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Original Article
Abstract
Purpose: The purpose of this study is to validate a new technique in radiotherapy,the medical physicist needs to evaluate the dosimetric benefit and the risk oftoxicity before integrating it in the clinical use. Methods: We validate a sounddecision tool based on bootstrap method to help the radio oncologist and themedical physicist to usefully analyze the dosimetric data obtained from small-sizedsamples, with few patients. Statistical investigation principles are presented in theframework of a clinical example based on 36 patients with 6 different cancer sitestreated with radiotherapy. For each patient, two treatment plans were generated.In plan 1, the dose was calculated using Modified Batho's (MB) density correctionmethod integrated with pencil beam convolution (PBC) as type (a) algorithm. Inplan 2, the dose was calculated using Anisotropic Analytical Algorithm (AAA) astype (b) algorithm. The delivered doses in monitor units (MUs) were comparedusing the two plans. Then, the bootstrap method was applied to the original dataset to assess the dose differences and evaluate the impact of sample size on the95% confidence interval (95%.CI). Shapiro-Wilks and Wilcoxon signed-rank testswere used to assess the normality of the data and determine the p-value. Inaddition, Spearman’s rank test was used to calculate the correlation coefficientbetween the doses calculated with both algorithms. Results: A significantdifference was observed between AAA and MB for all tested radiation sites.Spearman’s test indicated a good correlation between the doses calculated withboth methods. The bootstrap simulation with 1000 random samplings can be usedfor small populations with n = 10 and provides a true estimation. Conclusion: onemust be cautious when implementing this method for radiotherapy: the datashould be representative of the real variations of the cases and the cases should beas homogeneous as possible to avoid bias of over/under estimation of the results.
Keywords: Bootstrap method, Delivered dose, Radiotherapy

1. IntroductionThe main challenge in radiation therapy is to obtain thehighest probability of tumor control or cure with theleast amount of morbidity and toxicity to normalsurrounding tissues. Currently, numerous differentmachines and techniques are used to irradiate thetumors either by photons or by protons asthree–dimensional radiation therapy (3DRT),intensity-modulated radiation therapy (IMRT),tomotherapy and volumetric-modulated arc therapy, etc.On the other hand, the advance in technology provides

successive generations of Treatment Planning Systems(TPS), which include more accurate dose calculationalgorithms. The new advanced techniques allowedoptimizing the accuracy, the security and the clinicaloutcome of treatments. However, implementing theadvanced techniques in photon or proton radiotherapyneeds two steps. The first step: the medical physicistsmust assess the installation of the equipment usingnational and international recommendations andassurance quality protocols. The second step is to check
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the dosimetric outcome of the treatment with a smallgroup of patients “n”. If the step 2 is ignored, theexpected clinical outcome could be endangered.Therefore, the physicists should provide the radiationoncologist, a tool allowing him to assess any significantalteration of the outcome and to estimate theprescription modifications associated with theimplementation of the new treatment procedure.Moreover, the validation of a decision tool is animportant component of quality assurance forradiotherapy. Practically, the assessment of benefit /risk of a new technology in a radiotherapy departmentbased on a small number of patients without too muchtime and costs investment would be welcomed. In thisstudy, we promote the use of bootstrap simulation usingsmall sample sizes to simulate a larger population andadequately estimate the dosimetric alterations betweentwo different methods of treatment planning.1,2 A rathersimple example was carried out using monitor units(MUs) comparison to illustrate and validate the methodto help clinicians to make a decision based on statisticalanalysis of the differences. Consequently, the examplepresented here does not aim at evaluating the newtreatment itself or estimating a benefit / risk balance,since treatment plan quality assessment is based ondose distribution in target and organs at risks as well asdose homogeneity. The simulation is done using 1000random samplings derived from an original small groupof patients n = 6. We present a step-by-step procedurefor the bootstrap simulations. The procedure ispresented using real data based on two generation ofdose calculation algorithms. Finally, we discuss thequestion of whether the medical decision in radiationoncology can be taken based on so few patients.

