M. R. Abraham, V. A. Selivanov, D. M. Hodgson, D. Pucar, L. V. Zingman et al., Coupling of cell energetics with membrane metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out, J Biol Chem, vol.277, issue.27, pp.24427-24461, 2002.

Y. J. Ahn, H. Kim, H. Lim, M. Lee, Y. Kang et al., AMP-activated protein kinase: implications on ischemic diseases, BMB Rep, vol.45, issue.9, pp.489-95, 2012.

A. E. Alekseev, S. Reyes, V. A. Selivanov, P. P. Dzeja, and A. Terzic, Compartmentation of membrane processes and nucleotide dynamics in diffusion-restricted cardiac cell microenvironment, J Mol Cell Cardiol, vol.52, issue.2, pp.401-410, 2012.

D. R. Alessi, K. Sakamoto, and J. R. Bayascas, LKB1-dependent signaling pathways, Annu Rev Biochem, vol.75, pp.137-63, 2006.

M. K. Aliev and V. A. Saks, Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration, Biophys J, vol.73, issue.1, pp.428-473, 1997.
URL : https://hal.archives-ouvertes.fr/inserm-00391359

M. Aliev, R. Guzun, M. Karu-varikmaa, T. Kaambre, T. Wallimann et al., Molecular system bioenergics of the heart: experimental studies of metabolic compartmentation and energy fluxes versus computer modeling, Int J Mol Sci, vol.12, issue.12, pp.9296-331, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00696211

M. F. Allard, H. L. Parsons, R. Saeedi, R. B. Wambolt, and R. Brownsey, AMPK and metabolic adaptation by the heart to pressure overload, Am J Physiol Heart Circ Physiol, vol.292, issue.1, pp.140-148, 2007.

C. R. Alves, J. C. Ferreira, M. A. De-siqueira-filho, C. R. Carvalho, A. H. Lancha et al., Creatine-induced glucose uptake in type 2 diabetes: a role for AMPK-alpha?, Amino Acids, vol.43, issue.4, pp.1803-1810, 2012.

R. K. Amanfu and J. J. Saucerman, Cardiac models in drug discovery and development: a review, Crit Rev Biomed Eng, vol.39, issue.5, pp.379-95, 2011.

G. A. Amodeo, M. J. Rudolph, and L. Tong, Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1, Nature, vol.449, issue.7161, pp.492-497, 2007.

M. N. Andersen and H. B. Rasmussen, AMPK: A regulator of ion channels, Commun Integr Biol, vol.5, issue.5, pp.480-484, 2012.

M. A. Aon and S. Cortassa, Mitochondrial network energetics in the heart, Wiley Interdiscip Rev Syst Biol Med, vol.4, issue.6, pp.599-613, 2012.

A. P. Arkin and D. V. Schaffer, Network news: innovations in 21st century systems biology, Cell, vol.144, issue.6, pp.844-853, 2011.

D. E. Atkinson, The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry, vol.7, issue.11, pp.4030-4034, 1968.

M. Avkiran, A. J. Rowland, F. Cuello, and R. S. Haworth, Protein kinase d in the cardiovascular system: emerging roles in health and disease, Circ Res, vol.102, issue.2, pp.157-63, 2008.

R. S. Balaban, Cardiac energy metabolism homeostasis: role of cytosolic calcium, J Mol Cell Cardiol, vol.34, issue.10, pp.1259-71, 2002.

R. S. Balaban, Domestication of the cardiac mitochondrion for energy conversion, J Mol Cell Cardiol, vol.46, pp.832-873, 2009.

R. S. Balaban, The role of Ca 2+ signaling in the coordination of mitochondrial ATP production with cardiac work, Biochim Biophys Acta, vol.1787, issue.11, pp.1334-1375, 2009.

R. S. Balaban, Perspectives on: SGP symposium on mitochondrial physiology and medicine: metabolic homeostasis of the heart, J Gen Physiol, vol.139, issue.6, pp.407-421, 2012.

R. S. Balaban, H. L. Kantor, L. A. Katz, and R. W. Briggs, Relation between work and phosphate metabolite in the in vivo paced mammalian heart, Science, vol.232, issue.4754, pp.1121-1124, 1986.

M. R. Banko, J. J. Allen, B. E. Schaffer, E. W. Wilker, P. Tsou et al., Chemical genetic screen for AMPKalpha2 substrates uncovers a network of proteins involved in mitosis, Mol Cell, vol.44, issue.6, pp.878-92, 2011.

S. Basak, M. Behar, and A. Hoffmann, Lessons from mathematically modeling the NF-kappaB pathway, Immunol Rev, vol.246, issue.1, pp.221-259, 2012.

A. Bateman, The structure of a domain common to archaebacteria and the homocystinuria disease protein, Trends Biochem Sci, vol.22, issue.1, pp.12-15, 1997.

E. Beard and O. Braissant, Synthesis and transport of creatine in the CNS: importance for cerebral functions, J Neurochem, vol.115, issue.2, pp.297-313, 2010.

C. Behrends, M. E. Sowa, S. P. Gygi, and J. W. Harper, Network organization of the human autophagy system, Nature, vol.466, issue.7302, pp.68-76, 2010.

V. A. Belitzer and E. T. Tsybakova, About mechanism of phosphorylation, respiratory coupling, Biokhimiya, vol.4, pp.516-550, 1939.

K. F. Benedict, M. Gabhann, F. Amanfu, R. K. Chavali, A. K. Gianchandani et al., Systems analysis of small signaling modules relevant to eight human diseases, Ann Biomed Eng, vol.39, issue.2, pp.621-656, 2011.

A. Bensimon, A. J. Heck, and R. Aebersold, Mass spectrometry-based proteomics and network biology, Annu Rev Biochem, vol.81, pp.379-405, 2012.

N. Beraud, S. Pelloux, Y. Usson, A. V. Kuznetsov, X. Ronot et al., Mitochondrial dynamics in heart cells: very low amplitude high frequency fluctuations in adult cardiomyocytes and flow motion in non beating Hl-1 cells, J Bioenerg Biomembr, vol.41, issue.2, pp.195-214, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00380282

D. M. Bers, Cardiac excitation-contraction coupling, Nature, vol.415, issue.6868, pp.198-205, 2002.

D. M. Bers and S. Despa, Cardiac myocytes Ca 2+ and Na + regulation in normal and failing hearts, J Pharmacol Sci, vol.100, issue.5, pp.315-337, 2006.

S. P. Bessman and C. L. Carpenter, The creatine-creatine phosphate energy shuttle, Annu Rev Biochem, vol.54, pp.831-62, 1985.

S. P. Bessman and A. Fonyo, The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration, Biochem Biophys Res Commun, vol.22, issue.5, pp.597-602, 1966.

S. P. Bessman and P. J. Geiger, Transport of energy in muscle: the phosphorylcreatine shuttle, Science, vol.211, issue.4481, pp.448-52, 1981.

R. J. Bing, A. Siegel, I. Ungar, and M. Gilbert, Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism, Am J Med, vol.16, issue.4, pp.504-519, 1954.

S. Bose, S. French, F. J. Evans, F. Joubert, and R. S. Balaban, Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate, J Biol Chem, vol.278, issue.40, pp.39155-65, 2003.

O. Bouhidel, S. Pons, R. Souktani, R. Zini, A. Berdeaux et al., Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice, Am J Physiol Heart Circ Physiol, vol.295, issue.4, pp.1580-1586, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00335256

P. D. Boyer, The ATP, synthase-a splendid molecular machine, Annu Rev Biochem, vol.66, pp.717-766, 1997.

A. Breitkreutz, H. Choi, J. R. Sharom, L. Boucher, V. Neduva et al., A global protein kinase and phosphatase interaction network in yeast, Science, vol.328, issue.5981, pp.1043-1049, 2010.

