotrimeric complexes by co-expression of subunits in Escherichia coli, Protein Expr Purif, vol.30, pp.230-237, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01990803

S. Fogarty and D. G. Hardie, Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer, Biochim Biophys Acta, vol.1804, pp.581-591, 2010.

J. S. Oakhill, R. Steel, Z. P. Chen, J. W. Scott, and N. Ling, AMPK is a direct adenylate charge-regulated protein kinase, Science, vol.332, pp.1433-1435, 2011.

B. Xiao, M. J. Sanders, E. Underwood, R. Heath, and F. V. Mayer, Structure of mammalian AMPK and its regulation by ADP, Nature, vol.472, pp.230-233, 2011.

J. S. Oakhill, Z. P. Chen, J. W. Scott, R. Steel, and L. A. Castelli, beta-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMPactivated protein kinase (AMPK), Proc Natl Acad Sci U S A, vol.107, pp.19237-19241, 2010.

S. A. Hawley, F. A. Ross, C. Chevtzoff, K. A. Green, and A. Evans, Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation, Cell Metab, vol.11, pp.554-565, 2010.

M. H. Zou, S. S. Kirkpatrick, B. J. Davis, J. S. Nelson, and W. Wgt, Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species, J Biol Chem, vol.279, pp.43940-43951, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00390859

Z. Xie, Y. Dong, M. Zhang, M. Z. Cui, and R. A. Cohen, Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMPactivated protein kinase in cultured endothelial cells, J Biol Chem, vol.281, pp.6366-6375, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00390882

Z. Xie, J. Zhang, J. Wu, B. Viollet, and M. H. Zou, Upregulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes, Diabetes, vol.57, pp.3222-3230, 2008.

S. M. Jeon, N. S. Chandel, and N. Hay, AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress, Nature, vol.485, pp.661-665, 2012.

S. L. Colombo and S. Moncada, AMPKalpha1 regulates the antioxidant status of vascular endothelial cells, Biochem J, vol.421, pp.163-169, 2009.

S. Wang, G. L. Dale, P. Song, B. Viollet, and M. H. Zou, AMPKalpha1 deletion shortens erythrocyte life span in mice: role of oxidative stress, J Biol Chem, vol.285, pp.19976-19985, 2010.

D. Kukidome, T. Nishikawa, K. Sonoda, K. Imoto, and K. Fujisawa, Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells, Diabetes, vol.55, pp.120-127, 2006.

J. W. Zmijewski, S. Banerjee, H. Bae, A. Friggeri, and E. R. Lazarowski, Exposure to hydrogen peroxide induces oxidation and activation of AMPactivated protein kinase, J Biol Chem, vol.285, pp.33154-33164, 2010.

Y. Xiong, J. D. Uys, K. D. Tew, and D. M. Townsend, S-glutathionylation: from molecular mechanisms to health outcomes, Antioxid Redox Signal, vol.15, pp.233-270, 2011.

D. Pimentel, D. J. Haeussler, R. Matsui, J. R. Burgoyne, and R. A. Cohen, Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system, Antioxid Redox Signal, vol.16, pp.524-542, 2012.

A. Pastore and F. Piemonte, S-Glutathionylation signaling in cell biology: progress and prospects, Eur J Pharm Sci, vol.46, pp.279-292, 2012.

U. Riek, R. Scholz, P. Konarev, A. Rufer, and M. Suter, Structural properties of AMP-activated protein kinase: dimerization, molecular shape, and changes upon ligand binding, J Biol Chem, vol.283, pp.18331-18343, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00390926

L. Chen, J. Wang, Y. Y. Zhang, S. F. Yan, and D. Neumann, AMP-activated protein kinase undergoes nucleotide-dependent conformational changes, Nat Struct Mol Biol, vol.19, pp.716-718, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01930764

S. Arbault, P. Pantano, N. Sojic, C. Amatore, and M. Best-belpomme, Activation of the NADPH oxidase in human fibroblasts by mechanical intrusion of a single cell with an ultramicroelectrode, Carcinogenesis, vol.18, pp.569-574, 1997.