2. Methods and Materials
2.1. Clinical cases and dataThis study is based on 36 patients including 6 cancersites. These cases were chosen to cover the full range ofthe different types of cancer radiotherapy, namely: lung,breast, spine, head & neck, brain and pelvis. Table 1shows the site locations, the target volume in cm3, theprescribed dose and the number of beams (mj). For eachpatient, two treatment plans were generated usingexactly the same beam configuration. In plan 1, the dosewas calculated using the Modified Batho's (MB) densitycorrection method in combination with Pencil BeamConvolution algorithm. In plan 2, the dose wascalculated using Anisotropic Analytical Algorithm (AAA).Both algorithms were integrated in Eclipse® TPS (VarianMedical Systems, Palo Alto, CA).3-8 For patients treatedwith 3DRT, the dose in plans 1 and 2 were optimized toprotect the healthy organs using respectively static filterwith MB and Enhanced Dynamic Wedge (EDW) withAAA. For patients treated with IMRT, the multi leafcollimators were used in plans 1 and 2 to protect theorgans at risks. The calculated dose in MUs for each planwas used to illustrate and validate the bootstrapsimulation method with real data.
2.2. Medical decision proceduresThe implementation and validation of the bootstrapsimulation consists of 4 successive steps including theassessment of dose difference, estimating 95%.CI withbootstrap simulation, evaluate the fluctuation of CI andfinally estimate the minimal number of cases to validatea significant difference, as shown in Figure 1.

Table 1: Report of tumor sites, the target volume in cm3, the prescribed dose, n and mj present respectively the number ofpatients and beams that were used for each case.Cancer sitesn = 6 Target volume[cm3]average ± SD Prescribed dose [Gy]average ± SD Techniques Beam numbermj
Lung 394 ± 194 58.8 [50.8 - 66] 3DRT 34Breast 1059 ± 248 47.2 [40 - 50.6] 3DRT 38Spine 465.4 ± 221.6 10 [8 - 20] 3DRT 19Head & neck 228.2 ± 135.9 56.9 [44.0 - 69.9] IMRT 34Brain 318.2 ± 339.1 57 [54 - 66] IMRT 30Pelvis 276.7 ± 249.3 65.3 [52.7 - 76] IMRT 42
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Figure 1: Comprehensive medical decision procedures based on bootstrap simulation to evaluate a difference between twotreatment plans and make a decision when differences are significant.
2.3. Assessment of dose difference and statistical
analysisInitially, the dose difference (Dose) in % was calculatedbetween plan 1 and plan 2 using the following formula:

Dose % = (DAAA – DMB) x 100/DAAA (1)Then the 95% Confidence Interval (95%.CI) wascalculated for each cancer sites with sample size n = 6patients:CI = µ ± 1.96 x σ (2)Where: µ is the average deviation and σ is standarddeviationsThe factor 1.96 was used assuming that the data arenormally distributed. Shapiro-Wilks test was used tocheck the normality of the data from dose difference andcomputing the statistic value (W) and p-value. Thus, p <0.05 means that the data are not normally distributedand that the null hypothesis H0 can be rejected; and p >0.05 means that the data are normally distributed andthat the null hypothesis H0 cannot be rejected. Inaddition, the correlation between the doses calculatedby the two algorithms was assessed using Spearman’srank test.9,10