G. J. Browne, S. G. Finn, and C. G. Proud, Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398, J Biol Chem, vol.279, issue.13, pp.12220-12251, 2004.

L. Bultot, B. Guigas, V. Wilamowitz-moellendorff, A. Maisin, L. Vertommen et al., AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase, Biochem J, vol.443, issue.1, pp.193-203, 2012.

B. Burwinkel, J. W. Scott, C. Buhrer, F. K. Van-landeghem, G. F. Cox et al., Fatal congenital heart glycogenosis caused by a recurrent activating R531Q mutation in the gamma 2-subunit of AMP-activated protein kinase (PRKAG2), not by phosphorylase kinase deficiency, Am J Hum Genet, vol.76, issue.6, pp.1034-1083, 2005.

J. W. Calvert, S. Gundewar, S. Jha, J. J. Greer, W. H. Bestermann et al., Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling, Diabetes, vol.57, issue.3, pp.696-705, 2008.

C. Canto, Z. Gerhart-hines, J. N. Feige, M. Lagouge, L. Noriega et al., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature, vol.458, issue.7241, pp.1056-60, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00383329

Y. Capetanaki, R. J. Bloch, A. Kouloumenta, M. Mavroidis, and S. Psarras, Muscle intermediate filaments and their links to membranes and membranous organelles, Exp Cell Res, vol.313, issue.10, pp.2063-76, 2007.

Y. Capetenaki, Desmin cytoskeleton: a potential regulator of muscle mitochondrial behaviour and function, Trends Cardiovasc Med, vol.12, issue.8, pp.339-387, 2002.

M. D. Carattino, R. S. Edinger, H. J. Grieser, R. Wise, D. Neumann et al., Epithelial sodium channel inhibition by AMP-activated protein kinase in oocytes and polarized renal epithelial cells, J Biol Chem, vol.280, issue.18, pp.17608-17624, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00390871

D. Carling, C. Thornton, A. Woods, and M. J. Sanders, AMP-activated protein kinase: new regulation, new roles?, Biochem J, vol.445, issue.1, pp.11-27, 2012.

R. B. Ceddia and G. Sweeney, Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells, J Physiol, vol.555, issue.2, pp.409-430, 2004.

T. J. Chang, W. P. Chen, C. Yang, P. H. Lu, Y. C. Liang et al., Serine-385 phosphorylation of inwardly rectifying K + channel subunit (Kir6.2) by AMP-dependent protein kinase plays a key role in rosiglitazone-induced closure of the K(ATP) channel and insulin secretion in rats, Diabetologia, vol.52, issue.6, pp.1112-1133, 2009.

L. Chen, Z. H. Jiao, L. S. Zheng, Y. Y. Zhang, S. T. Xie et al., Structural insight into the autoinhibition mechanism of AMP-activated protein kinase, Nature, vol.459, issue.7250, pp.1146-1155, 2009.

L. Chen, J. Wang, Y. Y. Zhang, S. F. Yan, D. Neumann et al., AMP-activated protein kinase undergoes nucleotide-dependent conformational changes, Nat Struct Mol Biol, vol.19, issue.7, pp.716-724, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01930764

L. Chen, F. J. Xin, J. Wang, J. Hu, Y. Y. Zhang et al., Conserved regulatory elements in AMPK, Nature, vol.498, pp.8-10, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01870088

K. Chen, S. Kobayashi, X. Xu, B. Viollet, and Q. Liang, AMP activated protein kinase is indispensable for myocardial adaptation to caloric restriction in mice, PLoS One, vol.8, issue.3, p.59682, 2013.

A. J. Clark, R. Gaddie, and C. P. Stewart, The aerobic metabolism of the isolated frog's heart poisoned by iodoacetic acid, J Physiol, vol.90, issue.3, pp.335-381, 1937.

H. Clark, D. Carling, and D. Saggerson, Covalent activation of heart AMP-activated protein kinase in response to physiological concentrations of long-chain fatty acids, Eur J Biochem, vol.271, issue.11, pp.2215-2239, 2004.

P. R. Clarke and D. G. Hardie, Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver, EMBO J, vol.9, issue.8, pp.2439-2485, 1990.

T. J. Collins and M. D. Bootman, Mitochondria are morphologically heterogeneous within cells, J Exp Biol, vol.206, pp.1993-2000, 2003.

S. Cortassa, B. O'rourke, R. L. Winslow, and M. A. Aon, Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function, Biophys J, vol.96, issue.6, pp.2466-78, 2009.

D. L. Coven, X. Hu, L. Cong, R. Bergeron, G. I. Shulman et al., Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise, Am J Physiol Endocrinol Metab, vol.285, issue.3, pp.629-665, 2003.

M. D. Darrabie, A. J. Arciniegas, R. Mishra, D. E. Bowles, D. O. Jacobs et al., AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes, Am J Physiol Endocrinol Metab, vol.300, issue.5, pp.870-876, 2011.

S. P. Davies, D. Carling, M. R. Munday, and D. G. Hardie, Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freezeclamping. Effects of high fat diets, Eur J Biochem, vol.203, issue.3, pp.615-638, 1992.

S. P. Davies, N. R. Helps, P. T. Cohen, and D. G. Hardie, 0 -AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC, FEBS Lett, vol.5, issue.3, pp.421-426, 1995.

J. K. Davies, D. J. Wells, K. Liu, H. R. Whitrow, T. D. Daniel et al., Characterization of the role of gamma2 R531G mutation in AMP-activated protein kinase in cardiac hypertrophy and Wolff-Parkinson-White syndrome, Am J Physiol Heart Circ Physiol, vol.290, issue.5, pp.1942-51, 2006.

C. A. Dieni and K. B. Storey, Creatine kinase regulation by reversible phosphorylation in frog muscle, Comp Biochem Physiol B Biochem Mol Biol, vol.152, issue.4, pp.405-417, 2009.

D. Diviani, D. Maric, P. Lopez, I. Cavin, S. et al., A-kinase anchoring proteins: Molecular regulators of the cardiac stress response, Biochim Biophys Acta, vol.1833, issue.4, pp.901-909, 2013.

N. Djouder, R. D. Tuerk, M. Suter, P. Salvioni, R. F. Thali et al., PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis, EMBO J, vol.29, issue.2, pp.469-81, 2010.

V. W. Dolinsky, A. Y. Chan, I. Robillard-frayne, P. E. Light, D. Rosiers et al., Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1, Circulation, vol.119, issue.12, pp.1643-52, 2009.

D. Santos, P. Aliev, M. K. Diolez, P. Duclos, F. Besse et al., Metabolic control of contractile performance in isolated perfused rat heart. Analysis of experimental data by reaction:diffusion mathematical model, J Mol Cell Cardiol, vol.32, issue.9, pp.1703-1737, 2000.

J. Doussiere, E. Ligeti, G. Brandolin, and P. V. Vignais, Control of oxidative phosphorylation in rat heart mitochondria. The role of the adenine nucleotide carrier, Biochim Biophys Acta, vol.766, issue.2, pp.492-500, 1984.

P. P. Dzeja and A. Terzic, Phosphotransfer networks and cellular energetics, J Exp Biol, vol.206, pp.2039-2086, 2003.

P. Dzeja and A. Terzic, Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing, Int J Mol Sci, vol.10, issue.4, pp.1729-72, 2009.

P. P. Dzeja, R. J. Zeleznikar, and N. D. Goldberg, Suppression of creatine kinase-catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle, J Biol Chem, vol.271, issue.22, pp.12847-51, 1996.

P. P. Dzeja, K. T. Vitkevicius, M. M. Redfield, J. C. Burnett, and A. Terzic, Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure, Circ Res, vol.84, issue.10, pp.1137-1180, 1999.

