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Since the time of their domestication, goats (Capra hircus) have evolved in a large
variety of locally adapted populations in response to different human and environmental
pressures. In the present era, many indigenous populations are threatened with extinction
due to their substitution by cosmopolitan breeds, while they might represent highly
valuable genomic resources. It is thus crucial to characterize the neutral and adaptive
genetic diversity of indigenous populations. A fine characterization of whole genome
variation in farm animals is now possible by using new sequencing technologies.
We sequenced the complete genome at 12× coverage of 44 goats geographically
representative of the three phenotypically distinct indigenous populations in Morocco.
The study of mitochondrial genomes showed a high diversity exclusively restricted to
the haplogroup A. The 44 nuclear genomes showed a very high diversity (24 million
variants) associated with low linkage disequilibrium. The overall genetic diversity was
weakly structured according to geography and phenotypes. When looking for signals
of positive selection in each population we identified many candidate genes, several
of which gave insights into the metabolic pathways or biological processes involved
in the adaptation to local conditions (e.g., panting in warm/desert conditions). This
study highlights the interest of WGS data to characterize livestock genomic diversity.
It illustrates the valuable genetic richness present in indigenous populations that have to
be sustainably managed and may represent valuable genetic resources for the long-term
preservation of the species.

Keywords: Capra hircus, WGS, genomic diversity, population genomics, selection signatures, indigenous
populations, Morocco
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Introduction

Livestock species play a major socio-economic role in the
world since they provide many goods and services to human
populations. Goats (Capra hircus) in particular are one of
the more important livestock species, because of their high
potential of adaptation to harsh environments. They had a
worldwide population of about 1006 million in 2013 (http://
faostat3.fao.org/browse/Q/QA/E) and, together with cattle and
sheep, they represent the most important source of meat, milk,
and skin.

Goats are considered to be the first ungulate to be domesti-
cated, about 10,500 to 9900 years ago near the Fertile Crescent
(Zeder, 2005; Naderi et al., 2008). Following human migrations
and trade routes, goats rapidly spread over the rest of the world,
mainly in Eurasia and Africa (Taberlet et al., 2008; Tresset and
Vigne, 2011). During this expansion, they became adapted to dif-
ferent climatic conditions and husbandry practices. In response
to these environmental and anthropic selection pressures, a large
variety of locally-adapted populations emerged. These popula-
tions were managed in a traditional way, i.e., with moderate selec-
tion for traits of interest and reproduction allowing important
gene flows among them, thus maintaining high levels of phe-
notypic diversity (Taberlet et al., 2008). However, the rise of the
breed concept during mid-1800s (Porter, 2002), and its applica-
tion to husbandry practices, led to the creation of well-defined
breeds. This process aimed at standardizing phenotypic traits
mainly associated with morphological aspects (e.g., coat color).
Selection of animals for these traits was generally moderated,
while crossing among different phenotypes was reduced (Taberlet
et al., 2008). More recently, since mid-1900s, industrial breeding
has become more widespread, backed by the progress of hus-
bandry practices including the introduction of artificial insem-
ination, embryo transfer, the improvements in feed technology
and the use of vaccines and therapeutics against endemic dis-
eases. This has led breeders to progressively substitute the many
locally-adapted indigenous breeds for very few highly produc-
tive cosmopolitan ones for short-term economic reasons (Taber-
let et al., 2008). Thus, FAO in 2013 estimated that 18% of local
goat breeds over the world were threatened or already extinct
(http://faostat.fao.org/). Consequently, a part of the highly valu-
able genetic resources captured from the wilds and gradually
accumulated over 98% of their common history with humans is
now threatened (Taberlet et al., 2008).

Thus, it appears crucial to assess the genetic resources of
indigenous populations in order to manage them sustainably and
to propose zootechnical approaches that take into account the
preservation of genetic resources. This might be critical in the
current context of global environmental changes. To accurately
characterize genetic resources, it is necessary to access variation
data across the whole genome. This would allow the identifi-
cation of alleles related to contrasted environmental conditions
and those potentially playing an adaptive role. Recent progress in
sequencing technologies has opened new perspectives toward the
magnitude of genetic analysis that is possible. Sequencing cost
and time have dramatically decreased (Snyder et al., 2010) and
it is now possible to obtain Whole Genome Sequencing (WGS)

data for several dozen individuals, which allows access to varia-
tion data sets of the whole genome (Altshuler et al., 2012; Kidd
et al., 2012). It is thus possible to combine WGS data and pop-
ulation genomic approaches to characterize neutral and adap-
tive variation in an unprecedented way. This allows an accurate
characterisation of genetic resources and their geographic distri-
bution. The Moroccan territory represents an ideal case-study
for evaluating the potential of indigenous breeds for constitut-
ing neutral and adaptive genomic resources. Despite the mas-
sive introduction of “cosmopolitan” breeds to improve goat milk
production in some areas, indigenous populations still represent
about 95% of Moroccan goats. This proportion has been con-
tinually decreasing and this could lead in a mid-long term to
the complete absorption of some indigenous populations by cos-
mopolitan breeds. In Morocco there are more than 6.2 Million
goats (http://faostat3.fao.org/browse/Q/QA/E). Direct anthropic
selection was relatively modest and until recently it was difficult
to distinguish well-defined breeds. However, several phenotypic
groups displaying specific morphological and adaptive character-
istics have been identified. They will be referred hereafter here
as populations. The three major groups are: (i) the Black goats
with three sub-populations that have been recently officially rec-
ognized (Atlas, Barcha and Ghazalia), (ii) the Draa population,
(iii) and the Northern population. Besides these three main popu-
lations/breeds, the major proportion of Moroccan goats presents
intermediate phenotypes and non-recognized local populations.
The Black population is characterized by its dark color, long
hair, a low water turnover and thus good resistance to water
stress (Hossainihilali et al., 1993). It presents a good acclima-
tion to various environmental conditions in Morocco (from the
Eastern plateaus to Atlas Mountains and the Souss valley more
in the South). The Northern population displays some pheno-
typic similarities with Spanish breeds such as the Murciana-
Granadina, Malaguena or Andalusia breeds (Benlekhal and Tazi,
1996). It is bred for milk and meat production although it
presents a lower level of production than cosmopolitan indus-
trial dairy breeds (Analla and Serradilla, 1997). It shows a sub-
stantial reproductive seasonality related to photoperiod variation
(Chentouf et al., 2011). Following an extensive breeding system,
it is the preferred breed to be raised in the harsh mountains
of the extreme North of Morocco with oceanic influence and
a milder climate. The Draa population is bred in the oasis in
Southern Morocco, which is characterized by arid/desert climate
conditions. Its water turnover is low compared to European goat
breeds studied in similar environments. The Draa goat also has
the ability to maintain an unchanged food intake during peri-
ods of water deprivation (Hossaini-Hilali and Mouslih, 2002).
It displays relatively higher performances of reproduction (i.e.,
prolificacy, earliness; Ibnelbachyr et al., 2014) and hornless indi-
viduals represent about 54.1% of the total (Ibnelbachyr et al.,
in preparation). In this study, we applied a population genomic
framework using WGS data to (i) describe neutral genomic diver-
sity and population structure in the main Moroccan indigenous
goat populations (ii) identify potential genomic regions differ-
entially selected among the main populations according to their
specific traits. To address these issues, we sequenced at 12×
coverage 44 goats representing the Moroccan-wide geographic
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diversity of the three main goat indigenous populations in the
country.