2.4. Data expansion to estimate the 95%
confidence interval (95%.CI)the bootstrap method uses randomly chosen samples,iteratively drawn with replacement from the originaldata set, i.e., each value can be drawn several times inthe same sample.1 The basic idea is to artificially expandthe sampling from a limited body of data in order toincrease the available information and to make a betterestimate of the statistical parameters of the representedpopulation, for instance a 95% confidence interval of agiven parameter, as shown in Figure 2. In this study, theCI was firstly evaluated using equation 1. Then the raw95%.CI was simulated for each cancer site by varying thebeam number from a minimum of 5 to mj. For everysample size, m, 1000 random bootstrapped sampleswere drawn. Specifically, for the first round, m = 5beams were selected from the data we wanted tocompare. Then for the second round, m = 6 beams wereselected, and so on up to mj.
2.5. Analysis of 95%.CI residual fluctuationsThe purpose is to assess if the 95%.CI obtained at theend the first step remains "stable" for any additionalround of bootstrap for n+1 to n+j, as shown in Figures 1and 2. In fact, one can expect a small variability of theresults, when new data are introduced, due to thevariability of physical characteristics and anatomy ofeach patient. The impact has to be integrated in theresults in order to readjust or to constrain the CI if theobserved results with the new case alter the original CI.
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Figure 2: Principle of bootstrap simulation with successive rounds of data expansion according to the increase number ofdrawn data in the sampling from m = 5 to mj.
2.6. Estimate the minimal number of cases to
validate a significant differenceAfter having collected the data and computed their95%.CI, we wanted to know what could be the smallestnumber of cases to compute to demonstrate a significantdifference. Obviously, there is no way to guess thatbefore having a certain number of cases. Nevertheless,when having the n cases one can assess and evaluate thep-value. To solve this, we propose the followingapproach. For every m, the mean p-value across the1000 random samples was computed using Wilcoxonsigned-rank test. Then the p-values as function of eachsample size was plotted to show the minimum samplesize needed to have a significant difference.
3. Results
3.1. Assessment of dose differenceTable 2 summarizes the dosimetric and statisticalresults for MUs for each cancer site. This shows clearlythat for lung, breast and spine, the MUs calculated withAAA method with EDG was lower than that calculatedwith MB method. The results of the Wilcoxon testshowed that there was a significant difference betweenplan 1 with MB and plan 2 with AAA for all site apartfrom brain. The significant difference for MUs is due tothe change of filter type when using AAA with EDW. Thedata showed a strong correlation between the twomethods with r > 0.85 for all sites. Table 3 presents theresults of the Shapiro-Wilk test, as well as skewness fordose difference. The Shapiro-Wilk test shows a

significant deviation from normality. Figure 3 shows theobserved dose difference compared with expected datafor normal distribution using Shapiro-Wilk test. Visualinspection of Figure 3 confirms the results presented inTable 3.
3.2. Bootstrap simulations

3.2.1. Estimate the confidence intervalTable 4 shows the statistical results for each cancer sitewith n = 6 patients using bootstrap of 1000 replicates,simulated by varying sample size from m = 5 to mj.Figure 4 shows bootstrap distributions of dosedifference based on 1000 replications, for sample sizesof m = 5, 10, 15, 20 and 38 for breast cancer. It is clearthat using higher sample sizes data distribution is closerto normality.
3.2.2. Fluctuation of confidence intervalTable 5 shows the statistical results for each cancer sitewith the n = 5 and n = 6 using bootstrap of 1000replicates. Figure 5 shows bootstrap distributions ofdose difference and cumulated average difference basedon 1000 replications, for n = 5 patients compared to n =6 patients for lung cancer. It can be seen that the averagedifference at probability of 50 % was -18 % using n = 5or n = 6. However, the lower and upper confidenceinterval was changed. The red-circled landmarks inFigure 6 indicate the fluctuation interval presentinglower and upper limits of dose difference.
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3.2.3. P-valuesWe observed a significant difference between MB andAAA for all cancer sites with p < 0.05, a part from brain.Figure 6 shows the computed mean p-values for eachsample size for all cancer sites. It can be seen that withm close to 10 beams, we can observe a significantdifference between MB and AAA for lung and spine.However, with m > 25 we can also observe a significant