P. P. Dzeja, E. L. Holmuhamedov, C. Ozcan, D. Pucar, A. Jahangir et al., Mitochondria: gateway for cytoprotection, Circ Res, vol.89, issue.9, pp.744-750, 2001.

P. P. Dzeja, P. Bast, D. Pucar, B. Wieringa, and A. Terzic, Defective metabolic signaling in adenylate kinase AK1 gene knock-out hearts compromises post-ischemic coronary reflow, J Biol Chem, vol.282, issue.43, pp.31366-72, 2007.

P. P. Dzeja, K. Hoyer, R. Tian, S. Zhang, E. Nemutlu et al., Rearrangement of energetic and substrate utilization networks compensate for chronic myocardial creatine kinase deficiency, J Physiol, vol.589, pp.5193-211, 2011.

P. P. Dzeja, S. Chung, R. S. Faustino, A. Behfar, and A. Terzic, Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation, PLoS One, vol.6, issue.4, p.19300, 2011.

M. Eder, U. Schlattner, A. Becker, T. Wallimann, W. Kabsch et al., Crystal structure of brain-type creatine kinase at 1.41 A resolution, Protein Sci, vol.8, issue.11, pp.2258-69, 1999.
URL : https://hal.archives-ouvertes.fr/inserm-00390826

M. Eder, K. Fritz-wolf, W. Kabsch, T. Wallimann, and U. Schlattner, Crystal structure of human ubiquitous mitochondrial creatine kinase, Proteins, vol.39, issue.3, p.39, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00390827

H. V. Edwards, F. Christian, and G. S. Baillie, cAMP: novel concepts in compartmentalised signalling, Semin Cell Dev Biol, vol.23, issue.2, pp.181-90, 2012.

D. F. Egan, D. B. Shackelford, M. M. Mihaylova, S. Gelino, R. A. Kohnz et al., Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy, Science, vol.331, issue.6016, pp.456-61, 2011.

W. R. Ellington, Evolution and physiological roles of phosphagen systems, Annu Rev Physiol, vol.63, pp.289-325, 2001.

W. R. Ellington and T. Suzuki, Early evolution of the creatine kinase gene family and the capacity for creatine biosynthesis and membrane transport, Subcell Biochem, vol.46, pp.17-26, 2007.

R. M. Ewing, P. Chu, F. Elisma, H. Li, P. Taylor et al., Large-scale mapping of human protein-protein interactions by mass spectrometry, Mol Syst Biol, vol.3, p.89, 2007.

J. T. Fassett, X. Hu, X. Xu, Z. Lu, P. Zhang et al., AMPK attenuates microtubule proliferation in cardiac hypertrophy, Am J Physiol Heart Circ Physiol, vol.304, issue.5, pp.749-58, 2013.

D. A. Fell and S. Thomas, Physiological control of metabolic flux: the requirement for multisite modulation, Biochem J, vol.311, pp.35-44, 1995.

P. Finckenberg and E. Mervaala, Novel regulators and drug targets of cardiac hypertrophy, J Hypertens, vol.28, issue.1, pp.33-41, 2010.

C. Forcet and M. Billaud, Dialogue between LKB1 and AMPK: a hot topic at the cellular pole, Sci STKE, issue.404, p.51, 2007.

S. A. Fraser, I. Gimenez, N. Cook, I. Jennings, M. Katerelos et al., Regulation of the renal-specific Na + -K + -2Cl -co-transporter NKCC2 by AMP-activated protein kinase, 2007.

, Biochem J, vol.405, issue.1, pp.85-93

M. Frederich and J. A. Balschi, The relationship between AMP-activated protein kinase activity and AMP concentration in the isolated perfused rat heart, J Biol Chem, vol.277, issue.3, pp.1928-1960, 2002.

M. Frederich, L. Zhang, and J. A. Balschi, Hypoxia and AMP independently regulate AMP-activated protein kinase activity in heart, Am J Physiol Heart Circ Physiol, vol.288, issue.5, pp.2412-2433, 2005.

S. Frey, T. Millat, S. Hohmann, and O. Wolkenhauer, How quantitative measures unravel design principles in multi-stage phosphorylation cascades, J Theor Biol, vol.254, issue.1, pp.27-36, 2008.

K. Fritz-wolf, T. Schnyder, T. Wallimann, and W. Kabsch, Structure of mitochondrial creatine kinase, Nature, vol.381, issue.6580, pp.341-346, 1996.
URL : https://hal.archives-ouvertes.fr/inserm-00390827

C. Frosig, C. Pehmoller, J. B. Birk, E. A. Richter, and J. F. Wojtaszewski, Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle, J Physiol, vol.588, pp.4539-4587, 2010.

L. Garcia-haro, M. A. Garcia-gimeno, D. Neumann, M. Beullens, M. Bollen et al., The PP1-R6 protein phosphatase holoenzyme is involved in the glucose-induced dephosphorylation and inactivation of AMP-activated protein kinase, a key regulator of insulin secretion, in MIN6 beta cells, FASEB J, vol.24, issue.12, pp.5080-91, 2010.

B. Glancy and R. S. Balaban, Role of mitochondrial Ca 2+ in the regulation of cellular energetics, Biochemistry, vol.51, issue.14, pp.2959-73, 2012.

M. Gonzalez-granillo, A. Grichine, R. Guzun, Y. Usson, K. Tepp et al., Studies of the role of tubulin beta II isotype in regulation of mitochondrial respiration in intracellular energetic units in cardiac cells, J Mol Cell Cardiol, vol.52, pp.437-484, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00618411

S. Gratia, L. Kay, L. Potenza, A. Seffouh, V. Novel-chate et al., Inhibition of AMPK signalling by doxorubicin: at the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress, Cardiovasc Res, vol.95, issue.3, pp.290-299, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00696358

E. L. Greer, P. R. Oskoui, M. R. Banko, J. M. Maniar, M. P. Gygi et al., The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor, J Biol Chem, vol.282, issue.41, pp.30107-30126, 2007.

E. J. Griffiths and G. A. Rutter, Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells, Biochim Biophys Acta, vol.1787, pp.1324-1357, 2009.

A. K. Groen, R. J. Wanders, H. V. Westerhoff, R. Van-der-meer, and J. M. Tager, Quantification of the contribution of various steps to the control of mitochondrial respiration, J Biol Chem, vol.257, issue.6, pp.2754-2761, 1982.

R. Guzun and V. Saks, Application of the principles of systems biology and Wiener's cybernetics for analysis of regulation of energy fluxes in muscle cells in vivo, Int J Mol Sci, vol.11, issue.3, pp.982-1019, 2010.

R. Guzun, N. Timohhina, K. Tepp, C. Monge, T. Kaambre et al., Regulation of respiration controlled by mitochondrial creatine kinase in permeabilized cardiac cells in situ. Importance of system level properties, Biochim Biophys Acta, vol.1787, issue.9, pp.1089-105, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00391389

R. Guzun, M. Karu-varikmaa, M. Gonzalez-granillo, A. V. Kuznetsov, L. Michel et al., Mitochondria-cytoskeleton interaction: distribution of beta-tubulins in cardiomyocytes and HL-1 cells, Biochim Biophys Acta, vol.1807, issue.4, pp.458-69, 2011.

R. Guzun, N. Timohhina, K. Tepp, M. Gonzalez-granillo, I. Shevchuk et al., Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function, Amino Acids, vol.40, pp.1333-1381, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00633092

R. Guzun, M. Gonzalez-granillo, M. Karu-varikmaa, A. Grichine, Y. Usson et al., Regulation of respiration in muscle cells in vivo by VDAC through interaction with the cytoskeleton and MtCK within mitochondrial interactosome, Biochim Biophys Acta, vol.1818, issue.6, pp.1545-54, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00695536

D. M. Gwinn, D. B. Shackelford, D. F. Egan, M. M. Mihaylova, A. Mery et al., AMPK phosphorylation of raptor mediates a metabolic checkpoint, Mol Cell, vol.30, issue.2, pp.214-240, 2008.

