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Pricing path-dependent Bermudan options using
Wiener chaos expansion: an embarrassingly parallel

approach∗

Jérôme Lelong †

January 16, 2019

Abstract

In this work, we propose a new policy iteration algorithm for pricing Bermudan options
when the payoff process cannot be written as a function of a lifted Markov process. Our ap-
proach is based on a modification of the well-known Longstaff Schwartz algorithm, in which
we basically replace the standard least square regression by a Wiener chaos expansion. Not
only does it allow us to deal with a non Markovian setting, but it also breaks the bottleneck
induced by the least square regression as the coefficients of the chaos expansion are given
by scalar products on the L2(Ω) space and can therefore be approximated by independent
Monte Carlo computations. This key feature enables us to provide an embarrassingly parallel
algorithm.
Key words: path-dependent Bermudan options, optimal stopping, regression methods, high
performance computing, Wiener chaos expansion.

AMS subject classification: 62L20, 62L15, 91G60, 65Y05, 60H07

1 Introduction
We fix some finite time horizon T > 0 and a filtered probability space (Ω,F , (Ft)0≤t≤T ,P),
where (Ft)0≤t≤T is supposed to be the natural augmented filtration of a d−dimensional Brownian
motion B. On this space, we consider an adapted process (St)0≤t≤T with values in Rd′ modeling
a d′–dimensional underlying asset, with d′ ≤ d. The number of assets d′ can be strictly smaller
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than the dimension d of the Brownian motion to encompass the case of stochastic volatility mod-
els or stochastic interest rates. We assume that the short interest rate is modeled by an adapted
process (rt)0≤t≤T with values in R+ and that P is an associated risk neutral measure. We consider
a Bermudan option with exercising dates 0 = t0 ≤ T1 < T2 < · · · < TN = T and paying Z̃Tk if
exercised at time Tk. For convenience, we add 0 and T to the exercising dates. This is definitely
not a requirement of the method we propose here but it makes notation lighter and avoids to deal
with the purely European part involved in the Bermudan option. We assume that the discrete
time payoff process (Z̃Tk)0≤k≤N is adapted to the filtration (FTk)0≤k≤N . We introduce the dis-
counted value process

(
ZTk = e−

∫ Tk
0 rsds Z̃Tk

)
0≤k≤N

. We assume that max0≤k≤N |ZTk | ∈ L2.

This framework naturally encompasses the case of path-dependent options, ie. when the payoff
process writes Z̃Tk = φk((Su; 0 ≤ u ≤ Tk)) for any 0 ≤ k ≤ N .

Standard arbitrage pricing theory defines the discounted value of the Bermudan option at
times (Tk)0≤kN by {

UTN = ZTN
UTk = max

(
ZTk ,E[UTk+1

|FTk ]
) (1)

Solving this backward recursion known as the dynamic programming principle has been a chal-
lenging problem for years and various approaches have been proposed to approximate its so-
lution. The real difficulty lies in the computation of the conditional expectation E[UTk+1

|FTk ]
at each time step of the recursion. If you were to classify the different approaches, we could
say that there are regression based approaches (see Tilley [1993], Carriere [1996], Tsitsiklis and
Roy [2001], Broadie and Glasserman [2004] and quantization approaches (see Bally and Pages
[2003], Bronstein et al. [2013]). We refer to Bouchard and Warin [2012] and Pagès [2018] for a
survey of the different techniques to price Bermudan options.

Among all the available algorithms to compute U using the dynamic programming principle,
the one proposed by Longstaff and Schwartz [2001] has the favour of practitioners. Their ap-
proach is based on iteratively selecting the optimal policy. Let τk be the smallest optimal policy
after time Tk, then{

τN = TN

τk = Tk1{ZTk≥E[Zτk+1
|FTk ]} + τk+11{ZTk<E[Zτk+1

|FTk ]}
(2)

All these methods based on the dynamic programming principle either as value iteration (1)
or policy iteration (2) require a Markovian setting to be implemented such that the conditional
expectation knowing the whole past can be replaced by the conditional expectation knowing the
value of a Markov process at the current time.

The theory of the Snell enveloppe states that the sequence U also satisfies

UTk = sup
τ∈TTk,T

E[Zτ |FTk ]. (3)

Starting with this representation and following Davis and Karatzas [1994], Rogers [2002] and
Haugh and Kogan [2004] proposed a dual representation of the Bermudan option price as a
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minimum over a set of martingales

U0 = inf
M∈H2

0

E
[

max
0≤k≤N

(Ztk −Mtk)

]
(4)

where H2
0 denotes the set of square integrable martingales vanishing at zero. This representation

leads to upper bounds of the true price and has been widely studied (see Andersen and Broadie
[2004], Belomestny et al. [2009, 2013]). Solving the dual problem (4) reduces to finding a
clever and accurate finite dimensional approximation of H2

0 . Some approximations (see Lelong
[2018]) allow to transparently deal with path dependent options or non Markovian models, which
essentially raise the same kind of difficulties.

In this work, we focus on computing lower bounds of the price for path dependent or
non Markovian models using the dynamic programming principle for policy iteration (2).
When the discounted payoff process writes ZTk = φk(XTk), for any 0 ≤ k ≤ N , where
(Xt)0≤t≤T is an adapted Markov process, the conditional expectation involved in (2) simpli-
fies into E[Zτk+1

|FTk ] = E[Zτk+1
|XTk ] and can therefore be approximated by a standard least

square method. In local volatility models, the process X is typically defined as Xt = (rt, St), or
even Xt = St when the interest rate is deterministic. In the case of stochastic volatility models,
X also includes the volatility process σ, Xt = (rt, St, σt). Some path dependent options can
also fit in this framework at the expense of increasing the size of the process X . For instance, in
the case of an Asian option with payoff ( 1

T
AT − ST )+ with At =

∫ t
0
Sudu, one can define X as

Xt = (rt, St, σt, At) and then the Asian option can be considered as a vanilla option on the two
dimensional but non tradable assets (S,A).

Once the Markov process X is identified, the conditional expectations can be written

E[Zτk+1
|FTk ] = E[Zτk+1

|XTk ] = ψk(XTk) (5)

where ψk solves the following minimization problem

inf
ψ∈L2(L(XTk ))

E
[∣∣Zτk+1

− ψ(XTk)
∣∣2]

with L2(L(XTk)) being the set of all measurable functions f such that E[f(XTk)
2] < ∞. The

real challenge comes from properly approximating the space L2(L(XTk)) by a finite
dimensional vector space: one typically uses polynomials or local bases. In both cases, to
ensure a decent accuracy, the dimension of the approximation of L2(L(XTk)) increases
exponentially fast with the dimension of X . When X is a high dimensional process, high
performance computing can help but it is well known that solving the least square problem does
not scale well and then deteriorates the efficiency of the parallel implementation.