V. Anathy, E. C. Roberson, A. S. Guala, K. E. Godburn, and R. C. Budd, Redox-based regulation of apoptosis: S-glutathionylation as a regulatory mechanism to control cell death, Antioxid Redox Signal, vol.16, pp.496-505, 2012.

D. M. Townsend, Y. Manevich, L. He, S. Hutchens, and C. J. Pazoles, Novel role for glutathione S-transferase pi. Regulator of protein S-Glutathionylation following oxidative and nitrosative stress, J Biol Chem, vol.284, pp.436-445, 2009.

Y. Manevich, S. I. Feinstein, and A. B. Fisher, Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST, Proc Natl Acad Sci U S A, vol.101, pp.3780-3785, 2004.

L. A. Ralat, Y. Manevich, A. B. Fisher, and R. F. Colman, Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione Stransferase pi with activity changes in both enzymes, Biochemistry, vol.45, pp.360-372, 2006.

K. Wetzelberger, S. P. Baba, M. Thirunavukkarasu, Y. S. Ho, and N. Maulik, Postischemic deactivation of cardiac aldose reductase: role of glutathione Stransferase P and glutaredoxin in regeneration of reduced thiols from sulfenic acids, J Biol Chem, vol.285, pp.26135-26148, 2010.

A. De-luca, N. Moroni, A. Serafino, A. Primavera, and A. Pastore, Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistance, Biochem J, vol.440, pp.175-183, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00642838

K. D. Tew and D. M. Townsend, Regulatory functions of glutathione Stransferase P1-1 unrelated to detoxification, Drug Metab Rev, vol.43, pp.179-193, 2011.

K. D. Tew, Y. Manevich, C. Grek, Y. Xiong, and J. Uys, The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer, Free Radic Biol Med, vol.51, pp.299-313, 2011.

K. D. Tew and D. M. Townsend, Glutathione-S-Transferases As Determinants of Cell Survival and Death, Antioxid Redox Signal, 2012.

J. D. Hayes, J. U. Flanagan, and I. R. Jowsey, Glutathione transferases, Annu Rev Pharmacol Toxicol, vol.45, pp.51-88, 2005.

D. B. Smith, Generating fusions to glutathione S-transferase for protein studies, Methods Enzymol, vol.326, pp.254-270, 2000.

C. Frova, Glutathione transferases in the genomics era: new insights and perspectives, Biomol Eng, vol.23, pp.149-169, 2006.

H. W. Lo and F. Ali-osman, Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance, Curr Opin Pharmacol, vol.7, pp.367-374, 2007.

V. Adler, Z. Yin, S. Y. Fuchs, M. Benezra, and L. Rosario, Regulation of JNK signaling by GSTp, EMBO J, vol.18, pp.1321-1334, 1999.

S. G. Cho, Y. H. Lee, H. S. Park, K. Ryoo, and K. W. Kang, Glutathione Stransferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1, J Biol Chem, vol.276, pp.12749-12755, 2001.

D. Gilot, P. Loyer, A. Corlu, D. Glaise, and D. Lagadic-gossmann, Liver protection from apoptosis requires both blockage of initiator caspase activities and inhibition of ASK1/JNK pathway via glutathione S-transferase regulation, J Biol Chem, vol.277, pp.49220-49229, 2002.

H. W. Lo, G. R. Antoun, and F. Ali-osman, The human glutathione S-transferase P1 protein is phosphorylated and its metabolic function enhanced by the Ser/ Thr protein kinases, cAMP-dependent protein kinase and protein kinase C, in glioblastoma cells, Cancer Res, vol.64, pp.9131-9138, 2004.

Z. Yin, V. N. Ivanov, H. Habelhah, K. Tew, and Z. Ronai, Glutathione Stransferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases, Cancer Res, vol.60, pp.4053-4057, 2000.