C. R. Hackenbrock, Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states, Proc Natl Acad Sci, vol.61, issue.2, pp.598-605, 1968.

K. R. Hallows, J. E. Mccane, B. E. Kemp, L. A. Witters, and J. K. Foskett, Regulation of channel gating by AMP-activated protein kinase modulates cystic fibrosis transmembrane conductance regulator activity in lung submucosal cells, J Biol Chem, vol.278, issue.2, pp.998-1004, 2003.

Y. Han, Q. Wang, P. Song, Y. Zhu, and M. H. Zou, Redox regulation of the AMP-activated protein kinase, PLoS One, vol.5, issue.11, p.15420, 2010.

M. Harada, S. N. Nattel, and S. Nattel, AMP-activated protein kinase: potential role in cardiac electrophysiology and arrhythmias, Circ Arrhythm Electrophysiol, vol.5, issue.4, pp.860-867, 2012.

D. G. Hardie, AMP-activated protein kinase as a drug target, Annu Rev Pharmacol Toxicol, vol.47, pp.185-210, 2007.

D. G. Hardie and D. Carling, The AMP-activated protein kinase-fuel gauge of the mammalian cell?, Eur J Biochem, vol.246, issue.2, pp.259-73, 1997.

D. G. Hardie and S. A. Hawley, AMP-activated protein kinase: the energy charge hypothesis revisited, Bioessays, vol.23, issue.12, pp.1112-1121, 2001.

D. G. Hardie, D. Carling, and S. J. Gamblin, AMP-activated protein kinase: also regulated by ADP?, Trends Biochem Sci, vol.36, issue.9, pp.470-477, 2011.

D. G. Hardie, F. A. Ross, and S. A. Hawley, AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nat Rev Mol Cell Biol, vol.13, issue.4, pp.251-62, 2012.

D. G. Hardie, F. A. Ross, and S. A. Hawley, AMP-activated protein kinase: a target for drugs both ancient and modern, Chem Biol, vol.19, issue.10, pp.1222-1258, 2012.

S. A. Hawley, M. Davison, A. Woods, S. P. Davies, R. K. Beri et al., Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase, J Biol Chem, vol.271, issue.44, pp.27879-87, 1996.

S. A. Hawley, J. Boudeau, J. L. Reid, K. J. Mustard, L. Udd et al., Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade, J Biol, vol.2, issue.4, p.28, 2003.

S. A. Hawley, D. A. Pan, K. J. Mustard, L. Ross, J. Bain et al., Calmodulindependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase, Cell Metab, vol.2, issue.1, pp.9-19, 2005.

T. Hayashi, M. E. Martone, Z. Yu, A. Thor, M. Doi et al., Three-dimensional electron microscopy reveals new details of membrane systems for Ca 2+ signaling in the heart, J Cell Sci, vol.122, pp.1005-1018, 2009.

A. Heerschap, H. E. Kan, C. I. Nabuurs, W. K. Renema, D. Isbrandt et al., In vivo magnetic resonance spectroscopy of transgenic mice with altered expression of guanidinoacetate methyltransferase and creatine kinase isoenzymes, Subcell Biochem, vol.46, pp.119-167, 2007.

I. Hers, E. E. Vincent, and J. M. Tavare, Akt signalling in health and disease, Cell Signal, vol.23, issue.10, pp.1515-1542, 2011.

S. Hoppe, H. Bierhoff, I. Cado, A. Weber, M. Tiebe et al., AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply, Proc Natl Acad Sci, vol.106, issue.42, pp.17781-17787, 2009.

S. Horman, D. Vertommen, R. Heath, D. Neumann, V. Mouton et al., Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491, J Biol Chem, vol.281, issue.9, pp.5335-5375, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00390879

S. Horman, C. Beauloye, J. L. Vanoverschelde, and L. Bertrand, AMP-activated protein kinase in the control of cardiac metabolism and remodeling, Curr Heart Fail Rep, vol.9, issue.3, pp.164-73, 2012.

X. Hu, X. Xu, Z. Lu, P. Zhang, J. Fassett et al., AMP activated protein kinase-alpha2 regulates expression of estrogen-related receptor-alpha, a metabolic transcription factor related to heart failure development, Hypertension, vol.58, issue.4, pp.696-703, 2011.

L. Hue and H. Taegtmeyer, The Randle cycle revisited: a new head for an old hat, Am J Physiol Endocrinol Metab, vol.297, issue.3, pp.578-91, 2009.

R. L. Hurley, K. A. Anderson, J. M. Franzone, B. E. Kemp, A. R. Means et al., The Ca 2+ / calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases, J Biol Chem, vol.280, issue.32, pp.29060-29066, 2005.

R. L. Hurley, L. K. Barre, S. D. Wood, K. A. Anderson, B. E. Kemp et al., Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP, J Biol Chem, vol.281, issue.48, pp.36662-72, 2006.

T. Ideker, J. Dutkowski, and L. Hood, Boosting signal-to-noise in complex biology: prior knowledge is power, Cell, vol.144, issue.6, pp.860-863, 2011.

N. Ikematsu, M. L. Dallas, F. A. Ross, R. W. Lewis, J. N. Rafferty et al., Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability, Proc Natl Acad Sci, vol.108, issue.44, pp.18132-18139, 2011.

K. Imamura, T. Ogura, A. Kishimoto, M. Kaminishi, and H. Esumi, Cell cycle regulation via p53 phosphorylation by a 5'-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line, Biochem Biophys Res Commun, vol.287, issue.2, pp.562-569, 2001.

J. S. Ingwall, Is creatine kinase a target for AMP-activated protein kinase in the heart?, J Mol Cell Cardiol, vol.34, issue.9, pp.1111-1131, 2002.

J. S. Ingwall, On the hypothesis that the failing heart is energy starved: lessons learned from the metabolism of ATP and creatine, Curr Hypertens Rep, vol.8, issue.6, pp.457-64, 2006.

J. S. Ingwall and R. G. Weiss, Is the failing heart energy starved? On using chemical energy to support cardiac function, Circ Res, vol.95, issue.2, pp.135-180, 2004.

K. Inoki, T. Zhu, and K. L. Guan, TSC2 mediates cellular energy response to control cell growth and survival, Cell, vol.115, issue.5, pp.577-90, 2003.

K. Inoki, J. Kim, and K. L. Guan, AMPK and mTOR in cellular energy homeostasis and drug targets, Annu Rev Pharmacol Toxicol, vol.52, pp.381-400, 2012.

I. Irrcher, P. J. Adhihetty, T. Sheehan, A. M. Joseph, and D. A. Hood, PPARgamma coactivator-1alpha expression during thyroid hormone-and contractile activity-induced mitochondrial adaptations, Am J Physiol Cell Physiol, vol.284, issue.6, pp.1669-77, 2003.

W. E. Jacobus and V. A. Saks, Creatine kinase of heart mitochondria: changes in its kinetic properties induced by coupling to oxidative phosphorylation, Arch Biochem Biophys, vol.219, issue.1, pp.167-78, 1982.

S. Jager, C. Handschin, J. St-pierre, and B. M. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha, Proc Natl Acad Sci, vol.104, issue.29, pp.12017-12039, 2007.

S. M. Jeon, N. S. Chandel, and N. Hay, AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress, Nature, vol.485, issue.7400, pp.661-666, 2012.

R. G. Jones, D. R. Plas, S. Kubek, M. Buzzai, J. Mu et al., AMP-activated protein kinase induces a p53-dependent metabolic checkpoint, Mol Cell, vol.18, issue.3, pp.283-93, 2005.