In this work, we focus on the case of real path dependent options, ie options for which the
payoff cannot be written as a function of a Markov process X with reasonable size. In this case,
(5) does not hold anymore and computing the conditional expectation knowing Ftk becomes
really challenging. The new idea proposed in this work consists in computing an approximation
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of ZTk+1
for which the conditional expectation knowing FTk is known in a closed form. This will

be achieved using Wiener chaos expansion.
In Section 2, we briefly recall the general ideas sustaining Wiener chaos expansion and how it

can be used to approximate conditional expectations. Then, we present our algorithm in Section 3
and explain how to efficiently implement it in parallel. Section 4 is devoted to the study of the
convergence of the algorithm. We conclude with some numerical experiments in Section 5,
which emphasize the impressive scalability of the the parallel implementation and the efficiency
of the algorithm for some complex path dependent options.

Notation
In this section, we gather some extensively used notation in the paper

• For α ∈ Nd, |α|1 =
∑d

i=1 αi. Similarly, for α ∈ (Nn)d, |α|1 =
∑d

j=1

∑n
i=1 α

j
i .

• For α ∈ Nd, α! =
∏d

i=1 αi!. Similarly, for α ∈ (Nn)d, α! =
∏d

j=1

∏n
i=1 α

j
i !.

• For d, n, p ∈ N, we define the set of multi-indices with total degree smaller than p by

A⊗dp,n =
{
α ∈ (Nn)d : |α|1 ≤ p

}
• For d, n, p ∈ N, and k ≤ n we define the set of multi-indices with total degree smaller than
p and no degree after k by

A⊗dp,n|k =
{
α ∈ A⊗dp,n : ∀j ∈ {1, . . . , d}, ∀i > k, αji = 0

}
.

• For i ∈ N, Hi denote the i− th Hermite polynomial.

• For α ∈ (Nn)d, x1, . . . , xn ∈ Rd, the multi-variate Hermite polynomials write

H⊗dα (x1, . . . , xn) =
d∏
j=1

n∏
i=1

Hαji
(xji ).

2 Wiener chaos expansion

2.1 General framework
In this section, we briefly recall the principles of Wiener chaos expansion and its basic
properties. We refer to Nualart [1998] for theoretical details.

Let Hi be the i− th Hermite polynomial defined by

H0(x) = 1; Hi(x) = (−1)i ex
2/2 di

dxi
(e−x

2/2), for i ≥ 1.
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They satisfy for all integer i, H ′i = Hi−1 with the convention H−1 = 0. We recall that if (X, Y )
is a standard random normal vector in R2, E[Hi(X)Hj(Y )] = i! (E[XY ])i 1{i=j}.

It is well-known that every square integrable FT -measurable random variable F admits the
following orthonormal decomposition

F = E[F ] +
∑

α∈(NN)d

λα

d∏
j=1

∏
i≥1

Hαji

(∫ T

0

ηji (t)dB
j
t

)

where
(
(ηji )1≤j≤d

)
i≥1

is an orthonormal basis of L2([0, T ],Rd). We denote by L2
1([0, T ],Rd) the

set of functions f = (f1, . . . , fd) ∈ L2([0, T ],Rd) such that for all 1 ≤ i ≤ d,
∫ T

0
f 2
i (t)dt = 1.

For all p ≥ 0, we define the Wiener chaos of order p by

Hp = spanL2(Ω,FT)

{
d∏
j=1

Hpj

(∫ T

0

f jt dB
j
t

)
: f ∈ L2

1([0, T ],Rd),
d∑
j=1

pj = p

}
.

We denote the projection of a random variable F ∈ L2(FT ) on to
p⊕
`=0

H` by Cp(F ). Note that

the spacesH` are orthogonal to each other thanks to the properties of the Hermite polynomials.
Consider the indicator functions of the grid defined by 0 = t0 < t1 < · · · < tn = T with

values in Rd defined by

f ji (t) =
1{]ti−1,ti]}(t)√
ti − ti−1

ej, i = 1, . . . , n, j = 1, . . . , d

where (e1, . . . , ed) denotes the canonical basis of Rd. Based on the definition ofHp, we introduce
the truncated Wiener chaos of order up to p

Cp,n = span
{
H⊗dα (G1, . . . , Gn) : α ∈ (Nn)d, |α|1 ≤ p

}
where

H⊗dα (G1, . . . , Gn) =
d∏
j=1

n∏
i=1

Hαji
(Gj

i ) with Gj
i =

Bj
ti −B

j
ti−1√

ti − ti−1

.

From the orthogonality of the Hermite polynomials, we immediately deduce the following
result.

Proposition 2.1 Let F be a real valued random variable in L2(Ω,FT ,P). Its L2 projection onto
Cp,n writes

Cp,n(F ) =
∑

α∈A⊗dp,n

λαH
⊗d
α (G1, . . . , Gn)

where

A⊗dp,n =
{
α ∈ (Nn)d : |α|1 ≤ p

}
5



and the coefficients λα are obtained as a dot product

λα =
1

α!
E[FH⊗dα (G1, . . . , Gn)]. (6)

The random variableCp,n(F ) is called the truncated chaos expansion of order p of the random
variable F . With an obvious abuse of notation, we write, for λ ∈ RA⊗dp,n ,

Cp,n(λ) =
∑

α∈A⊗dp,n

λαH
⊗d
α (G1, . . . , Gn). (7)

We recall the main result concerning the convergence of the truncated chaos expansion (see
Theorem 1.1.1 and Proposition 1.1.1 of Nualart [1998])

Proposition 2.2 Let F be a real valued random variable in L2(Ω,FT ,P). Then, Cp,n(F ) con-
verges to F in L2(Ω,FT ,P).

The space of truncated Wiener chaos Cp,n has the key property of being stable by the conditional
expectation operator. More precisely, the following result explains how to compute, in a closed
form, the conditional expectation of an element of Cp,n.

Proposition 2.3 Let F be a real valued random variable in L2(Ω,FT ,P) and let k ∈ {1, . . . , n}
and p ≥ 0

E[Cp,n(F )|Ftk ] =
∑

α∈A⊗d
p,n|k

λα H
⊗d
α (G1, . . . , Gn)

where A⊗dp,n|k is the set of multi-indices vanishing after time tk

A⊗dp,n|k =
{
α ∈ A⊗dp,n : ∀j ∈ {1, . . . , d}, ∀i > k, αji = 0

}
.