difference for head & neck and pelvis, but we cannotconclude that there is a significant difference for braineven with m = 30. This is due to the lower dosedifference, which was < 2%. The results obtained fromFigure 6 with bootstrap simulation confirm the observedresults in table 2.
Table 2: The dosimetric and statistical results for ΔMUs for each cancer site.Cancer sites ΔMUsµ ± σ 95%.CIEquation 2 r-value p-value
Lung -21.3 ± 20.7 [- 61.8 ; 19.3] 0.90 < 0.001Breast -11.5  ± 33.2 [- 59.1 ; 36.0] 0.92 0.002Spine -22.6 ± 36.0 [-87.7 ; 42.5] 0.85 0.003Head & neck 2.0 ± 15.0 [-27.8 ; 31.8] 0.96 0.01Brain -0.2 ± 0.7 [- 1.7 ; 1.2] 0.99 0.3Pelvis 0.84 ± 1.5 [-2.1 ; 3.7] 0.99 0.001

Table 3: The results of the Shapiro-Wilk test, as well as skewness for dose difference. No means that the data are not normaldistributions.Cancer sites W-statistic p-value Normality Skewness
Lung 0.9 0.01 No -0.6Breast 0.6 < 0.001 No -2.2Spine 0.7 < 0.001 No -1.1Head & neck 0.8 < 0.001 No 0.3Brain 0.9 0.004 No -1.0Pelvis 0.9 0.03 No 0.3Lung 0.9 0.01 No -0.6

Table 4: The statistical results of confidence intervals for each cancer site. The data were derived from 6 patients andbootstrap of 1000 replicates simulated by varying sample size from m = 5 to m j.Cancer sites 95%.CIm = 5 95%.CIm = 10 95%.CIm = 15 95%.CIm = 20 95%.CIm = mjLung -39.7 ; -4.3 -34.3 ; -8.5 -31.1; -11.3 -30.5 ; -12.3 -28.0; -14.7Breast -30.9 ; 9.3 -25.9 ; 2.7 -23.2 ; 0.7 -21.7 ; -9.3 -18.9 ; -3.6Spine -51.4 ; 5.9 -43.2; -1.9 -39.6 ; -6.3 NA -37.3 ; -8.2Head & neck -10.7 ; 15.7 -6.8 ; 11.2 -5.5 ; 9.5 -4.9 ; 8.9 -2.8 ; 6.8Brain -9.2 ; 0.4 -0.7 ; 0.2 -0.6 ; 0.1 -0.6 ; 0.06 -0.5 ; 0.01Pelvis -0.5 ; 2.1 -0.1; 1.2 0.06 ; 1.6 0.2 ; 1.5 0.4 ; 1.3
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Figure 3: Representation of the observed dose differences compared with expected z-score obtained according to the normaldistribution using Shapiro-Wilk test.
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Figure 4: Bootstrap distributions of dose difference based on 1000 replications, for sample sizes of m = 5, 10, 15, 20 and 38for breast cancer.
Table 5: The statistical results of 95% confidence intervals for each cancer site. The data were derived with bootstrap of1000 replicates from n = 5 and n = 6 patients.Cancer sites 95%.CIn = 5 95%.CIn = 6Lung -30.1; -13.6 -28.0; -14.7Breast -22.2 ; -4.7 -18.9 ; -3.6Spine -39.1 ; -5.2 -37.3 ; -8.2Head & neck -3.6 ; 8.7 -2.8 ; 6.8Brain -0.5 ; 0.05 -0.5 ; 0.01Pelvis 0.4 ; 3.3 0.4 ; 1.3
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Figure 5: Bootstrap distributions of dose difference based on 1000 replications, for n = 5 compared to n = 6 patients for lungcancer. The red-circled landmarks indicate the fluctuation interval presenting lower and upper limits of dose difference.
4. DiscussionThe bootstrap is a computer-based method proposed byEfron et al, 1993 to simulate the sample distributionaround a meaningful statistic value (e.g., mean, median,variance, correlation coefficient) by generating multiplerandom samples with replacement.1,2 Recently, thismethod was implemented in radiation oncology toestimate toxicity, setup errors, organs motions or cost,etc.11-13 In this study, bootstrap simulation was usedwith two aims; i) to estimate the 95%.CI for smallsample size; ii) to estimate the minimum sample sizethat would have been necessary to observe a significantdifference between two algorithms MB and AAA. It isobvious that the use of EDW filter with AAA calculationfor lung, breast and spine with 3DRT had a significantimpact on MUs when using the same beam configurationwith another filter and a different calculation algorithm.Nevertheless, this is presently used just as an example togenerate a set of differential data to demonstrate astatistical procedure to support a medical decision.However, in routine activity rather large differences arenaturally observed depending on cancer site, anatomyand beam orientations.