Material and Methods

Sampling
Sample collection was performed in a wide part of Morocco
[∼400,000 km2; Northern part of Morocco in latitude range
(28◦−36◦)]. A total of 44 individuals unambiguously assigned to
one of the three main indigenous populations (i.e., Black, Draa
and Northern) were sampled (Table S1) in a way that maximized
individuals’ spread over the sampling area. This resulted in sam-
pling spatially distant unrelated individuals, ensuring a spatial
representativeness of all regions (Figure 1). For each individual,
tissue samples were collected from the distal part of the ear and
placed in alcohol for 1 day, and then transferred to a silica-gel
tube until DNA extraction.

Production Of WGS Data
DNA extractions were done using the Puregene Tissue Kit from
Qiagen R⃝ following the manufacturer’s instructions. Then, 500 ng
of DNA were sheared to a 150–700 bp range using the Covaris R⃝

E210 instrument (Covaris, Inc., USA). Sheared DNA was used for
Illumina R⃝ library preparation by a semi-automatized protocol.
Briefly, end repair, A tailing and Illumina R⃝ compatible adaptors
(BiooScientific) ligation were performed using the SPRIWorks
Library Preparation System and SPRI TE instrument (Beckmann
Coulter), according to the manufacturer protocol. A 300–600
bp size selection was applied in order to recover the most of
fragments. DNA fragments were amplified by 12 cycles PCR
using Platinum Pfx Taq Polymerase Kit (Life R⃝ Technologies)
and Illumina R⃝ adapter-specific primers. Libraries were purified
with 0.8× AMPure XP beads (Beckmann Coulter). After library
profile analysis by Agilent 2100 Bioanalyzer (Agilent R⃝ Technolo-
gies, USA) and qPCR quantification, the libraries were sequenced

using 100 base-length read chemistry in paired-end flow cell on
the Illumina HiSeq2000 (Illumina R⃝, USA).

WGS Data Processing
Paired-end reads were mapped to the goat reference genome
(CHIR v1.0, GenBank assembly GCA_000317765.1) (Dong et al.,
2013) using BWA mem (Li and Durbin, 2009). The BAM files
produced were then sorted using Picard SortSam and improved
using Picard MarkDuplicates (http://picard.sourceforge.net),
GATK RealignerTargetCreator, GATK IndelRealigner (Depristo
et al., 2011), and Samtools calmd (Li et al., 2009). Variant call-
ing was done using three different algorithms: Samtools mpileup
(Li et al., 2009), GATK UnifiedGenotyper (McKenna et al., 2010),
and Freebayes (Garrison and Marth, 2012).

There were two successive rounds of filtering variant sites. Fil-
tering stage 1 merged together calls from the three algorithms,
whilst filtering out the lowest-confidence calls. A variant site
passed if it was called by at least two different calling algorithms
with variant phred-scaled quality >30. An alternate allele at a
site passed if it was called by any one of the calling algorithms,
and the genotype count >0. Filtering stage 2 used Variant Qual-
ity Score Recalibration by GATK. First, we generated a training
set of the highest-confidence variant sites where (i) the site is
called by all three variant callers with variant phred-scaled qual-
ity >100, (ii) the site is biallelic (iii) the minor allele count is
at least 3 while counting only samples with genotype phred-
scaled quality >30. The training set was used to build a Gaus-
sian model using the tool GATK VariantRecalibrator using the
following variant annotations from UnifiedGenotyper: QD, Hap-
lotypeScore, MQRankSum, ReadPosRankSum, FS, DP, Inbreed-
ingCoefficient. The Gaussian model was applied to the full data
set, generating a VQSLOD (log odds ratio of being a true vari-
ant). Sites were filtered out if VQSLOD < cutoff value. The
cutoff value was set for each population by the following: Min-
imum VQSLOD = {the median value of VQSLOD for train-
ing set variants} − 3∗ {the median absolute deviation VQSLOD

FIGURE 1 | Distribution of goats sampled. (A) Geographic map showing the distribution of the 44 goats sampled in this study. Each point represents one
individual and different colors illustrate different populations. (B) Striking phenotypic differences between the 3 main goat populations in Morocco.
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of training set variants}. Measures of the transition / transver-
sion ratio of SNPs suggest that this chosen cutoff criterion gives
the best balance between selectivity and sensitivity. Genotypes
were improved and phased by Beagle 4 (Browning and Brown-
ing, 2013), and then filtered out where the genotype probability
calculated by Beagle is less than 0.95.

The whole mitochondrial genome (mtDNA) was assembled
from a subset of random 20,000,000 reads using the ORGASM
tool (Coissac, unpublished). We then extracted the sequence of
the HVI segment of the control region for each individual in
order to compare with the haplogroup references discovered
worldwide (see below).