Proof. Taking the conditional expectation in (7) leads to

E[Cp,n(F )|Ftk ] =
∑

α∈A⊗dp,n

λα

(
k∏
i=1

d∏
j=1

Hαji
(Gj

i )

)
E

[
n∏

i=k+1

d∏
j=1

Hαji
(Gj

i )
∣∣∣Ftk

]
. (8)

Since the Brownian increments after time tk are independent of Ftk and are independent of one
another, E

[∏n
i=k+1

∏d
j=1 Hαji

(Gj
i )
∣∣∣Ftk] =

∏n
i=k+1

∏d
j=1 E

[
Hαji

(Gj
i )
]
, which is zero as soon as∑n

i=k+1

∑d
j=1 α

j
i > 0. Hence, the sum in (8) reduces to the sum over the set of multi-indices

α ∈ A⊗dp,n such that αji = 0 for all i > k and 1 ≤ j ≤ d, which is exactly the definition of the set
A⊗dp,n|k. �
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Since the sum appearing in E[Cp,n(F )|Ftk ] is reduced to a sum over the set of multi-indices
α ∈ A⊗dp,n|k, it actually only depends on the first k increments (G1, . . . , Gk). One can easily
check that E[Cp,n(F )|Ftk ] is actually given by the chaos expansion of F on the first k Brownian
increments. Hence, computing a conditional expectation simply boils down to dropping the
non measurable terms. While it may look like a naive way to proceed, it is indeed correct in
this setting. To denote the chaos expansion on the time grid (t0, . . . , tn) truncated to the first k
increments, we introduce the notation

Cp,n|k(F ) =
∑

α∈A⊗d
p,n|k

λα H
⊗d
α (G1, . . . , Gn) = E[Cp,n(F )|Ftk ]. (9)

2.2 Application to the approximation of conditional expectations
In this section, we explain how to use the truncated Wiener chaos expansion of a random variable
F ∈ L2(Ω,FT ,P), to compute its conditional expectation.

We recall that

E[Cp,n(F )|Ftk ] = Cp,n|k(F ) =
∑

α∈A⊗d
p,n|k

λα H
⊗d
α (G1, . . . , Gk)

with

λα =
1

α!
E[FH⊗dα (G1, . . . , Gk)].

Assume that we need M samples of the conditional expectations. We sample M paths
(B

(m)
t1 , . . . , B

(m)
tn , F (m)) of (Bt1 , . . . , Btn , F ) and approximate E[F |Ftk ] on the sample path with

index m by

C
(m)
p,n|k(λ̂

M) =
∑

α∈A⊗d
p,n|k

λ̂Mα H⊗dα (G
(m)
1 , . . . , G

(m)
k )

where

λ̂Mα =
1

Mα!

M∑
`=1

F (`)H⊗dα (G
(`)
1 , . . . , G

(`)
k ).

Using the strong law of large numbers, we clearly have that for every α ∈ A⊗dp,n|k, λ̂Mα converges

a.s. to λα when M goes to infinity. Then, we deduce that for any fixed m, C(m)
p,n|k(λ̂

M) converges

almost surely to C(m)
p,n|k(F ) when M →∞.
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3 The algorithm

3.1 Description of the algorithm
We aim at solving the following dynamic programming equation on the optimal policy{

τN = TN

τk = Tk1{ZTk≥E[Zτk+1
|FTk ]} + τk+11{ZTk<E[Zτk+1

|FTk ]}, for 1 ≤ k ≤ N − 1
(10)

Then, the time−0 price of the Bermudan option writes

U0 = max(Z0,E[ZT1 ]).

For all n ≥ N , consider a time grid 0 < t0 < t1 < · · · < tn = T of [0, T ], such that
{T1, . . . , TN} ⊂ {t1, . . . , tn}. We assume that limn→∞ sup0≤k≤n−1 |tk+1 − tk| = 0. For k ≤ N ,
we define σk ∈ N such that

tσk = Tk.

Even though, we do not make the dependency on n explicit, it is clear that σk is an increasing
function of n.

Now, we introduce some successive approximations of (10). First, we replace the true con-
ditional expectation E[Zτk+1

|FTk ] by the conditional expectation of the truncated Wiener chaos
expansion of Zτk+1{

τ p,nN = TN

τ p,nk = Tk1{ZTk≥Cp,n|σk (λk)} + τ p,nk+11{ZTk<Cp,n|σk (λk)}, for 1 ≤ k ≤ N − 1

where the λk’s are the coefficients of the truncated expansion of Zτp,nk+1

λk,α =
1

α!
E[Zτp,nk+1

H⊗dα (G1, . . . , Gσk)] for α ∈ A⊗dp,n|σk

The standard approach is to sample a bunch of paths of the model S(m)
T0

, S
(m)
T1

, . . . , S
(m)
TN

along with
the corresponding payoff paths Z(m)

T0
, Z

(m)
T1

, . . . , Z
(m)
TN

, for m = 1, . . . ,M . We denote by B(m)

the Brownian path used to sample S(m)
T0

, S
(m)
T1

, . . . , S
(m)
TN

. Note that B is sampled on the finer grid
t0, . . . , tn, which enables us to deal with model discretization issues. The vectorG(m)

1 , . . . . , G
(m)
n

corresponds to the increments of the Brownian motion B on the finer time grid. To compute the
τk’s on each path, one needs to compute the conditional expectations E[Zτk+1

|FTk ] for k =
1, . . . , N − 1. Then, we introduce the final approximation of the backward iteration policy, in
which the truncated chaos expansion is computed using a Monte Carlo approximation{

τ̂
p,n,(m)
N = TN

τ̂
p,n,(m)
k = Tk1{Z(m)

Tk
≥C(m)

p,n|σk
(λ̂Mk )

} + τ̂
p,n,(m)
k+1 1{

Z
(m)
Tk

<C
(m)
p,n|σk

(λ̂Mk )
}, for 1 ≤ k ≤ N − 1

8



where the λ̂Mk are computed as described in Section 2.2. For k = 1, . . . , N − 1, the vector λ̂Mk is
an element of RA

⊗d,σk
p,n and for every α ∈ A⊗d,σkp,n ,

λ̂Mk,α =
1

Mα!

M∑
`=1

Z
(`)

τ̂
p,n,(`)
k+1

H⊗dα (G(`)). (11)

Then, we finally approximate the time−0 price of the option by

Up,n,M
0 = max

(
Z0,

1

M

M∑
m=1

Z
(m)

τ̂
p,n,(m)
1

)
. (12)

The pseudo code of our approach corresponds to Algorithm 3.1.