4.1. Relationship between data normality and
95%.CIRegarding normality test, we observed that the datawere non-normally distributed for all cancer sites. Thus,the 95%.CI based on equation 1, assuming a normaldistribution, was overestimated for all cancer sites, asshown in Table 2. However, when simulating the datawith a random sample of 1000 observations, thedistribution mean appears to be smaller compared tothe original estimation with n = 6, as is the estimated95%.CI. This is due to the fact that the original body ofdata was too small to have a normal distribution. Thisexplains why the 95%.CI values presented in Table 2 donot estimate the true interval limits of dose differences.Therefore, the bootstrap simulation allows forquantifying the difference using 1000 random samples,while avoiding the observed over/underestimation ofdose difference. Before estimating the 95%.CI, oneshould test whether the data are normally distributed toavoid the wrong conclusion. For example, assuming anormal distribution for data, as shown in Table 2, the95%.CI for lung, breast and spine spans zero. One couldtherefore conclude that there is no significant difference.However, using normality test the p-value is < 0.05demonstrating that data are not normally distributed.
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Figure 6: Representation, using the patient’s data of the present study, of p-values estimated by bootstrap procedure,indicating the average p-value for each sample-sizes going from 5 to mj. The red dashed line corresponds to a significancethreshold of 0.05.
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4.2. Validation of bootstrap simulation methodWe observed significant differences between MB andAAA for lung and spine. To assess whether bootstrapsimulation allows for predicting significant differencesfor small sample size, a simulation was performed tocalculate p-value as a function of sample size. The meanp-value calculated with 1000 random samples confirmthe observed results, as shown in Figure 7. It also can beseen from Tables 4 and 5 that for n = 5 or n = 6, the95%.CI values were closer to the “true” CI based on allfields mj for each cancer site. Thus, the results derivingfrom 1000 random provide evidence that the simulationestimates a valid 95%.CI.The use of bootstrap method can prevent the over orunder estimation of 95% CI as mentioned above. Thecomparison of 95%.CI estimated from m = 5 to mjshowed a considerable difference, as expected, due tothe anatomical variability between patients, especiallyfor lung, breast and spine cancer sites.The results from this study confirm that a carefulanalysis should be taken when using bootstrapsimulation in radiotherapy especially for large tissueheterogeneity like for lung and breast. The chest cancerprovides heterogeneous data due to variation of lungdensity from patient to patient. The realistic exampletaken in this study, which is based on the integration ofmore advanced algorithm AAA than the formeralgorithm MB, shows the complexity and the realdifficulty when integrating advanced technology inradiotherapy. On the other hand, this also shows that thephysicists and radiation oncologists should be cautiouswhen integrating new technologies. However, theinternal validation of estimated 95%.CI could detect theerroneous predictions of dose difference between bothalgorithms. This is a very important step thatdemonstrates the advantage of bootstrap simulation tocumulate the observed results and readjust the CI. Thismeans that the use of new data derived from newpatients, not included in the initial set of data, are able toprobe the obtained CI, to check this result and to feed anew cycle of calculation of CI to more accurately predictdosimetric metrics in radiotherapy.
4.3. Assessing the radiotherapy outcomes using
bootstrap analysisThe bootstrap simulation method can be used to providea statistical analysis of the uncertainty in the estimateddose response relation.11, 14 More recently Chaikh, et al.2016, proposed the use of bootstrap simulation toestimate the correlation between normal tissuecomplication probability (NTCP) and physical lungdensity. They showed that the bootstrap simulation with1000 random samplings may have under/overestimatethe correlation using small data from dose volumehistograms (DVH). However, bootstrap simulation canbe used to re-estimate the value of radiobiologicalparameters setting “clinical data” for each