Population Genomic Analyses
Characterisation of mtDNA Diversity
The number of polymorphic sites and the number of haplo-
types were calculated from the whole mitochondrial sequences
using DNAsp (Librado and Rozas, 2009). We also calculated these
parameters for the hyper variable segment (HVI) of the control
region, for which 22 reference sequences representing the diver-
sity of the 6 haplogroups found over the world were available
(Naderi et al., 2007). We were interested in the level of resolu-
tion of the HVI segment to discriminate the different haplotypes
compared to the whole mitochondrion.

Then, using the sequences corresponding to the HVI segment
for our dataset and the reference sequences, we drew a network
of the haplotypes to identify the different haplogroups present
in our dataset. The best evolutionary model was determined
using jModelTest v 2.1.4 (Darriba et al., 2012). A median joining
network representing the relationships between haplotypes was
drawn using SplitsTree4 (Huson and Bryant, 2006).

Characterisation of Neutral Nuclear Diversity
Neutral nuclear genomic variations were characterized to eval-
uate the level of genetic diversity present in Morocco and
within populations. The total number of variants and the num-
ber of variants within each population were calculated. Allele
frequencies and the percentage of exclusive variants (i.e., vari-
ants polymorphic in only one population) were estimated at the
population scale using the Perl module vcf-compare of Vcftools
(Danecek et al., 2011). The level of nucleotide diversity (π)
was calculated within each population and averaged over all of
the biallelic and fully diploid variants for which all individuals
had a called genotype. The observed percentage of heterozy-
gote genotypes per individual (Ho) was calculated considering
only the biallelic SNPs with no missing genotype calls. From Ho,
the inbreeding coefficients (F) were calculated for each individ-
ual using population allelic frequencies over all 44 individuals.
The relatedness among individuals was assessed using the pair-
wise identity-by-state (IBS) distances calculated as the average
proportion of alleles shared using Vcftools.

Pairwise linkage disequilibrium (LD) was assessed through the
correlation coefficient (r2). It was estimated in 5 segments of
2 Mb on different chromosomes (physical positions between 5
and 7 Mb on chromosomes 6, 11, 16, 21, and 26). LD was esti-
mated either by using the whole set of reliable variants or after

discarding rare variants with a minor allele frequency (MAF) less
than 0.05. For both estimations, we calculated r2 values between
all pairs of bi-allelic variants (SNPs and indels) on the same seg-
ment using Vcftools. Inter-SNP distances (kb) were binned into
the following 7 classes: 0–0.2, 0.2–1, 1–2, 2–10, 10–30, 30–60,
and 60–120 kb and observed pairwise LD was averaged for each
inter-SNP distance class and used to draw LD decay. Due to the
insufficient number of individuals per population we made these
estimations for the whole set of individuals without considering
each population individually.

Genetic structure was assessed using three different meth-
ods: (i) a principal component analysis (PCA) was done using
an LD pruned subset of bi-allelic SNPs. LD between SNPs in
windows containing 50 markers was calculated before removing
one SNP from each pair where LD exceeded 0.95. Subsequently,
only 12,543,534 SNPs among a total of 22,304,702 bi-allelic SNPs
were kept for this analysis. The R package adegenet v1.3-1 (Jom-
bart and Ahmed, 2011) was used to run PCA and Plink v1.90a
(https://www.cog-genomics.org/plink2) was used for LD prun-
ing. (ii) An analysis with the clustering method sNMF (Frichot
et al., 2014) was carried-out. This method was specifically devel-
oped to analyse large genomic datasets in a fast, efficient and
reliable way. It is based on sparse non-negative matrix factoriza-
tion to estimate admixture coefficients of individuals. All biallelic
variants were used and five runs for each K value from 1 to 10
were performed using a value of alpha parameter of 8. For each
run, the cross-entropy criterion was calculated with 5% miss-
ing data to identify the most likely number of clusters. The run
showing the lowest cross-entropy value for a given K was con-
sidered. (iii) Finally, the Fst index was estimated according to
Weir and Cockerham (1984) for each polymorphic site and then
weighted to obtain one value over the whole genome. The overall
Fst between the three groups and the population pairwise values
were calculated using Vcftools.

Detection of Selection Signatures
A genome scan approach was performed using the XP-CLR
method (Chen et al., 2010) to identify potential regions differ-
entially selected among the three populations. It is a likelihood
method for detecting selective sweeps that involves jointly mod-
eling the multi-locus allele frequency differentiation between two
populations. This method is robust to detect selective sweeps and
especially with regards to the uncertainty in the estimation of
local recombination rate (Chen et al., 2010). Due to the absence of
genomic position, the physical position (1 Mb ≈ 1 cM) was used.
An in-house script based on overlapped segments of a maximum
of 27 cM was designed to estimate and assemble XP-CLR scores
using the whole set of bi-allelic variants. Overlapping regions of 2
cM were applied and the scores related to the extreme 1 cM were
discarded, except at the starting and the end of chromosomes on
the CHIR v1.0 assembly. XP-CLR scores were calculated using
grid points spaced by 2500 bp with a maximum of 250 variants
in a window of 0.5 cM and by down-weighting contributions of
highly correlated variants (r2 > 0.95) in the reference group.

To equilibrate the number of individuals per population, only
14 Black goats were randomly sampled among the 22. They were
included with the 14 Draa and the 8 Northern individuals. Each
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population was tested using a reference group including individ-
uals from the two other populations. The 0.1% genomic regions
with highest XP-CLR scores revealed by the analysis were identi-
fied and lists of genes partially or fully covered by these regions
were then established. To ensure the coverage of short genes (i.e.,
genes shorter than the distance between adjacent grid points),
two segments of 1500 bp each surrounding both sides of genes
were also considered. NCBI databases were used to identify coor-
dinates of the 20700 annotated autosomal genes on the CHIR v1.0
genome assembly (http://www.ncbi.nlm.nih.gov/genome?term=
capra%20hircus).

Gene Ontology Enrichment Analyses
To explore the biological processes in which the top candidate
genes are involved, Gene Ontology (GO) enrichment analyses
were performed using the application GOrilla (Eden et al., 2009).
The 12,669 goat genes associated with a GO term were used
as background reference. Significance for each individual GO-
identifier was assessed with P-values that were corrected using
FDR q-value according to the Benjamini and Hochberg (1995)
method. GO terms identified in each population were clustered
into homogenous groups using REVIGO (Supek et al., 2011).
Medium similarity among GO terms in a group was applied and
the weight of each GO term was assessed by its p-value.