1 Generate (G(1), Z(1)), . . . , (G(M), Z(M)) M i.i.d. samples following the law of
(Zti , Gti)1≤i≤N

2 τ̂
p,n,(m)
N ← T for all m = 1, . . . ,M

3 for k = N − 1, . . . , 1 do
4 for α ∈ A⊗dp,n|σk do
5

λ̂Mk,α =
1

Mα!

M∑
`=1

Z
(`)

τ̂
p,n,(`)
k+1

H⊗dα (G(`))

6 end
7 for m = 1, . . . ,M do
8

τ̂
p,n,(m)
k = Tk1{Z(m)

Tk
≥C(m)

p,n|σk
(λ̂Mk )

} + τ̂
p,n,(m)
k+1 1{

Z
(m)
Tk

<C
(m)
p,n|σk

(λ̂Mk )
}

9 end
10 end
11

Up,n,M
0 = max

(
Z0,

1

M

M∑
m=1

Z
(m)

τ̂
p,n,(m)
1

)

Algorithm 3.1: Dynamic programming principle using Wiener chaos expansion

Remark 3.1 From a practical point of view, we advise to consider in the money paths in the
chaos expansion as it was already noticed in Longstaff and Schwartz [2001]. Hence, the set
{Z(m)

Tk
≥ C

(m)
p,n|σk(λ̂

M
k )} is replaced by {Z(m)

Tk
> 0} ∪ {Z(m)

Tk
≥ C

(m)
p,n|σk(λ̂

M
k )} and the coefficients

9



of the chaos expansion are given by

λ̂Mk,α =
1

Mα!

M∑
`=1

Z
(`)

τ̂
p,n,(`)
k+1

1{
Z

(`)
Tk
>0
}H⊗dα (G(`)).

This modification does not change the theoretical analysis of the algorithm but improves its
numerical behavior.

Our algorithm is designed as a black box taking as inputs simulations of the Brownian motion
and the corresponding payoff process. From practical point of view, it means that you can design
the implementation in such as way that pricing a new product simply amounts to implementing
the discretization of the model and the computation of the payoff.

3.2 The parallel implementation
Algorithm 3.1 is very well suited for parallel programming even if the external loop (line 2) is a
backward time iteration and cannot be easily run in parallel. For a fixed time Tk, there are two
ways of introducing parallelism.

(i) The coefficients of the truncated Wiener chaos expansion can be computed in parallel. For
two multi-indices α, β ∈ A⊗dp,n|σk , the computations of λ̂Mk,α and λ̂Mk,β are independent and can

therefore be carried out simultaneously. The update of all the τ̂ p,n,(m)
k can also be performed

in parallel. This approach looks very promising provided that the cardinal ofA⊗dp,n|σk is large
enough, at least larger than the number of available computing resources. Note that

#A⊗dp,n|σk =

(
σk d + p

σk d

)
where we recall that σk → 0 when kto0. This approach will be efficient for large enough k
but will inevitably fail to scale when k decreases, ie for smaller dates.

(ii) Alternatively, we can use the number of Monte Carlo samples as the leverage for paral-
lelism. Since the number of samples remains fixed during the whole algorithm, the par-
allelism will be as efficient for large k as for small ones. Assume we have R computing
resources at our disposal, then each resource handles MR = M/R sample paths and runs
the sequential algorithm 3.1 on these paths except that at each time step, a reduction fol-
lowed by a broadcast are done right before updating the τ̂ p,n,(m)

k , m = 1, . . . ,M . In this
way, the chaos expansions are computed using the M paths. We precisely describe this
parallel algorithm in Algorithm 3.2.

We have followed the approach (ii) for our parallel implementation to make sure all the resources
are always fully busy, which is the least requirement to ensure a decent scalability. The compari-
son of Algorithms 3.1 and 3.2 shows that the sequential and parallel algorithms differ very little.
We even managed to merge the sequential and parallel implementations into a single code, which
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is hardly ever feasible especially when using MPI. Each computing resource samples a bunch of
paths, on which it updates the optimal stopping policy and contributes to the computation of the
λ̂Mk ’s. At each time step, we make a reduction to get the value of the λ̂Mk ’s and then a broadcast
makes the coefficients available to every resources.

1 MR ←M/R
2 In parallel do
3 Generate (G(1), Z(1)), . . . , (G(MR), Z(MR)) MR i.i.d. samples following the law of

(Zti , Gti)1≤i≤N

4 τ̂
p,n,(m)
N ← T for all m = 1, . . . ,MR

5 for k = N − 1, . . . , 1 do
6 for α ∈ A⊗dp,n|σk do
7

λ̂MR
k,α =

1

MRα!

MR∑
`=1

Z
(`)

τ̂
p,n,(m)
k+1

H⊗dα (G(`))

8 end
9 Reduce the λ̂MR

k,α to obtain λ̂Mk,α
10 Broadcast λ̂Mk,α for α ∈ A⊗dp,n|σk
11 for m = 1, . . . ,MR do
12

τ̂
p,n,(m)
k = Tk1{Z(m)

Tk
≥C(m)

p,n|σk
(λ̂Mk )

} + τ̂
p,n,(m)
k+1 1{

Z
(m)
Tk

<C
(m)
p,n|σk

(λ̂Mk )
}

13 end
14 end
15

Up,n,MR
1 =

1

MR

MR∑
m=1

Z
(m)

τ̂
p,n,(m)
1

16 end
17 Reduce the Up,n,MR

1

18 Up,n,M
0 = max (Z0, U

p,n
1 )

Algorithm 3.2: Parallel algorithm for solving the dynamic programming principle using
Wiener chaos expansion
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4 Convergence of the algorithm
We start this section of the study of the convergence by introducing some bespoke notation
strongly inspired from Clément et al. [2002].

4.1 Notation
To avoid over expanding notation, we simply write G instead of (G1, . . . , Gn) in the chaos ex-
pansions. At some points, it may be important to make precise which Brownian increments are
used in the chaos expansion. To do so, we introduce the notation

Cp,n(λ;G) =
∑

α∈A⊗dp,n

λαH
⊗d
α (G).

First, it is important to note that the paths τ p,n,(m)
1 , . . . , τ

p,n,(m)
N for m = 1, . . . ,M are identi-

cally distributed but not independent since the Monte Carlo computation of the chaos expansion
coefficients λ̂Mk mixes all the paths. We define the vector Λ of the coefficients of the successive
expansions Λ = (λ1, . . . , λN−1) and its Monte Carlo approximation Λ̂M = (λ̂M1 , . . . . , λ̂

M
N−1).

Now, we recall the notation used by Clément et al. [2002] to study the convergence of the
original Longstaff Schwartz approach.