T. C. Ju, Y. S. Lin, and Y. Chern, Energy dysfunction in Huntington's disease: insights from PGC-1alpha, AMPK, and CKB, Cell Mol Life Sci, vol.69, issue.24, pp.4107-4127, 2012.

B. B. Kahn, T. Alquier, D. Carling, and D. G. Hardie, AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism, Cell Metab, vol.1, issue.1, pp.15-25, 2005.

H. E. Kan, T. E. Buse-pot, R. Peco, D. Isbrandt, A. Heerschap et al., Lower force and impaired performance during high-intensity electrical stimulation in skeletal muscle of GAMT-deficient knockout mice, Am J Physiol Cell Physiol, vol.289, issue.1, pp.113-122, 2005.

S. Kang, E. R. Chemaly, R. J. Hajjar, and D. Lebeche, Resistin promotes cardiac hypertrophy via the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) and c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathways, J Biol Chem, vol.286, issue.21, pp.18465-73, 2011.

T. Kawaguchi, K. Osatomi, H. Yamashita, T. Kabashima, and K. Uyeda, Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase, J Biol Chem, vol.277, issue.6, pp.3829-3864, 2002.

L. Kay, K. Nicolay, B. Wieringa, V. Saks, and T. Wallimann, Direct evidence for the control of mitochondrial respiration by mitochondrial creatine kinase in oxidative muscle cells in situ, J Biol Chem, vol.275, issue.10, pp.6937-6981, 2000.

M. Kelly, C. Keller, P. R. Avilucea, P. Keller, Z. Luo et al., AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise, Biochem Biophys Res Commun, vol.320, issue.2, pp.449-54, 2004.

B. E. Kemp, J. S. Oakhill, and J. W. Scott, AMPK structure and regulation from three angles, Structure, vol.15, issue.10, pp.1161-1164, 2007.

S. Kerrien, B. Aranda, L. Breuza, A. Bridge, F. Broackes-carter et al., The IntAct molecular interaction database in 2012, Nucleic Acids Res, vol.40, pp.841-847, 2012.

A. S. Kim, E. J. Miller, T. M. Wright, J. Li, D. Qi et al., A small molecule AMPK activator protects the heart against ischemia-reperfusion injury, J Mol Cell Cardiol, vol.51, issue.1, pp.24-32, 2011.

J. Kim, M. Kundu, B. Viollet, and K. L. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nat Cell Biol, vol.13, issue.2, pp.132-173, 2011.

M. Kim, M. Shen, S. Ngoy, G. Karamanlidis, R. Liao et al., AMPK isoform expression in the normal and failing hearts, J Mol Cell Cardiol, vol.52, issue.5, pp.1066-73, 2012.

A. Klaus, C. Polge, S. Zorman, Y. Auchli, R. Brunisholz et al., A two-dimensional screen for AMPK substrates identifies tumor suppressor fumarate hydratase as a preferential AMPKalpha2 substrate, J Proteomics, vol.75, issue.11, pp.3304-3317, 2012.

A. Klaus, S. Zorman, A. Berthier, C. Polge, S. Ramirez-rios et al., Glutathione S-transferases interact with AMP-activated protein kinase: evidence for S-glutathionylation and activation in vitro, PLoS One, vol.8, p.62497, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01987684

M. Klingenberg, Mitochondria metabolite transport, FEBS Lett, vol.6, issue.3, pp.145-54, 1970.

M. Klingenberg, The state of ADP or ATP fixed to the mitochondria by bongkrekate, Eur J Biochem/FEBS, vol.65, issue.2, pp.601-606, 1976.

M. Klingenberg, The ADP, and ATP transport in mitochondria and its carrier, Biochim Biophys Acta, vol.1778, issue.10, pp.1978-2021, 2008.

H. J. Ko, Z. Zhang, D. Y. Jung, J. Y. Jun, Z. Ma et al., Nutrient stress activates inflammation and reduces glucose metabolism by suppressing AMP-activated protein kinase in the heart, Diabetes, vol.58, issue.11, pp.2536-2582, 2009.

K. Kobayashi and J. R. Neely, Control of maximum rates of glycolysis in rat cardiac muscle, Circ Res, vol.44, issue.2, pp.166-75, 1979.

B. Kola, E. Hubina, S. A. Tucci, T. C. Kirkham, E. A. Garcia et al., Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase, J Biol Chem, vol.280, issue.26, pp.25196-201, 2005.

S. H. Koo, L. Flechner, L. Qi, X. Zhang, R. A. Screaton et al., The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism, Nature, vol.437, issue.7062, pp.1109-1120, 2005.

N. Kudo, A. J. Barr, R. L. Barr, S. Desai, and G. D. Lopaschuk, High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase, J Biol Chem, vol.270, issue.29, pp.17513-17533, 1995.

N. Kudo, J. G. Gillespie, L. Kung, L. A. Witters, R. Schulz et al., Characterization of 5 0 AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia, Biochim Biophys Acta, vol.1301, issue.1-2, pp.67-75, 1996.

S. S. Kulkarni, H. K. Karlsson, F. Szekeres, A. V. Chibalin, A. Krook et al., Suppression of 5 0 -nucleotidase enzymes promotes AMP-activated protein kinase (AMPK) phosphorylation and metabolism in human and mouse skeletal muscle, J Biol Chem, vol.286, issue.40, pp.34567-74, 2011.

E. J. Kurth-kraczek, M. F. Hirshman, L. J. Goodyear, and W. W. Winder, 0 AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle, Diabetes, vol.5, issue.8, pp.1667-71, 1999.

A. V. Kuznetsov and R. Margreiter, Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity, Int J Mol Sci, vol.10, issue.4, pp.1911-1940, 2009.

A. V. Kuznetsov, J. F. Clark, K. Winkler, and W. S. Kunz, Increase of flux control of cytochrome c oxidase in copper-deficient mottled brindled mice, J Biol Chem, vol.271, issue.1, pp.283-291, 1996.

A. V. Kuznetsov, M. Hermann, J. Troppmair, R. Margreiter, and P. Hengster, Complex patterns of mitochondrial dynamics in human pancreatic cells revealed by fluorescent confocal imaging, J Cell Mol Med, vol.14, pp.417-442, 2009.

D. J. Kwiatkowski and B. D. Manning, Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways, Hum Mol Genet, vol.14, issue.2, pp.251-259, 2005.

F. Lan, J. M. Cacicedo, N. Ruderman, and Y. Ido, SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation, J Biol Chem, vol.283, issue.41, pp.27628-27635, 2008.

J. H. Lee, H. Koh, M. Kim, Y. Kim, S. Y. Lee et al., Energy-dependent regulation of cell structure by AMP-activated protein kinase, Nature, vol.447, issue.7147, pp.1017-1037, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167887

X. Leverve, E. Fontaine, F. Peronnet, J. Li, E. J. Miller et al., AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart, Circ Res, vol.97, issue.9, pp.872-881, 2005.

J. Li, D. L. Coven, E. J. Miller, X. Hu, M. E. Young et al., Activation of AMPK alphaand gamma-isoform complexes in the intact ischemic rat heart, Am J Physiol Heart Circ Physiol, vol.291, issue.4, pp.1927-1961, 2006.

H. L. Li, R. Yin, D. Chen, D. Liu, D. Wang et al., Long-term activation of adenosine monophosphate-activated protein kinase attenuates pressure-overload-induced cardiac hypertrophy, J Cell Biochem, vol.100, issue.5, pp.1086-99, 2007.

H. Li, R. F. Thali, C. Smolak, F. Gong, R. Alzamora et al., Regulation of the creatine transporter by AMP-activated protein kinase in kidney epithelial cells, Am J Physiol Renal Physiol, vol.299, issue.1, pp.167-77, 2010.