Results

Phylogeny of mtDNA Genomes
The whole mitochondrial genome was assembled successfully
for 41 individuals and represented 16,651 bp length sequences.
A total of 239 polymorphic sites were detected, which allowed
discriminating 41 haplotypes. In an alternative complementary
approach, the 481 bp length sequenced of the HVI segment of the
control region was extracted, and this revealed 64 polymorphic

sites identifying 40 single haplotypes. We constructed a network
using the GTK + G + I model, which showed the best likeli-
hood. The network (Figure 2) including the 22 reference hap-
lotypes (i.e., haplogroups A, B, C, D, F, and G; Naderi et al.,
2007) showed that the 40 haplotypes all belonged to the hap-
logroup A. We did not detect any coherent pattern of geographic
structure among the haplotypes. There was also no clear differ-
entiation of the haplotypes according to the three considered
populations.

Neutral Diversity from WGS Data
The whole nuclear genomes were assembled on the goat reference
genome CHIR1.0 along the 30 chromosomes. We mapped unam-
biguously 99.0% (±0.1%) of reads to the CHIR v1.0 assembly.
However, the mapped reads properly paired constituted 90.3%
(±0.1%) of reads in average. After the filtering processes, a total
of 24,022,850 variants were found to be polymorphic in the total
dataset among which 22,396,750 were SNPs and 1,626,100 were
small indels. There were a total of 15,948,529 transitions and
6,540,478 transversions leading to a ts/tv ratio of 2.44. Due to
differences in quality among individuals, the number of vari-
ants called per individual was at least 23,273,239 and 24,003,837
on average. As a consequence, a total of 23,059,968 variants
showed no missing genotype over the 44 samples, among which
22,963,257 were biallelic.

Among the 24,022,850 polymorphic variants, only 12,024,778
variants were polymorphic within each of the three populations.
The remaining variants were either polymorphic in only one or
in two populations. When considering variants exclusive to each
population, 3,704,299 were found polymorphic only in the Black
population (n = 22), 1,887,724 only in the Draa population
(n = 14) and 1,305,561 only in the Northern population (n = 8)
(Figure 3). Rare variants (MAF < 0.05) represented a total of
10,892,203 (45.3%).

FIGURE 2 | Phylogenetic network based on the mitochondrial HVI
segment of the control region. Sequences of 41 Moroccan goats and the
22 references representing the worldwide diversity (Naderi et al., 2007) were

used. The 22 reference identifiers start with ≪ Hg ≫ and the following letter
indicate which haplogroup each belongs to. The other identifiers correspond
to the Moroccan goats. The red letters give the names of the 6 haplogroups.
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Considering the 44 goats together, the average nucleotide
diversity (π) calculated from 22,963,257 biallelic variants with-
out missing genotype calls was 0.180. The Draa and the Black
populations displayed similar π values amounting to 0.180 and
0.181 respectively. Among the 8 individuals representing the
Northern population, π was slightly higher, amounting to 0.189.
The observed percentage of heterozygote genotypes per individ-
ual (Ho) was 17.2% on average, ranging from 12.1% to 18.4%.
The average inbreeding coefficient (F) was globally rather low
(0.05 ± 0.07) and values were evenly distributed among pop-
ulations. Similar average values were obtained for the North-
ern and Black populations (respectively 0.04 ± 0.07 and 0.04
± 0.05). The Draa goats were slightly more inbred (average
F = 0.07 ± 0.09), particularly due to one individual showing
F = 0.32.

We assessed LD by calculating the pairwise r2 values between
polymorphic sites for five chromosome regions. When with-
drawing rare variants (i.e., MAF < 0.05), the average r2 value
was 0.40 for the first bin (0–0.2 kb) and decayed to less
than 0.20 in 5.4 kb (Figure 4). Using the whole set of reli-
able variants, the average r2 was 0.21 for the first bin and
decreased rapidly to less than 0.20 in 239 bp of distance. More-
over, it decayed to less than 0.15 in about 1.33 kb distance
(Figure S2).

Among the three populations, the level of genetic differ-
entiation over the whole nuclear genome was extremely low
(Fst = 0.0024). The pairwise Fst values varied from 0.001 for the
Black-Draa comparison to 0.004 for the Northern-Draa compar-
ison. Between the Black and Northern populations the pairwise
Fst was 0.003.

The PCA analysis showed a very low population structure in
the 44 Moroccan goats. The 3 main principal components (PCs)
explained 5.8% of variance. The first PC tended to distinguish

FIGURE 3 | Venn diagram of the number of polymorphic variants in the
three Moroccan goat populations.

the Northern and Draa populations while the Black popula-
tions formed an in-between group. The second PC acted pre-
dominantly to distinguish individuals within the Draa and the
Northern populations (Figure S1).

The clustering analysis of the genetic structure using sNMF
(Frichot et al., 2014) showed that the 44 Moroccan goats belong-
ing to the three populations were more likely represented by only
one cluster according to the “crossentropy” criterion (lower val-
ues for K = 1). However, this criterion is not straightforward
and when increasing until K = 3 we observed a weak pattern of
genetic structure (Figure 5). At K = 2, the Northern goats were
all strongly assigned to one distinct cluster. The second cluster
was characterized by high assignment from the Draa popula-
tion, except for two individuals that belong to the same cluster
as the Northern goats. Finally, the Black goats showed variable
levels of admixture between the two clusters (Figure 5A). When
mapping the assignment results on a map we observed a geo-
graphic pattern with one cluster represented mainly in the north
of Morocco (red component; Figure 5B) and the second cluster
more present in the south (Figure 5B). At K = 3, the addi-
tional cluster was mostly represented in the Black goats which are
located in the center of the sampling area (Figure 5A). The two
other clusters still mostly represented the separation of North-
ern and Draa populations but the pattern was less evident. It
was difficult to disentangle the relationship of genetic structure
with populations and geography because the two factors were
confounding.