Given a parameter ` = (`1, . . . , `N−1) in RA⊗d
p,n|σ1 × · · · × RA⊗d

p,n|σN−1 and vectors z = z1, . . . , zN
in RN and g = (g1, . . . , gn) in (Rd)n, we define the vector field F = F1, . . . , FN by{

FN(`, z, g) = zN

Fk(`, z, g) = zk1{zk≥Cp,n|σk (`;g)} + Fk+1(`, z, g)1{zk<Cp,n|σk (`;g)}, for 1 ≤ k ≤ N − 1.

Note that Fk(`, z, x) does not depend on the first k−1 components of `, ie `1, . . . , `k−1. Moreover,

Fk(Λ, Z,G) = Zτp,nk ,

Fk(Λ̂
M , Z(m), G(m)) = Z

(m)

τ̂
p,n,(m)
k

.

For k = 1, . . . , N , we also define the functions φk : RA⊗d
p,n|σ1 × · · · × RA⊗d

p,n|σN−1 → R and

ψk : RA⊗d
p,n|σ1 × · · · × RA⊗d

p,n|σN−1 → RA⊗d
p,n|σk by

φk(`) = E[Fk(`, Z,G)] and ψk(`) =
(
E[Fk(`, Z,G)H⊗dα (G)]

)
α∈A⊗d

p,n|σk
.

Note that φk and ψk actually only depends on `k, . . . , `N−1 but not on the first k− 1 components
of `.

12



4.2 Chaos approximation of conditional expectations
Proposition 4.1 For all k = 1, . . . , N , limp,n→∞ E[Zτp,nk |FTk ] = E[Zτk |FTk ] in L2(Ω).

Proof. We proceed by induction. The result is true for k = N as τN = τ p,nk = T . Assume it
holds for k + 1 (k ≤ N − 1), we will prove it is true for k.

E[Zτp,nk − Zτk |FTk ]

= ZTk

(
1{ZTk≥Cp,n|σk (λk)} − 1{ZTk≥E[Zτk+1

|FTk ]}
)

+ E
[
Zτp,nk+1

1{ZTk<Cp,n|σk (λk)} − Zτk+1
1{ZTk<E[Zτk+1

|FTk ]}|FTk
]

= (ZTk − E[Zτk+1
|FTk ])

(
1{ZTk≥Cp,n|σk (λk)} − 1{ZTk≥E[Zτk+1

|FTk ]}
)

+ E
[
Zτp,nk+1

− Zτk+1
|FTk

]
1{ZTk<Cp,n|σk (λk)}.

By the induction assumption, the term E
[
Zτp,nk+1

− Zτk+1
|FTk

]
goes to zero in L2(Ω) as p, n both

go to infinity. So, we just have to prove that

Ak = (ZTk − E[Zτk+1
|FTk ])

(
1{ZTk≥Cp,n|σk (λk)} − 1{ZTk≥E[Zτk+1

|FTk ]}
)

converges to zero in L2(Ω).

|Ak| ≤
∣∣ZTk − E[Zτk+1

|FTk ]
∣∣ ∣∣∣1{ZTk≥Cp,n|σk (λk)} − 1{ZTk≥E[Zτk+1

|FTk ]}
∣∣∣

≤
∣∣ZTk − E[Zτk+1

|FTk ]
∣∣ ∣∣∣1{E[Zτk+1

|FTk ]>ZTk≥Cp,n|σk (λk)} − 1{Cp,n|σk (λk)>ZTk≥E[Zτk+1
|FTk ]}

∣∣∣
≤
∣∣ZTk − E[Zτk+1

|FTk ]
∣∣1{|ZTk−E[Zτk+1

|FTk ]|≤|Cp,n|σk (λk)−E[Zτk+1
|FTk ]|}

≤
∣∣Cp,n|σk(λk)− E[Zτk+1

|FTk ]
∣∣

≤
∣∣Cp,n|σk(λk)− Cp,n|σk(E[Zτk+1

|FTk ])
∣∣+
∣∣Cp,n|σk(E[Zτk+1

|FTk ])− E[Zτk+1
|FTk ]

∣∣ . (13)

Note that Cp,n|σk(λk) = Cp,n|σk(E[Zp,n
τk+1
|FTk ]). The truncated chaos expansion Cp,n|σk being an

orthogonal projection on the space of random variables measurable with respect to the Brownian
increments G1, . . . , Gk, we clearly have that

E
[∣∣Cp,n|σk(λk)− Cp,n|σk(E[Zτk+1

|FTk ])
∣∣2]

≤ E
[∣∣∣E[Zτp,nk+1

|FTk ]− E[Zτk+1
|FTk ]

∣∣∣2]
≤ E

[∣∣∣E[Zτp,nk+1
|FTk+1

]− E[Zτk+1
|FTk+1

]
∣∣∣2]

where the last inequality comes from the orthogonal projection feature of the conditional expec-
tation. Then, the induction assumption for k + 1 yields that Cp,n|σk(λk)− Cp,n|σk(E[Zτk+1

|FTk ])
goes to zero in L2(Ω) as p, n go to infinity. So, the first term on the r.h.s of (13) goes to zero.
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As Cp,n|σk(E[Zτk+1
|FTk ]) = Cp,n(E[Zτk+1

|FTk ]), the second term on the r.h.s of (13) goes to
zero in L2(Ω) thanks to Proposition 2.2. Combining these two results yields the convergence
statement of the proposition. �

When the discrete time payoff process (ZTk)0≤k≤N is measurable for the filtration generated
by the discrete time Brownian increments (Gk)0≤k≤N = (σ(BtT+1

−BTi , i ≤ k))0≤k≤N , the result
of Proposition 4.1 simplifies limp→∞ E[Zτp,Nk

|FTk ] = E[Zτk |FTk ] in L2. There is no need to let
n go to infinity, it is sufficient to take n = N .

4.3 Convergence of the Monte Carlo approximation
In the following, we assume that p and n are fixed and we study the convergence with respect to
the number of samples M .

4.3.1 Strong law of large numbers

To start, we prove the convergence of the coefficients of the chaos expansions.

Proposition 4.2 Assume that for every k = 1, . . . , N , P(Zk ∈ Cp,n|σk) = 0. Then, for every
k = 1, . . . , N , Λ̂M

k converges to Λk a.s. as M →∞.

The proof of Proposition 4.2 based on the following key lemma from Clément et al. [2002]. The
assumption P(Zk ∈ Cp,n) = 0 may look surprising but a very similar assumption was already
required in [Clément et al., 2002, Lemma 3.2]. This assumption combined with the following
lemma proves that the vector field F (a, Z,G) is a.s. continuous w.r.t the expansion coefficients a.