Y. Li, S. Xu, M. M. Mihaylova, B. Zheng, X. Hou et al., AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice, Cell Metab, vol.13, issue.4, pp.376-88, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02651599

X. H. Li, X. J. Chen, W. B. Ou, Q. Zhang, Z. R. Lv et al., Knockdown of creatine kinase B inhibits ovarian cancer progression by decreasing glycolysis, Int J Biochem Cell Biol, vol.45, issue.5, pp.979-86, 2013.

J. Liang, S. H. Shao, Z. X. Xu, B. Hennessy, Z. Ding et al., The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis, Nat Cell Biol, vol.9, issue.2, pp.218-242, 2007.

Y. Y. Lin, S. Kiihl, Y. Suhail, S. Y. Liu, Y. H. Chou et al., Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK, Nature, vol.482, issue.7384, pp.251-255, 2012.

J. Liobikas, D. M. Kopustinskiene, and A. Toleikis, What controls the outer mitochondrial membrane permeability for ADP: facts for and against the role of oncotic pressure, Biochim Biophys Acta, vol.1505, issue.2-3, pp.220-225, 2001.

C. A. Lygate, S. Bohl, M. Ten-hove, K. M. Faller, P. J. Ostrowski et al., Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction, Cardiovasc Res, vol.96, issue.3, pp.466-75, 2012.

C. A. Lygate, D. Aksentijevic, D. Dawson, T. Hove, M. Phillips et al., Living without creatine: unchanged exercise capacity and response to chronic myocardial infarction in creatine-deficient mice, Circ Res, vol.112, issue.6, pp.945-55, 2013.

H. Ma, J. Wang, D. P. Thomas, C. Tong, L. Leng et al., Impaired macrophage migration inhibitory factor-AMP-activated protein kinase activation and ischemic recovery in the senescent heart, Circulation, vol.122, issue.3, pp.282-92, 2010.

A. O. Makinde, J. Gamble, and G. D. Lopaschuk, Upregulation of 5 0 -AMP-activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rates following birth in the newborn rabbit, Circ Res, vol.80, issue.4, pp.482-491, 1997.

C. A. Mannella, Structure and dynamics of the mitochondrial inner membrane cristae, Biochim Biophys Acta, vol.1763, issue.5-6, pp.542-550, 2006.

F. Marcus, H. Berlin, A. S. Marsin, L. Bertrand, M. H. Rider et al., Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia, Bioinformatics and systems biology -collaborative research and resources, vol.10, pp.1247-55, 2000.

F. V. Mayer, R. Heath, E. Underwood, M. J. Sanders, D. Carmena et al., ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase, Cell Metab, vol.14, issue.5, pp.707-721, 2011.

A. Mcbride, S. Ghilagaber, A. Nikolaev, and D. G. Hardie, The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor, Cell Metab, vol.9, issue.1, pp.23-34, 2009.

K. R. Mcgaffin, C. S. Moravec, and C. F. Mctiernan, Leptin signaling in the failing and mechanically unloaded human heart, Circ Heart Fail, vol.2, issue.6, pp.676-83, 2009.

S. L. Mcgee and M. Hargreaves, AMPK and transcriptional regulation, Front Biosci, vol.13, pp.3022-3055, 2008.

S. L. Mcgee, K. F. Howlett, R. L. Starkie, D. Cameron-smith, B. E. Kemp et al., Exercise increases nuclear AMPK alpha2 in human skeletal muscle, Diabetes, vol.52, issue.4, pp.926-934, 2003.

S. L. Mcgee, B. J. Van-denderen, K. F. Howlett, J. Mollica, J. D. Schertzer et al., AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5, Diabetes, vol.57, issue.4, pp.860-867, 2008.

A. J. Meijer and P. Codogno, AMP-activated protein kinase and autophagy, Autophagy, vol.3, issue.3, pp.238-278, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00175293

G. F. Merrill, E. J. Kurth, D. G. Hardie, and W. W. Winder, AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle, Am J Physiol, vol.273, issue.6, pp.1107-1119, 1997.

L. E. Meyer, L. B. Machado, A. P. Santiago, W. S. Da-silva, D. Felice et al., Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity, J Biol Chem, vol.281, issue.49, pp.37361-71, 2006.

M. M. Mihaylova, D. S. Vasquez, K. Ravnskjaer, P. D. Denechaud, R. T. Yu et al., Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis, Cell, vol.145, issue.4, pp.607-628, 2011.

D. Mika, J. Leroy, G. Vandecasteele, and R. Fischmeister, PDEs create local domains of cAMP signaling, J Mol Cell Cardiol, vol.52, issue.2, pp.323-332, 2012.

E. J. Miller, J. Li, L. Leng, C. Mcdonald, T. Atsumi et al., Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart, Nature, vol.451, issue.7178, pp.578-82, 2008.

Y. Minokoshi, T. Alquier, N. Furukawa, Y. B. Kim, A. Lee et al., AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus, Nature, vol.428, issue.6982, pp.569-74, 2004.

F. Mochel, B. Durant, X. Meng, J. O'callaghan, H. Yu et al., Early alterations of brain cellular energy homeostasis in Huntington disease models, J Biol Chem, vol.287, issue.2, pp.1361-70, 2012.

M. Momcilovic, S. P. Hong, and M. Carlson, Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro, J Biol Chem, vol.281, issue.35, pp.25336-25379, 2006.

D. Moreno, R. Viana, and P. Sanz, Two-hybrid analysis identifies PSMD11, a non-ATPase subunit of the proteasome, as a novel interaction partner of AMP-activated protein kinase, Int J Biochem Cell Biol, vol.41, issue.12, pp.2431-2440, 2009.

D. Moreno, M. C. Towler, D. G. Hardie, E. Knecht, and P. Sanz, The laforin-malin complex, involved in Lafora disease, promotes the incorporation of K63-linked ubiquitin chains into AMP-activated protein kinase beta subunits, Mol Biol Cell, vol.21, issue.15, pp.2578-88, 2010.

R. Moreno-sanchez, E. Saavedra, S. Rodriguez-enriquez, O. -. Sandoval, and V. , Metabolic control analysis: a tool for designing strategies to manipulate metabolic pathways, J Biomed Biotechnol, p.597913, 2008.

P. T. Mungai, G. B. Waypa, A. Jairaman, M. Prakriya, D. Dokic et al., Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium releaseactivated calcium channels, Mol Cell Biol, vol.31, issue.17, pp.3531-3576, 2011.

D. M. Muoio, K. Seefeld, L. A. Witters, and R. A. Coleman, AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target, Biochem J, vol.338, pp.783-91, 1999.

N. Musi, M. F. Hirshman, M. Arad, Y. Xing, N. Fujii et al., Functional role of AMP-activated protein kinase in the heart during exercise, FEBS Lett, vol.579, issue.10, pp.2045-50, 2005.

C. Nabuurs, B. Huijbregts, B. Wieringa, C. W. Hilbers, and A. Heerschap, 31P saturation transfer spectroscopy predicts differential intracellular macromolecular association of ATP and ADP in skeletal muscle, J Biol Chem, vol.285, issue.51, pp.39588-96, 2010.

C. I. Nabuurs, C. U. Choe, A. Veltien, H. E. Kan, L. J. Van-loon et al., Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake, J Physiol, vol.591, issue.2, pp.571-92, 2013.

A. Nakano and S. Takashima, LKB1 and AMP-activated protein kinase: regulators of cell polarity, Genes Cells, vol.17, issue.9, pp.737-784, 2012.

A. Nakano, H. Kato, T. Watanabe, K. D. Min, S. Yamazaki et al., AMPK controls the speed of microtubule polymerization and directional cell migration through CLIP-170 phosphorylation, Nat Cell Biol, vol.12, issue.6, pp.583-90, 2010.