Selection Signatures
We applied the XP-CLR genome scan method (Chen et al., 2010)
on the whole genomes of 36 goats from the three phenotypic
populations (14 Black, 14 Draa, and 8 Northern). We identi-
fied selective sweep genes in each population considering the top
0.1% genome-wide scores. Our approach highlighted respectively
142, 167, and 176 candidate genes in the Black, Draa, and North-
ern populations. The region showing the strongest XP-CLR score
was located on chromosome 6 for the Black goats (Figure S3)
and on chromosome 22 for the Northern goats (Figure S4), but
they did not match any annotated gene. The annotated genes
showing the strongest selective sweeps were HTT, MSANTD1,
and LOC102170765 in the Black goats, and FOXP2, TRAP1 and
DNASE1 in the Northern goats (Table 1). In the Draa popula-
tion, the highest XP-CLR scores corresponded to LOC102190531,
ADD3, and ASIP genes (Figure 6). The enrichment categories
of the identified candidate genes in the Black goats were asso-
ciated with 15 GO terms (Table S2). They clustered into the fol-
lowing four differentiated categories by REVIGO (Supek et al.,
2011): tube development, calcium ion transmembrane import
into mitochondrion, negative regulation of transcription from
RNA polymerase II promoter during mitosis and response to
fatty acid. The enrichment of the identified candidate genes in
Draa goats highlighted the significance of 25 GO terms (Table
S3) clustering into five differentiated categories: regulation of
respiratory gaseous exchange, behavior, postsynaptic membrane
organization, protein localization to synapse, and neuron cell-
cell adhesion. In the Northern goats, we did not find significant
enrichment categories for the candidate genes identified.
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TABLE 1 | Top-20 candidate genes under positive selection in each Moroccan goat population using the top-0.1% XP-CLR scores autosomal-wide cut-off level.

Black population Draa Northern population

Gene Chr Number of Distance/ Higher Gene Chr Number of Distance/ Higher Gene Chr Number of Distance/ Higher

top-scores grid point score top-scores grid point score top-scores grid point score

HTT 6 29 4739 82.6 LOC102190531 13 9 2493 94.0 FOXP2 4 14 33163 48.7

MSANTD1 6 3 5501 61.4 ADD3 26 24 5409 74.4 TRAP1 25 5 3977 42.8

LOC102170765 6 1 699 54.0 ASIP 13 2 995 71.3 DNASE1 25 4 2485 41.8

FAM160B1 26 2 42409 45.6 VPS13B 14 36 21697 70.1 FAM227B 10 9 25094 39.8

STRIP1 3 5 3069 43.6 RALY 13 9 5294 66.1 CREBBP 25 14 9497 38.6

NDUFA6 5 4 2786 41.8 ICAM3 7 5 1696 62.4 PAPSS2 26 1 43841 35.7

HNRNPA3 2 3 1183 40.3 HIVEP2 9 15 6353 61.4 SLX4 25 2 9472 32.4

KITLG 5 7 15223 39.7 GGH 14 10 2984 59.3 PGM5 8 9 23504 32.0

ALX3 3 1 7499 39.6 PLSCR3 19 2 1770 58.2 BCAS3 19 11 53928 31.4

IFT88 12 13 4139 39.6 SOX6 15 17 28387 54.8 GALK2 10 3 51372 31.2

XPO4 12 25 3141 39.5 JARID2 23 27 8506 52.9 MAB21L1 12 2 1213 31.0

VPS13B 14 16 48818 38.0 NOL4 24 6 78026 49.7 NBEA 12 31 21437 30.9

LOC102183160 14 1 298 37.5 TIMP3 5 3 4339 49.4 LOC102182654 25 1 2127 30.8

FLI1 29 6 10103 36.9 EIF2S2 13 2 7340 48.8 LCOR 26 7 8873 30.6

C4H7orf10 4 11 70095 35.7 TTC39C 24 10 10009 48.2 RANBP10 18 10 5817 29.5

TTC21A 22 3 11417 35.6 PCBP3 1 2 103547 46.0 SLC12A4 18 2 10049 28.0

LATS2 12 4 6149 34.3 TTPA 14 7 8967 45.0 ROR1 3 5 39379 27.8

NSMCE2 14 5 46323 33.7 ASTN2 8 11 79003 43.1 MRPL54 7 1 2005 27.7

ATG2B 21 3 25060 33.4 GALNT7 8 10 10949 42.2 PDE1A 2 2 146650 27.4

FAT2 7 2 42599 33.4 MUC13 1 7 3341 41.7 KRT8 5 2 3717 27.3

Coordinates of 20700 autosomal genes on the CHIR v1.0 goat assembly were used to identify candidate genes matching XP-CLR top scores. Genes were ranked according to the higher XP-CLR score. Chr, Chromosome. Number of
top-scores, Number of grid points among the top-0.1% XP-CLR scores matching the gene. Distance/grid point: gene length/number of top-scores. Grid points in XP-CLR analysis were separated by 2.5 Kb.
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FIGURE 4 | Decay of linkage disequilibrium (r2) as a function of
physical distance by excluding “rare” variants. The Linkage
Disequilibrium (LD) was calculated for the 44 Moroccan goats on 5 different

segments of 2 Mb each on 5 different chromosomes. Inter-variant distances
(bp) were binned and averaged into the classes: 0–0.2, 0.2–1, 1–2, 2–10,
10–30, 30–60, and 60–120 kb.

FIGURE 5 | WGS ancestry estimates for Moroccan goats for K = 2 and K = 3 clusters using sNMF (Frichot et al., 2014). (A) Each bar represents one
individual. Different colors illustrate the assignment proportion (Q score) to each one of the assumed clusters. (B) Geographical distribution of individual Q-score values.

Discussion

Indigenous/traditional goats have been raised for a long
time for various purposes and they have gradually accumu-
lated several traits making them well adapted to their envi-
ronments. The mechanisms underlying these adaptive traits
have been poorly studied until now. The recent devel-
opment of sequencing technologies has now made possi-
ble the sequencing of individuals’ whole genomes and this
may greatly expand our understanding of genomic diver-
sity. Except for a few studies based on medium density SNP

panels (about 50,000 SNPs) (Kijas et al., 2013; Tosser-Klopp
et al., 2014), previous population genetic studies on goats
have been limited to just a few dozens of markers (i.e.,
microsatellites). In this study we used variants spanning the
whole genome to characterize indigenous goat populations of
Morocco.