Lemma 4.3 For every k = 1, . . . , N − 1,

|Fk(a, Z,G)− Fk(b, Z,G)| ≤

(
N∑
i=k

|ZTi |

)(
N−1∑
i=k

1{|ZTi−Cp,n|σi (bi)|≤|ai−bi|‖Cp,n|σi‖}

)

where

‖Cp,n‖ = sup
|λ|=1

|Cp,n(λ)| .

Proof (Proof of Proposition 4.2). We proceed by induction. For k = N − 1, the result directly
follows from the standard strong law of large numbers. Choose k ≤ N −2 and assume the result
holds for k + 1, . . . , N − 1 , we aim at proving this is true for k.

λ̂Mk,α =
1

Mα!

M∑
m=1

Fk+1(Λ̂M
k+1, Z

(m), G(m))H⊗dα (G(m)).
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By the standard strong law of large number, 1
Mα!

∑M
m=1 Fk+1(Λ̂k+1, Z

(m), G(m))H⊗dα (G(m)) con-
verges a.s. to 1

α!
E[Fk+1(Λ̂k+1, Z,G)H⊗dα (G)] = λk,α. Then, it is sufficient to prove that

ΨM =
1

M

M∑
m=1

(
Fk+1(Λ̂M

k+1, Z
(m), G(m))− Fk+1(Λ̂k+1, Z

(m), G(m))
)
H⊗dα (G(m))→ 0 a.s.

Then, using Lemma 4.3, we have

|ΨM | ≤
1

M

M∑
m=1

∣∣∣Fk+1(Λ̂M
k+1, Z

(m), G(m))− Fk+1(Λ̂k+1, Z
(m), G(m))

∣∣∣ ∣∣H⊗dα (G(m))
∣∣

≤ 1

M

M∑
m=1

N∑
i=k+1

∣∣∣Z(m)
Ti+1

∣∣∣( N−1∑
i=k+1

1{∣∣∣Z(m)
Ti
−C(m)

p,n|σi
(Λi)

∣∣∣≤|Λ̂Mi −Λi| ‖Cp,n|σi‖
}
)∣∣H⊗dα (G(m))

∣∣
From the induction assumption for k + 1, . . . , N − 1, we have that for i = k + 1, . . . , N − 1,
Λ̂M
i → Λi. Then, for any ε > 0, we have

lim sup
M

|ΨM |

≤ lim sup
M

1

M

M∑
m=1

N∑
i=k+1

∣∣∣Z(m)
Ti+1

∣∣∣( N−1∑
i=k+1

1{∣∣∣Z(m)
Ti
−C(m)

p,n|σi
(Λi)

∣∣∣≤ε‖Cp,n|σi‖}
)∣∣H⊗dα (G(m))

∣∣
≤ E

[
N∑

i=k+1

∣∣ZTi+1

∣∣( N−1∑
i=k+1

1{|ZTi−Cp,n|σi (Λi)|≤ε‖Cp,n|σi‖}

)∣∣H⊗dα (G)
∣∣]

where the last equality follows from the strong law of large numbers. As P(ZTk ∈ Cp,n|σk) = 0
for all k, we can let ε go to 0 to obtain that lim supM |ΨM | = 0 a.s. �

Once the convergence of the expansion is established, we can now study the convergence of
Up,n,M

0 to Up,n
0 when M →∞.

Theorem 4.4 Assume that for every k = 1, . . . , N , P(Zk ∈ Cp,n) = 0. Then, for q = 1, 2 and all
k = 1, . . . , N ,

lim
M→∞

1

M

M∑
m=1

(
Z

(m)

τ̂
p,n,(m)
k

)q
= E

[(
Zτp,nk

)q]
a.s.

Proof. Note that E[(Zτp,nk )q] = E[Fk(Λ̂, Z,G)q] and by the strong law of large numbers

lim
M→∞

1

M

M∑
m=1

Fk(Λ̂, Z
(m), G(m))q = E[Fk(Λ̂, Z,G)q] a.s.

Hence, we have to prove that

∆FM =
1

M

M∑
m=1

(
Fk(Λ̂

M , Z(m), G(m))q − Fk(Λ̂, Z(m), G(m))q
)

a.s−−−−→
M→∞

0.
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For any x, y ∈ R, and q = 1, 2, |xq − yq| = |x− y| |xq−1 + yq−1|. Using Lemma 4.3 and that
|Fk(γ, z, g)| ≤ maxk≤j≤N |zj| , we have

|∆FM | ≤
1

M

M∑
m=1

∣∣∣Fk(Λ̂M
k , Z

(m), G(m))q − Fk(Λ̂k, Z
(m), G(m))q

∣∣∣
≤ 2

1

M

M∑
m=1

N∑
i=k

max
k≤j≤N

∣∣∣Z(m)
Tj

∣∣∣ ∣∣∣Z(m)
Ti+1

∣∣∣(N−1∑
i=k

1{∣∣∣Z(m)
Ti
−C(m)

p,n|σi
(Λi)

∣∣∣≤|Λ̂Mi −Λi| ‖Cp,n|σi‖
}
)

Using Proposition 4.2, Λ̂M
i → Λi for all i = 1, . . . , N − 1. Then for any ε > 0,

lim sup
M

|∆FM |

≤ 2 lim sup
M

1

M

M∑
m=1

N∑
i=k

max
k≤j≤N

∣∣∣Z(m)
Tj

∣∣∣ ∣∣∣Z(m)
Ti+1

∣∣∣(N−1∑
i=k

1{∣∣∣Z(m)
Ti
−C(m)

p,n|σi
(Λi)

∣∣∣≤ε‖Cp,n|σi‖}
)

≤ 2E

[
N∑
i=k

max
k≤j≤N

∣∣ZTj ∣∣ ∣∣ZTi+1

∣∣(N−1∑
i=k

1{|ZTi−Cp,n|σi (Λi)|≤ε‖Cp,n|σi‖}

)]

where the last inequality follows from the strong law of larger numbers as E[maxk≤j≤N
∣∣ZTj ∣∣2] <

∞. We conclude that lim supM |∆FM | = 0 by letting ε go to 0 and by using that for every
k = 1, . . . , N , P(Zk ∈ Cp,n) = 0. �

The case q = 1 proves the strong law of large numbers for the algorithm. Consider-
ing that all the paths are actually mixed through the chaos expansion, it is unlikely that
the estimators 1

M

∑M
m=1 Z

(m)

τ̂
p,n,(m)
k

for k = 1, . . . , N are unbiased. We recall that Up,n,M
k =

1
M

∑M
m=1 Fk(Λ̂

M , Z(m), G(m)) and Zτp,nk = Fk(Λ, Z,G). Then,

E
[
Up,n,M
k

]
− E

[
Zτp,nk

]
= E

[
1

M

M∑
m=1

(
Fk(Λ̂

M , Z(m), G(m))− Fk(Λ, Z(m), G(m))
)]