G. F. Graminski, Y. Kubo, and R. N. Armstrong, Spectroscopic and kinetic evidence for the thiolate anion of glutathione at the active site of glutathione Stransferase, Biochemistry, vol.28, pp.3562-3568, 1989.

B. S. Nieslanik and W. M. Atkins, The catalytic Tyr-9 of glutathione S-transferase A1-1 controls the dynamics of the C terminus, J Biol Chem, vol.275, pp.17447-17451, 2000.

U. Riek, S. Ramirez, T. Wallimann, and U. Schlattner, A versatile multidimensional protein purification system with full internet remote control based on a standard HPLC system, Biotechniques, vol.46, pp.ix-xii, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00422471

N. Mockli, A. Deplazes, P. O. Hassa, Z. Zhang, and M. Peter, Yeast splitubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins, Biotechniques, vol.42, pp.725-730, 2007.

P. Tafelmeyer, N. Johnsson, and K. Johnsson, Transforming a (beta/alpha)8 -barrel enzyme into a split-protein sensor through directed evolution, Chem Biol, vol.11, pp.681-689, 2004.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, vol.72, pp.248-254, 1976.

J. W. Scott, D. G. Norman, S. A. Hawley, L. Kontogiannis, and D. G. Hardie, Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate, J Mol Biol, vol.317, pp.309-323, 2002.

W. Boireau, A. Rouleau, G. Lucchi, and P. Ducoroy, Revisited BIA-MS combination: entire ''on-a-chip'' processing leading to the proteins identification at low femtomole to sub-femtomole levels, Biosens Bioelectron, vol.24, pp.1121-1127, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00347652

A. Bruckner, C. Polge, N. Lentze, D. Auerbach, and U. Schlattner, Yeast twohybrid, a powerful tool for systems biology, Int J Mol Sci, vol.10, pp.2763-2788, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00422470

S. C. Stein, A. Woods, N. A. Jones, M. D. Davison, and D. Carling, The regulation of AMP-activated protein kinase by phosphorylation, Biochem J, vol.345, pp.437-443, 2000.

J. V. Cross and D. J. Templeton, Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain, Biochem J, vol.381, pp.675-683, 2004.

V. Noguera-mazon, J. Lemoine, O. Walker, N. Rouhier, and A. Salvador, Glutathionylation induces the dissociation of 1-Cys D-peroxiredoxin noncovalent homodimer, J Biol Chem, vol.281, pp.31736-31742, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02661917

X. Hou, J. Song, X. N. Li, L. Zhang, and X. Wang, Metformin reduces intracellular reactive oxygen species levels by upregulating expression of the antioxidant thioredoxin via the AMPK-FOXO3 pathway, Biochem Biophys Res Commun, vol.396, pp.199-205, 2010.

E. L. Greer, P. R. Oskoui, M. R. Banko, J. M. Maniar, and M. P. Gygi, The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor, J Biol Chem, vol.282, pp.30107-30119, 2007.

A. Klaus, C. Polge, S. Zorman, Y. Auchlic, and R. Brunisholzc, A twodimensional screen for AMPK substrates identifies tumor suppressor fumarate hydratase as a preferential AMPKa2 substrate, J Proteomics, vol.75, pp.3304-3317, 2012.

B. Aranda, P. Achuthan, Y. Alam-faruque, I. Armean, and A. Bridge, The IntAct molecular interaction database in 2010, Nucleic Acids Res, vol.38, pp.525-531, 2010.

O. Vincent and M. Carlson, Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4, EMBO J, vol.18, pp.6672-81, 1999.

C. Polge, M. Jossier, P. Crozet, and M. Thomas, b subunits of the SnRK1 complexes share a common ancestral function together with expression and function specificities; physical interaction with nitrate reductase specifically occurs via AKINb1 subunit, Plant Physiol, vol.148, pp.1570-82, 2008.

P. Sanz, AMP-activated protein kinase: structure and regulation, Curr Protein Pept Sci, vol.9, pp.478-492, 2008.