radiobiological model, such as Lyman-Kutcher andBurman (LKB), equivalent uniform dose (EUD), etc. Themore recent study showed that the initial radiobiologicalparameters can introduce a considerable over or underestimation to NTCP or tumor control probability (TCP)using the advanced algorithm models, such as AAA andAcuros XB (AXB) modes: dose-to-water ordose-to-medium. In addition, a shift for theradiobiological parameters has been proposed.15 Thenew radiobiological parameters with uncertainties canbe evaluated and presented as a 95%.CI using bootstrapsimulation method. In this case, the data as inputincludes DVH and initial radiobiological parameters forNTCP and TCP, as shown in Figure 7.
4.4. Advantage and limits of bootstrap simulation
in radiotherapyThe challenge is the small number of patient (n = 10)available to produce robust 95%.CI able to sustain adecision. The bootstrap procedure provides a solutionfor this. By enlarging the number of data, one can seethat the limits of the CI are altered as shown in table 4.When the zero is excluded of the 95% CI, one canconclude that a significant difference exists, thus makingpossible truly motivated medical decision. According tothe type of data and the clinical situation, the possibilityto reach a significant difference will need differentnumber of cases as shown by the decreasing of p-valueaccording to the case number as shown by Figure 6. Thisnumber is rather small when differences are large as forlung and conclusion can be drawn with a small numberof cases. Of course, it is the contrary for small differenceas for pelvis and p < 0.05 is even not reached whenprobably no differences are existing as for brain. Thebootstrap simulation has certain advantages and limits.First, this method can be used for small sample size.Moreover, using a large sample size, the bootstrapmethod should provide an even better estimation.Second, this method can be rapidly used in radiotherapy.If the simulation is properly implemented, it providesmore accurate statistical values and estimates alldosimetric parameters with small cohorts of patients.Third, the simulation is fast and needs a minimum ofassumptions and there are no major requirements.Fourth, the bootstrap can be used for parametric andnon-parametric tests. Fifth, it can be usedretrospectively to estimate the needed sample size toobserve a significant difference, as presented in thisstudy. However, one of the disadvantages of this methodis that if the data does not represent the realobservations, it will over/under estimate the results. Inthis case, one solution that was proposed in this study isto cumulate the data and readjust the confidenceinterval. However, a sample size larger than 10 isneeded to provide a good estimation, especially if thedata are heterogeneous and not normally distributed.



Volume 5 • Number 1 • 2017 International Journal of Cancer Therapy and Oncology 11
www.ijcto.org

© Chaikh et al. ISSN 2330-4049

Figure 7: Estimation of clinical data for radiobiological models using bootstrap simulation method.
5. ConclusionIn this study, we illustrate a bootstrap analysis toestimate the 95%.CI for dose difference from pairedobservations. To use this method in radiotherapy, anexample was used by comparing the delivered dose inMUs calculated with two dose calculation algorithms MBas type (a) and AAA as type (b). The bootstrapsimulation can be used to generate big data from smallnumber of DVH, since to validate a radiobiological modelpredicting tumor control and toxicity, one need a bigdata and too much time. Using this method, one is ableto simulate the statistical values as mean, variance,correlation, confidence interval, etc., with 95%confidence.
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