= E
[
Fk(Λ̂

M , Z(1), G(1))− Fk(Λ, Z(1), G(1))
]

where we have used that all the random variables have the same distribution. Hence, the bias of
our estimator is directly linked to the gap between Λ̂M and the true value Λ. Let p < p′, then
for any α ∈ A⊗dp,n, α ∈ A⊗dp′,n and the corresponding value λ̂Mk,α is the same for p and p′. This
means that when p increases, the length of Λ̂M increases with the first components remaining
unchanged. Therefore,

∣∣∣Λ̂M − Λ
∣∣∣ increases with p, which suggests that, for a fixed M , the bias

also increases with p. Moreover, it was already noted in Glasserman and Yu [2004] that for a
fixed number of samples M , the mean square error on the coefficients of the regression explodes

with the number of regressors. In our framework, this means that, for a fixed M, E
[∣∣∣Λ̂M − Λ

∣∣∣2]
will blow up with p.
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4.3.2 Discussion on the rate of convergence

From Theorem 4.4, we deduce that the standard empirical variance estimator applied to our
algorithm converges. For every k = 1, . . . , N ,

lim
M→∞

1

M

M∑
m=1

(
Z

(m)

τ̂
p,n,(m)
k

)2

−

(
1

M

M∑
m=1

Z
(m)

τ̂
p,n,(m)
k

)2

= Var(Zτp,nk ) a.s. (14)

The convergence rate analysis carried out in Clément et al. [2002] applies steadily to our ap-
proach. Then, under suitable assumptions, the vector(

√
M

(
1

M

M∑
m=1

Z
(m)

τ̂
p,n,(m)
k

− E[Zτp,nk ]

))
k=1,...,N

(15)

converges in law to a normal distribution with mean zero. As noted in Clément et al. [2002],
determining the asymptotic variance directly from the data generated by a single run of the
algorithm is almost impossible. From the proof of the central limit theorem for their algorithm,
we have, when M goes to infinity, in the L2 sense

√
M

(
1

M

M∑
m=1

Z
(m)

τ̂
p,n,(m)
k

− E[Zτp,nk ]

)

=
√
M

(
1

M

M∑
m=1

Z
(m)

τ
p,n,(m)
k

− φk(Λ)

)
+
√
M(φk(Λ̂

M)− φk(Λ)). (16)

Remember that Z(m)

τ
p,n,(m)
k

= Fk(Λ, Z
(m), G(m)). By the standard central limit theorem,

√
M

(
1
M

∑M
m=1 Z

(m)

τ
p,n,(m)
k

− φk(Λ)

)
converges in law to a normal distribution with variance

Var(Zτp,nk ). Then, using the empirical variance of the estimator as a measurement of the algo-
rithm converge actually misses part of the variance since from (14), we know that the empirical
variance only takes into account the first term on the r.h.s of (16).

5 Numerical experiments
In this section, we carry out several numerical experiments using our algorithm. In the different
tables, the “Price” column corresponds to the value of Up,n,M

0 averaged over 25 independent runs
of the algorithm and the “Variance” column is the variance of Up,n,M

0 computed on these 25
independent runs. The first two experiments, which deal with put options, enable us to compare
the accuracy of our method with the standard Longstaff Schwartz algorithm, whose price is
reported in the “LS” column. Then, we consider more sophisticated truly path dependent options
for which the use of the standard Longstaff Schwartz algorithm becomes prohibitive because
of the well-known curse of dimensionality. In all the examples, we use N = n, ie we do not
subdiscretize the grid given by the exercising dates to compute the chaos expansions.
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5.1 A put option in the Heston model
We start with a put option in the Heston model to assess the accuracy of our algorithm. We recall
the definition of the Heston model

dSt = St(rtdt+
√
σt(ρdW

1
t +

√
1− ρ2dW 2

t ))

dσt = κ(θ − σt)dt+ ξ
√
σtdW

1
t .

d p M Price Variance
1 2 1E5 1.67631 4.07299e-05
1 2 1E6 1.67559 8.22897e-06
1 2 1E7 1.67513 3.62552e-07
1 3 1E5 1.70884 6.51323e-05
1 3 1E6 1.6976 8.60362e-06
1 3 1E7 1.69588 7.54025e-07

Table 1: Put option in the Heston model with S0 = K = 100,
T = 1, σ0 = 0.01, ξ = 0.2, θ = 0.01, κ = 2, ρ = −0.3, r = 0.1,
N = 20

For the put option used in the numerical experiments of Table 1, the Longstaff Schwartz
algorithm gives 1.74 using degree 3 polynomials for the regression and 106 samples. Note that
as we only consider in the money paths for the regression step, the payoff function is actually a
linear function of the underlying asset — a degree one polynomial. So there is no need to add the
payoff function to the regression basis as for more sophisticated options. Obviously, we consider
both the asset price and the volatility process as regression factors.

Clearly, we see in the figures of Table 1 that the number of Monte Carlo samples has very
little impact on the price, unlike the degree of the chaos approximation. The prices obtained with
p = 3 are within 3% of the Longstaff Schwartz price.

5.2 Examples in the Black Scholes model
The d−dimensional Black Scholes model writes for j ∈ {1, . . . , d}

dSjt = Sjt (rtdt+ σjLjdBt)

where B is a Brownian motion with values in Rd, σ = (σ1, . . . , σd) is the vector of volatilities,
assumed to be deterministic and positive at all times and Lj is the j-th row of the matrix L defined
as a square root of the correlation matrix Γ, given by

Γ =


1 ρ . . . ρ

ρ 1
. . . ...

... . . . . . . ρ
ρ . . . ρ 1


where ρ ∈]− 1/(d− 1), 1] to ensure that Γ is positive definite.
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5.2.1 A put basket option

We consider a put basket option with payoff(
K −

d∑
i=1

ωiS
i
T

)
+

,

which can be priced using the classical Longstaff Schwartz algorithm and therefore enables us to
test the accuracy of our approach in a multidimensional setting. We test our algorithm in dimen-
sion 5 and report the results in Table 2 for different numbers of samples M and different orders p
of chaos expansion. The values reported in the “LS” column correspond to the prices computed
with the Longstaff Schwartz algorithm with 106 samples and using as regression functions the
set of polynomials of total order 3 completed with the payoff function.