Mitochondrial Variation
Complete mitochondrial sequences were successfully assembled
from a low portion of reads for 41 individuals. In terms of its
ability to discriminate between the different haplotypes, the 481
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FIGURE 6 | Plot of XP-CLR scores along autosomes in selective sweep analysis for the Draa goat population. The horizontal line indicates a 0.1%
autosomal-wide cut-off level. Red arrows and names indicate the top three candidate genes.

bp length of the HVI segment of the control region was almost
as accurate as the whole mitochondrion sequence of 16,651 bp
length from which it was extracted. Only a small difference in
the total number of haplotypes defined was found (41 against
40 haplotypes respectively). This result shows that despite a low
number of variable sites, the dense variability found in the control
region (26.8% of the total number of variants for only 2.8% of the
sequence length) concentrated most of the phylogenetic informa-
tion. Thus, the HVI segment of the control region seems to be a
good surrogate of the whole mitochondrial polymorphism. This
study confirmed previous results based on the HVI segment of
the control region (Pereira et al., 2009; Benjelloun et al., 2011)
where Moroccan domestic goats showed only haplotypes from
the A haplogroup (HgA). In a larger study using 2430 samples
with a worldwide distribution, Naderi et al. (2007) found that
most of the domestic goats displayed HgA (about 94%). Thus, it
seems that the mitochondrial categorization in Morocco is rather
representative of the rest of the world, even if the remaining
haplogroups were not identified in our sampling. Besides this,
the mtDNA diversity was weakly structured according to geog-
raphy, as already reported by (Benjelloun et al., 2011) on the HVI
region.

We did not find any clear structure of the mitochon-
drial haplotypes among the three populations. The high
mitochondrial diversity characterizing these three popula-
tions probably indicates the diversity present in the first
domesticated goats that arrived in Morocco and/or recur-
rent gene flows from diverse origins. According to (Pereira
et al., 2009), Moroccan goat populations would have been
established via two main colonization routes, one a North
African land route and the other a Mediterranean mar-
itime route across the Strait of Gibraltar. The high gene
flows between populations, mediated by humans, would be
ultimately responsible for the absence of structure across
Morocco.

Nuclear Neutral Variation
Although the low percentage of the properly paired mapped
reads (about 10%) in comparison with the percentage of mapped
reads (about 99%) would illustrate a possible fragmentation of
the genome assembly used, we identified many high confidence
variants (approximately 24 million among which 6.8% were small
indels) over the whole nuclear genomes of the 44 Moroccan goats
studied. This is much higher than was found in all previous stud-
ies detecting variants in large sample cohorts from whole genome
sequencing. For example, the human 1000 Genomes Project (Alt-
shuler et al., 2012) detected approximately 15 million SNPs and
1 million short indels, while in the 1001 Genomes Project of
Arabidopsis thaliana about 5 million SNPs and 81,000 small
indels were found (Cao et al., 2011). The polymorphism detected
in the Moroccan goats remains huge even when considered in
proportion to the genome size of the species.

This huge number of variants did not show a strong genetic
structure either among populations or over geographic space.
The globally weak genetic structure suggests that extensive gene
flows along with low level of selection have produced this pattern.
Our findings contrast with most previous studies, which gen-
erally show a clear structure among goat breeds or populations
(Cañon et al., 2006; Agha et al., 2008; Serrano et al., 2009; Di et al.,
2011; Hassen et al., 2012; Kijas et al., 2013). Several reasons could
explain this difference. First, most of the previous studies used
microsatellite markers exhibiting high mutation rate. Thus, com-
pared to SNP markers, microsatellites could more likely show
imprints of recent demographic events such as differentiation
between recently isolated populations. Moreover, the microsatel-
lite markers generally used (Serrano et al., 2009; Di et al., 2011)
were recommended by FAO and designed to exacerbate genetic
differentiation among breeds, which was thus artificially inflated.
In a more recent study, (Kijas et al., 2013) used a panel of SNP
markers from a chip designed with animals representing indus-
trial breeds for the SNP discovery (Tosser-Klopp et al., 2014).
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In that case the results were certainly inflated by the ascertain-
ment bias due to the chip design. However, it is also likely that in
our case the demographic history of Moroccan goats differs from
that of the breeds previously studied, and in particular from the
ones compared at larger geographic scales such as Europe and
Middle East (Cañon et al., 2006), or China, Iran and Africa (Di
et al., 2011). The structured diversity found in these latter two
studies would result from the strong isolation between countries.
However, even at smaller scales the selection pressures exerted by
breeding processes and husbandry practices may have increased
isolation among breeds, and thus reinforced population differen-
tiation compared to Morocco. The situation found in Morocco is
close to the one described by Hassen et al. (2012) for six Ethiopian
goat ecotypes, where even with microsatellite markers most of
the diversity was found within populations, showing low levels
of genetic differentiation. This result was explained by the exis-
tence of uncontrolled breeding strategies and agricultural exten-
sive systems. In Morocco, it seems that goat populations have
experienced moderate levels of selection and that most of the
genetic diversity has been preserved during the breeding process
which led to the three phenotypic populations. However, a weak
genetic pattern was revealed by sNMF, which seems to be par-
tially related to populations as well as geography. When mapping
the clustering results (for K = 3, Figure 4B), a pattern appeared
across Morocco, with Northern goats displaying a higher assign-
ment probability to one distinct cluster. The Northern popula-
tion is observably slightly more diverse than the others for which
higher numbers of individuals were studied. This higher diver-
sity and the slightly higher genetic differentiation of the Northern
goats support the hypothesis of an influence of Iberian gene flows
through the strait of Gibraltar in the North of Morocco (Analla
and Serradilla, 1997).