L. Nascimben, J. S. Ingwall, P. Pauletto, J. Friedrich, J. K. Gwathmey et al., Creatine kinase system in failing and nonfailing human myocardium, Circulation, vol.94, issue.8, pp.1894-901, 1996.

J. Neely and H. Morgan, Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle, Annu Rev Physiol, vol.63, pp.413-59, 1974.

J. R. Neely, R. M. Denton, P. J. England, and P. J. Randle, The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart, Biochem J, vol.128, issue.1, pp.147-59, 1972.

E. Nemutlu, S. Zhang, A. Gupta, N. O. Juranic, S. I. Macura et al., Dynamic phosphometabolomic profiling of human tissues and transgenic models by 18O-assisted (3)(1)P NMR and mass spectrometry, Physiol Genomics, vol.44, issue.7, pp.386-402, 2012.

S. Neubauer, The failing heart-an engine out of fuel, N Engl J Med, vol.356, issue.11, pp.1140-51, 2007.

D. Neumann, U. Schlattner, T. Wallimann, L. Wiley, M. Nivala et al., Linking flickering to waves and whole-cell oscillations in a mitochondrial network model, Biochem Soc Trans, vol.31, issue.9, pp.2102-2113, 1973.

J. S. Oakhill, Z. P. Chen, J. W. Scott, R. Steel, L. A. Castelli et al., beta-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK), Proc Natl Acad Sci, vol.107, issue.45, pp.19237-19278, 2010.

J. S. Oakhill, R. Steel, Z. P. Chen, J. W. Scott, N. Ling et al., AMPK is a direct adenylate charge-regulated protein kinase, Science, vol.332, issue.6036, pp.1433-1438, 2011.

J. S. Oakhill, J. W. Scott, and B. E. Kemp, AMPK functions as an adenylate charge-regulated protein kinase, Trends Endocrinol Metab, vol.23, issue.3, pp.125-157, 2012.

S. M. Oliveira, Y. H. Zhang, R. S. Solis, H. Isackson, M. Bellahcene et al., AMP-activated protein kinase phosphorylates cardiac troponin I and alters contractility of murine ventricular myocytes, Circ Res, vol.110, issue.9, pp.1192-201, 2012.

A. P. Oliveira, C. Ludwig, P. Picotti, M. Kogadeeva, R. Aebersold et al., Regulation of yeast central metabolism by enzyme phosphorylation, Mol Syst Biol, vol.8, p.623, 2012.

M. A. Paiva, Z. Rutter-locher, L. M. Goncalves, L. A. Providencia, S. M. Davidson et al., Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury, Am J Physiol Heart Circ Physiol, vol.300, issue.6, pp.2123-2157, 2011.

T. Pang, B. Xiong, J. Y. Li, B. Y. Qiu, G. Z. Jin et al., Conserved alpha-helix acts as autoinhibitory sequence in AMP-activated protein kinase alpha subunits, J Biol Chem, vol.282, issue.1, pp.495-506, 2007.

K. Pinter, R. T. Grignani, G. Czibik, H. Farza, H. Watkins et al., Embryonic expression of AMPK gamma subunits and the identification of a novel gamma2 transcript variant in adult heart, J Mol Cell Cardiol, vol.53, issue.3, pp.342-351, 2012.

G. Polekhina, A. Gupta, B. J. Michell, B. Van-denderen, S. Murthy et al., AMPK beta subunit targets metabolic stress sensing to glycogen, Curr Biol, vol.13, issue.10, pp.867-71, 2003.

C. Polge, M. Jossier, P. Crozet, L. Gissot, and M. Thomas, Beta-subunits of the SnRK1 complexes share a common ancestral function together with expression and function specificities; physical interaction with nitrate reductase specifically occurs via AKINbeta1-subunit, Plant Physiol, vol.148, issue.3, pp.1570-82, 2008.

M. Ponticos, Q. L. Lu, J. E. Morgan, D. G. Hardie, T. A. Partridge et al., Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle, EMBO J, vol.17, issue.6, pp.1688-99, 1998.

D. Pucar, P. P. Dzeja, P. Bast, N. Juranic, S. Macura et al., Cellular energetics in the preconditioned state: protective role for phosphotransfer reactions captured by 18O-assisted 31P NMR, J Biol Chem, vol.276, issue.48, pp.44812-44821, 2001.

J. Qi, J. Gong, T. Zhao, J. Zhao, P. Lam et al., Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue, EMBO J, vol.27, issue.11, pp.1537-1585, 2008.

P. J. Randle, Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years, Diabetes Metab Rev, vol.14, issue.4, pp.263-83, 1998.

P. J. Randle, P. B. Garland, C. N. Hales, and E. A. Newsholme, The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus, Lancet, vol.1, issue.7285, pp.785-794, 1963.

U. Riek, R. Scholz, P. Konarev, A. Rufer, M. Suter et al., Structural properties of AMP-activated protein kinase: dimerization, molecular shape, and changes upon ligand binding, J Biol Chem, vol.283, issue.26, pp.18331-18374, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00390926

M. Rogne and K. Tasken, Cell signalling analyses in the functional genomics era, N Biotechnol, vol.30, issue.3, pp.333-341, 2013.

B. A. Rose, T. Force, and Y. Wang, Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale, Physiol Rev, vol.90, issue.4, pp.1507-1553, 2010.

N. B. Ruderman, X. J. Xu, L. Nelson, J. M. Cacicedo, A. K. Saha et al., AMPK and SIRT1: a long-standing partnership?, Am J Physiol Endocrinol Metab, vol.298, issue.4, pp.751-760, 2010.

. Russell-rr-3rd, J. Li, D. L. Coven, M. Pypaert, C. Zechner et al., AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury, J Clin Invest, vol.114, issue.4, pp.495-503, 2004.

D. Sackett, Evolution and coevolution of tubulin's carboxy-terminal tails and mitochondria, Svensson OL (ed) Mitochondria: structure, function and dysfunction, pp.789-810, 2010.

T. Saetersdal, G. Greve, and H. Dalen, Associations between beta-tubulin and mitochondria in adult isolated heart myocytes as shown by immunofluorescence and immunoelectron microscopy, Histochemistry, vol.95, issue.1, pp.1-10, 1990.

V. Saks, Molecular system bioenergetics-energy for life, basic principles, organization and dynamics of cellular energetics, 2007.

V. Saks, The phosphocreatine-creatine kinase system helps to shape muscle cells and keep them healthy and alive, J Physiol, vol.586, pp.2817-2825, 2008.

V. Saks, Molecular system bioenergetics-new aspects of metabolic research, Int J Mol Sci, vol.10, issue.8, pp.3655-3662, 2009.

V. Saks and E. Strumia, Phosphocreatine: molecular and cellular aspects of the mechanism of cardioprotective action, Curr Ther Res, vol.53, issue.5, pp.565-98, 1993.

V. A. Saks, N. V. Lipina, V. G. Sharov, V. N. Smirnov, E. Chazov et al., The localization of the MM isozyme of creatine phosphokinase on the surface membrane of myocardial cells and its functional coupling to ouabain-inhibited (Na+, K+)-ATPase, Biochim Biophys Acta, vol.465, issue.3, pp.550-558, 1977.

V. A. Saks, L. V. Rosenshtraukh, V. N. Smirnov, and E. I. Chazov, Role of creatine phosphokinase in cellular function and metabolism, Can J Physiol Pharmacol, vol.56, issue.5, pp.691-706, 1978.

V. A. Saks, Y. O. Belikova, and A. V. Kuznetsov, In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP, Biochim Biophys Acta, vol.1074, issue.2, pp.302-313, 1991.