We notice that an expansion of order p = 2 already gives a price fairly close to the “LS” one
for a quite reasonable computational time. Increasing p to 3 improves the accuracy only when
the number of samples M is also increased. This behaviour highlights the intuition that, for a
fixed M , the bias increases with p. We refer the reader to the discussion following Theorem 4.4
for more information on this point. Hence, we advise to increase both p and M at the same time.

T K N p M Price Variance LS
3 100 20 2 5E4 4.01793 0.00039217 4.07
3 100 20 2 1E5 4.00769 0.000285113
3 100 20 2 1E6 3.99801 2.14924e-05
3 100 20 3 5E4 4.2544 0.000411596
3 100 20 3 1E5 4.1965 0.000242559
3 100 20 3 1E6 4.06587 2.18969e-05
3 90 20 2 5E4 1.29423 0.000130733 1.32
3 90 20 2 1E5 1.27274 0.000112594
3 90 20 2 1E6 1.25166 2.24252e-05
3 90 20 3 5E4 1.52426 8.83669e-05
3 90 20 3 1E5 1.49847 0.000104792
3 90 20 3 1E6 1.31845 2.72347e-05

Table 2: Basket option with r = 0.05, d = 5, σi = 0.2, ωi = 1/d,
Si0 = 100 and ρ = 0.2.

5.2.2 Moving average option

For this example, we consider a one dimensional Black Scholes model, d = 1. We consider a
moving average option with payoff Zt = (St −Xt)+ for t ≥ δ + ` with

Xt =
1

δ

∫ t−`

t−δ−`
Sudu
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where δ > 0 is the length of the averaging window and ` is a delay.
We approximate the continuous time integral by an arithmetic average and compare our

results with the benchmark prices computed by Bernhart et al. [2011]. Let Nδ = δ
T
N and

N` = `
T
N . For every Ti ≥ δ + `, we approximate Xti by

XN
Ti

=
1

Nδ

i−N`∑
j=i−Nδ−N`+1

STj .

The benchmark prices reported in the “LS” column come from Bernhart et al. [2011] and were
computed using the standard Longstaff Schwartz algorithm with regression factors at time Ti
given by (

STi−Nδ−N`+1
, STi−Nδ−N`+2

, . . . , STi−N`

)
.

This leads to a regression problem with Nδ variables, which makes it very CPU demanding.
While our approach may also look like a multi variate regression, the main difference lies in
the choice of an orthogonal basis function which turns the computation of the coefficients of
the regression from a linear system into a bunch of independent Monte Carlo computations.
Although this seems a minor change, it is indeed a huge improvement as it breaks the bottleneck
of the standard Longstaff Schwartz algorithm and makes it easy to parallelize.

We run two series of tests on the moving average option, which is a typical example of a true
path-dependent option in the sense that the size of the underlying Markov process X (see (5))
is basically the number of exercising dates. We report in Table 3 the results for the non delayed
option, ie N` = 0 and in Table 4 the results for the option with delay. When there is no delay
(Table 3), we are able to recover the prices computed with the Longstaff Schwartz method using
the full list of regressors. Our results are already very accurate for a chaos expansion of order
p = 2. To really benefit from a more accurate chaos expansion of order p = 3, one also needs to
increase the number of samplesM to cut down the bias. Note the price> 4.268 in the “LS-price”
column for w = 0.04. In Bernhart et al. [2011], they did not succeed in computing the price of
this option using the Longstaff Schwartz method using the full list of regressors, so they only
provided a non Markovian approximation 4.268, which is always below the true price. Hence,
the value 4.30329 obtained for p = 3 and M = 106 does definitely make sense.

5.3 Scalability of the parallel implementation
The scalability tests were run on a BullX DLC supercomputer containing 3204 cores. The code is
written in C++ using the OpenMPI library to handle the communication and the PNL library Le-
long [2007-2017] to compute the chaos expansions in a generic way for any order p. We report
in Table 5 the evolution of the efficiency with respect to the number of resources used. We recall
that the efficiency is defined as the ratio between the sequential running time and the product
of the parallel running time times the number of resources. Clearly, the efficiency takes values
between 0 and 1 and the closer to one, the better. In the example used for the scalability study,
we managed to cut down the computational time from an hour and a half to 14 seconds while
maintaining the efficiency at almost 0.7, which represents an astonishing improvement in terms
of scalability.
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δ p M Price Variance LS-Price
0.02 2 1E5 3.53118 8.96861e-06 3.531
0.02 2 1E6 3.53863 9.73349e-07
0.02 3 1E5 3.45177 7.04968e-06
0.02 3 1E6 3.52758 7.12395e-07
0.04 2 1E5 4.30318 0.000173201 > 4.268
0.04 2 1E6 4.31781 8.8221e-07
0.04 3 1E5 4.18467 0.000130958
0.04 3 1E6 4.30239 1.10557e-06

Table 3: Moving average option with S0 = 100, σ = 0.3, r =
0.05, T = 0.2, N = n = 50 and ` = 0 (no delay).

p M Price Variance
2 5E4 6.62011 0.000751472
2 1E5 6.67733 0.000256044
2 1E6 6.74565 2.00404e-05
3 5E4 6.28484 0.000425202
3 1E5 6.36383 0.000314247
3 1E6 6.65446 8.01606e-06

Table 4: Moving average option with S0 = 100, σ = 0.3, r =
0.05, T = 0.2, N = n = 50, ` = 0.08 (N` = 20) and δ = 0.02
(Nδ = 5).

#Procs Time (sec.) Efficiency
1 4768 1
2 2402 0.99
4 1234 0.97

16 353 0.84
32 173 0.86
64 89 0.84

128 47 0.79
256 24 0.76
512 14 0.68

Table 5: Scalability of the parallel algorithm on the moving aver-
age option with delay used of Table 4 with M = 106 and p = 3.
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6 Conclusion
In this work, we have presented a new algorithm to price Bermudan option in non Markovian
settings: the non Markovian feature can either come from the truly path dependent feature of the
option or from the use of rough volatility models for instance. Our algorithm makes it easy to
design a generic American option pricer, actually not more difficult than for a European option
pricer. Although this may sound a bit ambitious, our algorithm is designed as a black box taking
as inputs sample paths of the underlying multi-dimensional Brownian motion and the associated
samples of the payoff process, which is basically the same as for European options. The smart
design of our algorithm combined with orthogonality feature of the Wiener chaos expansion
leads to an embarrassingly parallel algorithm, in which each node samples a bunch of paths,
on which it updates the optimal stopping policy. Each node contributes to the computation of
the λ̂Mk ’s and at each time step, we make a reduction to get the value of the λ̂Mk ’s and then a
broadcast makes the coefficients available to everyone. The parallel implementation requires
very few communications and therefore shows an impressive efficiency.
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