The goal of our study was not to visualize the LD variations
along chromosomes by covering all regions including cen-
tromeres and chromosomal inversions that are reportedly char-
acterized by an elevated LD (Weetman et al., 2010; Marsden et al.,
2014). Rather, we aimed to generate a global representation of
LD across the genome by covering segments of 2 Mb in 5 dif-
ferent chromosomes taking all the reliable variants found from
WGS data. Furthermore, knowing the effect of rare variants on
LD estimation (Andolfatto and Przeworski, 2001) and to com-
pare our findings with previous studies, we also estimated LD
after discarding rare variants (MAF < 0.05). The extent of LD
reported without rare variants (r2 < 0.20 after 5.4 kb on average)
is clearly shorter compared to all previous studies on farm ani-
mals, where it largely exceeds 10 kb for r2 = 0.20 (Meadows et al.,
2008; Villa-Angulo et al., 2009; Wade et al., 2009; McCue et al.,
2012; Ai et al., 2013; Veroneze et al., 2013). In these studies, whole
genome variants were not available and potential biases due to the
use of SNP chips may partially explain the results. However, we
consider that our finding would mainly result from the extensive
breeding system favoring high gene flows among Moroccan goat
populations/herds and low inbreeding and from the absence until
now of strong selection during the breeding processes. Results
on LD and genetic variability illustrate the important diversity
present in indigenous populations in comparison with industrial
breeds on which previous studies mainly focussed (e.g., Meadows

et al., 2008; Villa-Angulo et al., 2009). This should be considered
in the establishment of future programs aimed at improving these
populations to preserve this highly valuable genetic diversity.

Beside this, when using the whole set of reliable variants we
found a much lower LD (r20

0.20 = 239 bp). We do believe that
this value should be considered in genome wide association and
genome scan studies. Indeed most of studies remove rare variants
for genotyping quality issues. In our case, the quality filtering pro-
duced reliable rare variants (about 45%) that would give a more
realistic estimation of LD. To our knowledge, very few studies
included rare variants to estimate LD (e.g., Mackay et al., 2012).

Selection Signatures in Moroccan Goat
Populations
The weakly structured genetic diversity in Moroccan goats was
suitable to detect selection signatures, avoiding possible false pos-
itives potentially generated by genetic structure. Despite a com-
mon genomic background and this weak population structure
in Moroccan goats, the three main populations have been bred
in various conditions and thereby have been subject to different
anthropic and environmental selections in their recent history.
As a result, they differ in their physiology, behavior and morphol-
ogy. The observation of rapid phenotypic changes raises the ques-
tion of the underlying genetic changes that would be shaped by
selection. We identified numerous signatures of selection corre-
sponding to genomic regions potentially under selection in each
population.

A difficulty in identifying the genes or metabolic pathways
under selection resides in the currently incomplete annotation
of the goat genome. The stronger selective sweeps corresponded
to regions in the Black population (chromosome 6) and in the
Northern population (chromosome 22) matching un-annotated
genes on the CHIR v1.0 assembly. This is probably due to either
the incomplete annotation of the caprine genome or the fact that
the selected functional mutations within each of these regions
are not located within or close to a protein-coding gene. The
incomplete genome annotation prevented us from identifying
several known selected genes among Moroccan goat populations.
For example, the melanocortin-1 receptor (MC1R) gene that is
reported to be involved in coat color differentiation in goats (e.g.,
Fontanesi et al., 2009a) is not associated to any chromosome on
the CHIR v1.0 assembly. Therefore, we were not able to detect
its possible associated signal of selection in populations where
the coat color is fixed knowing that we looked for selection sig-
natures on autosomes only. Another problem consisted in the
presence of several annotated genes that were not identified (i.e.,
no known orthologs, gene identifier starting with “LOC”). Thus,
many genes potentially under selection could not be used in our
GO enrichment analyses (e.g., the higher-score candidate gene
in Draa population on Chromosome 13; Table 1). Despite these
restrictions, we identified several sets of strong candidate genes
in the three studied populations.

In the Black population the top-ranked candidate gene identi-
fied was huntingtin (HTT; Table 1). It has been comprehensively
studied in humans where it is associated with Huntington’s dis-
ease, an inherited autosomal dominant neurodegenerative dis-
order (Mende-Mueller et al., 2001; Sathasivam et al., 2013). The
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HTT protein directly binds the endoplasmic reticulum (ER) and
may play a role in autophagy triggered by ER stress (Atwal and
Truant, 2008). Thus, we could speculate a possible involvement of
this gene in the adaptation to physiological or pathological condi-
tions leading to ER stress. This gene, among other candidates, was
involved in the enrichment of GO terms pattern specification pro-
cess (GO:0007389) and organ development (GO:0048513). These
two categories were clustered together with the enriched neu-
ron maturation term (GO:0042551) (Table S2). Hence, we could
hypothesize a possible role of genes involved in these categories in
some morphological traits specific to the Black goat population.
Besides this, we noticed the enrichment of genes associated with
the response to fatty acids GO terms (GO:0070542; GO:0071398).
Candidate genes in these categories include CPT1A that encodes
for a mitochondrial enzyme responsible for the formation of acyl
carnitines that enables activated fatty acids to enter the mito-
chondria (van der Leij et al., 2000; Vaz and Wanders, 2002).
The SREBF1 gene encodes for a family of transcription factors
(SREBPs) that regulate lipid homeostasis (Yokoyama et al., 1993;
Eberle et al., 2004). The GNPAT gene encodes an essential enzyme
to the synthesis of ether phospholipids. The last gene in these
categories is CPS1 and it encodes for a mitochondrial enzyme
that catalyzes synthesis of carbamoyl phosphate (Aoshima et al.,
2001). This suggests that selection acted upon the metabolism of
fatty acids and lipids in the Black population, reflecting the possi-
ble development of an effective metabolism that could be linked
to a higher amount of volatile fatty acids generated by the rumen
microbial flora (Bergman, 1990).

In the Draa population, which is raised in oasis/desert areas
and well adapted to high temperatures (Hossaini-Hilali and
Mouslih, 2002), the enrichment of GO terms associated with the
regulation of respiratory system and gaseous exchange categories
(GO:0002087; GO:0043576; GO:0044065) would reflect the likely
use of panting in evaporative heat loss. Goats could use panting as
well as sweating for body thermo regulation according to the level
of hydration and solar radiation (Dmiel and Robertshaw, 1983;
Baker, 1989), and the type of regulatory system also depends
on the breed/population (e.g., The Black Bedouin goats of Sinai
Peninsula that use sweating in preference to panting) (Dmiel
et al., 1979). Panting compared to sweating helps animals to bet-
ter preserve their blood plasma volume (no losses of salt) and
involves cooling of the blood passing the nasal area, which makes
it possible to keep brain temperature lower than body temper-
ature (Baker, 1989). Differences between Draa and Black popu-
lations in coat color, hair length and head size (larger in Black,
Ibnelbachyr et al., in preparation) would support the hypothesis
of different mechanisms of adaptation. Black goats would favor
sweating and Draa panting as the more beneficial adaptation to
warm environments. Mechanisms underlying dissipation should
be further studied in these populations to elucidate the adaptive
processes involved.

The enrichment of GO terms associated with lactate trans-
port (GO:0015727; GO:0035873) (Table S3) in the Draa popu-
lation could be linked to the stronger specific energetic demand
associated with pregnancy and lactation in this population. The
prolificacy in this population is much higher than in the rest
of Moroccan goats (about 1.51 kids/birth vs. about 1 kid/birth;

Ibnelbachyr et al., 2014). Thereby lactate transport may play a
crucial role to meet this higher energetic requirement by shuttling
lactate to a variety of sites where it could be oxidized directly, re-
converted back to pyruvate or glucose and oxidized again, allow-
ing the process of glycolysis to restart and ATP provision main-
tained (Brooks, 2000; Philp et al., 2005). This corroborates the
higher concentration of lactate in cells during lactation than dur-
ing dry-off period 5 weeks before parturition in cattle reported
by Schwarm et al. (2013). Besides this, a top candidate gene
in the Draa population was the agouti signaling protein (ASIP)
(Table 1), which plays a key role in the modulation of hair and
skin pigmentation in mammals (Lu et al., 1994; Furumura et al.,
1996; Kanetsky et al., 2002) by antagonizing the effect of the
melanocortin-1 receptor gene (MC1R) and promoting the synthe-
sis of phaeomelanin, a yellow–red pigment (Hida et al., 2009).
ASIP was associated with different coat colors in cattle and sheep
(Seo et al., 2007; Norris and Whan, 2008). The strong selec-
tive sweep related to this gene could be linked to the higher
variation in Draa’s coat color when compared to other popula-
tions (Ibnelbachyr et al., in preparation). This variation in coat
color was highly represented in the 14 Draa samples used in
this study (Table S4). However, previous studies focussing on
this gene identified an important polymorphism in worldwide
goat breeds without any clear association with differences in coat
color (Badaoui et al., 2011; Adefenwa et al., 2013). Fontanesi et al.
(2009b) reported the presence of a copy number variation (CNV)
affecting ASIP and AHCY genes, and might be associated to the
white color in Girgentana and Saneen breeds. Nevertheless, the
design of our study was not adapted to identify CNV and we can-
not link the selection signature detected here in this gene to the
findings of this study.

In the Northern population, no GO term was enriched but
the second ranked candidate gene identified was TRAP1, which
encodes a mitochondrial chaperone protein (Felts et al., 2000).
Under stress conditions this gene was shown to protect cells from
reactive oxygen species, (ROS)-induced apoptosis and senescence
(Im et al., 2007; Pridgeon et al., 2007). Such regulation of the cel-
lular stress response would play a role in the adaptation of this
population to harsh environments (e.g., mountainous areas in the
North of Morocco).

Finally, several strong signals of selection pointed to genes
or pathways for which possible functions remained ambiguous.
For example in the Northern population, the strong signal of
selection associated with FOXP2, which encodes for a regula-
tory protein, is required for proper development of language in
Humans (Lai et al., 2001), song learning in songbirds (Haesler
et al., 2004), and learning of rapid movement sequences in mice
(Groszer et al., 2008). This gene could be involved in learning but
its possible functions in goats cannot be hypothesized easily. A
similar case was found in the Draa population for which GO cate-
gories linked to behavior and vocalization behavior (GO:0071625;
GO:0030534; GO:0007610) were enriched. We were not able to
predict the possible functions of these genes. Furthermore, the
NR6A1 gene that was identified potentially under selection in
Draa (within the top 0.1% XP-CLR scores) was previously asso-
ciated with the number of vertebras in pigs (Mikawa et al., 2007;
Rubin et al., 2012). Considering the larger body length and size in
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this population in comparison with the Black population (Ibnel-
bachyr et al., in preparation), we could hypothesize a similar role
of this gene in the body elongation in goats. A future characteri-
zation of this morphologic trait in Draa goats would confirm or
refute this hypothesis.

Conclusion

Our study characterized whole genome variation in the main goat
indigenous populations at a countrywide scale in an unprece-
dented way. The whole genome data and the wide geographic
spread of animals allowed for a precise characterization of the
distribution of genomic diversity in various populations. The
position of Morocco has made it subject to various coloniza-
tion waves for domestic animals. Additionally, previous and
present management schemes have favored gene flow between
goat populations. This created and maintained a very high level
of total genetic diversity that is weakly structured according
to geography and populations. A part of the overall diversity
corresponded to potentially adaptive variation, as several genes
appeared to be under selection. The different populations stud-
ied appeared to bear specific adaptations, even when submitted to
similar conditions such as those related to a warm/desert context.
This would demonstrate the potential of different indigenous
livestock populations to constitute complementary reservoirs
of possibly adaptive diversity that would be highly valuable in
the context of global environmental changes. However, these
populations are threatened due to their substitution by more
productive cosmopolitan breeds that should not have the poten-
tial to become locally adapted to harsh environments. It is thus
extremely important to promote the sustainable management of
these genetic resources with emphasis on both overall neutral and
adaptive diversity. This study has also identified several genes
as potentially under selection and further studies are needed to
depict the underlying mechanisms.

Accession numbers

The accession numbers of the 44 samples in the BioSamples
archive, the accession numbers of the sequencing data and

aligned bam files in the ENA archive are reported in the Table S1.
The variant calls and genotype calls used in this paper are
archived in the European Variation Archive with accession ID
ERZ020631.
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