V. Saks, D. Santos, P. Gellerich, F. N. Diolez, and P. , Quantitative studies of enzyme-substrate compartmentation, functional coupling and metabolic channelling in muscle cells, Mol Cell Biochem, vol.184, issue.1-2, pp.291-307, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01989829

V. A. Saks, T. Kaambre, P. Sikk, M. Eimre, E. Orlova et al., Intracellular energetic units in red muscle cells, Biochem J, vol.356, issue.2, pp.643-57, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00391060

V. Saks, P. Dzeja, U. Schlattner, M. Vendelin, A. Terzic et al., Cardiac system bioenergetics: metabolic basis of the Frank-Starling law, J Physiol, vol.571, issue.2, pp.253-73, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00390883

V. Saks, R. Favier, R. Guzun, U. Schlattner, and T. Wallimann, Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands, J Physiol, vol.577, pp.769-77, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00390890

V. Saks, P. Dzeja, U. Schlattner, M. Vendelin, A. Terzic et al., Cardiac system bioenergetics: metabolic basis of the Frank-Starling law, J Physiol, vol.571, issue.2, pp.253-73, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00390883

V. Saks, T. Kaambre, R. Guzun, T. Anmann, P. Sikk et al., The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches, Subcell Biochem, vol.46, pp.27-65, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00390950

V. Saks, T. Anmann, R. Guzun, T. Kaambre, P. Sikk et al., The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches, pp.27-66, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00390950

V. A. Saks, P. Dzeja, R. Guzun, M. K. Aliev, M. Vendelin et al., System analysis of cardiac energetics-excitation-contraction coupling: integration of mitochondrial respiration, phosphotransfer pathways, metabolic pacing and substrate supply in the heart, Saks V (ed) Molecular system bioenergetics. Energy for Life, pp.367-405, 2007.

V. Saks, C. Monge, T. Anmann, and P. Dzeja, Integrated and organized cellular energetic systems: theories of cell energetics, compartmentation and metabolic channeling, Saks V (ed) Molecular system bioenergetics. Energy for life, pp.59-110, 2007.

V. Saks, R. Guzun, N. Timohhina, K. Tepp, M. Varikmaa et al., Structure-function relationships in feedback regulation of energy fluxes in vivo in health and disease: mitochondrial interactosome, Biochim Biophys Acta, vol.1797, issue.6-7, pp.678-97, 2010.

V. Saks, A. V. Kuznetsov, M. Gonzalez-granillo, K. Tepp, N. Timohhina et al., Intracellular energetic units regulate metabolism in cardiac cells, J Mol Cell Cardiol, vol.52, pp.419-455, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00633076

I. Salt, J. W. Celler, S. A. Hawley, A. Prescott, A. Woods et al., AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform, Biochem J, vol.334, pp.177-87, 1998.

J. L. Sartoretto, H. Kalwa, M. D. Pluth, S. J. Lippard, and T. Michel, Hydrogen peroxide differentially modulates cardiac myocyte nitric oxide synthesis, Proc Natl Acad Sci, vol.108, issue.38, pp.15792-15799, 2011.

H. Sasaki, H. Asanuma, M. Fujita, H. Takahama, M. Wakeno et al., Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase, Circulation, vol.119, pp.2568-77, 2009.

U. Schlattner and T. Wallimann, Metabolite channeling: creatine kinase microcompartments, encyclopedia of biological chemistry. Academic, pp.646-51, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01950047

U. Schlattner, M. Forstner, M. Eder, O. Stachowiak, K. Fritz-wolf et al., Functional aspects of the X-ray structure of mitochondrial creatine kinase: a molecular physiology approach, Mol Cell Biochem, vol.184, issue.1-2, pp.125-165, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01989766

U. Schlattner, M. Tokarska-schlattner, and T. Wallimann, Molecular structure and function of mitochondrial creatine kinases, pp.123-70, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01949960

U. Schlattner, M. Tokarska-schlattner, and T. Wallimann, Mitochondrial creatine kinase in human health and disease, Biochim Biophys Acta, vol.1762, issue.2, pp.164-80, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00390875

U. Schlattner, M. Tokarska-schlattner, S. Ramirez, A. Bruckner, L. Kay et al., Mitochondrial kinases and their molecular interaction with cardiolipin, Biochim Biophys Acta, vol.1788, issue.10, pp.2032-2079, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00422473

A. Schmidt, B. Marescau, E. A. Boehm, W. K. Renema, R. Peco et al., Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency, Hum Mol Genet, vol.13, issue.9, pp.905-926, 2004.

R. Schroder, W. S. Kunz, F. Rouan, E. Pfendner, K. Tolksdorf et al., Disorganization of the desmin cytoskeleton and mitochondrial dysfunction in plectin-related epidermolysis bullosa simplex with muscular dystrophy, J Neuropathol Exp Neurol, vol.61, issue.6, pp.520-550, 2002.

E. Schrödinger, What is life? The physical aspect of the living cell, 1944.

J. W. Scott, S. A. Hawley, K. A. Green, M. Anis, G. Stewart et al., CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations, J Clin Invest, vol.113, issue.2, pp.274-84, 2004.

M. Sebbagh, M. J. Santoni, B. Hall, J. P. Borg, and M. A. Schwartz, Regulation of LKB1/STRAD localization and function by E-cadherin, Curr Biol, vol.19, issue.1, pp.37-42, 2009.

V. A. Selivanov, A. E. Alekseev, D. M. Hodgson, P. P. Dzeja, and A. Terzic, Nucleotide-gated KATP channels integrated with creatine and adenylate kinases: amplification, tuning and sensing of energetic signals in the compartmentalized cellular environment, Mol Cell Biochem, vol.256, issue.1-2, pp.243-56, 2004.

R. Shibata, N. Ouchi, M. Ito, S. Kihara, I. Shiojima et al., Adiponectin-mediated modulation of hypertrophic signals in the heart, Nat Med, vol.10, issue.12, pp.1384-1393, 2004.

R. Shibata, K. Sato, D. R. Pimentel, Y. Takemura, S. Kihara et al., Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK-and COX-2-dependent mechanisms, Nat Med, vol.11, issue.10, pp.1096-103, 2005.

K. Shinmura, K. Tamaki, K. Saito, Y. Nakano, T. Tobe et al., Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase, Circulation, vol.116, issue.24, pp.2809-2826, 2007.

C. Soeller and M. B. Cannell, Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques, Circ Res, vol.84, issue.3, pp.266-75, 1999.

M. C. Solaz-fuster, J. V. Gimeno-alcaniz, R. S. Fernandez-sanchez, M. E. Garcia-fojeda, B. et al., Regulation of glycogen synthesis by the laforin-malin complex is modulated by the AMP-activated protein kinase pathway, Hum Mol Genet, vol.17, issue.5, pp.667-78, 2008.

A. G. Sonntag, D. Pezze, P. Shanley, D. P. Thedieck, and K. , A modelling-experimental approach reveals insulin receptor substrate (IRS)-dependent regulation of adenosine monosphosphatedependent kinase (AMPK) by insulin, FEBS J, vol.279, issue.18, pp.3314-3342, 2012.

R. A. Srivastava, S. L. Pinkosky, S. Filippov, J. C. Hanselman, C. T. Cramer et al., AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases, J Lipid Res, vol.53, issue.12, pp.2490-514, 2012.

D. Stapleton, K. I. Mitchelhill, G. Gao, J. Widmer, B. J. Michell et al., Mammalian AMP-activated protein kinase subfamily, J Biol Chem, vol.271, issue.2, pp.611-615, 1996.

E. H. Starling and M. B. Visscher, The regulation of the energy output of the heart, J Physiol, vol.62, issue.3, pp.243-61, 1927.

K. Steeghs, A. Benders, F. Oerlemans, A. De-haan, A. Heerschap et al., Altered Ca 2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies, Cell, vol.89, issue.1, pp.93-103, 1997.

S. F. Steinberg, Cardiac actions of protein kinase C isoforms, Physiology (Bethesda), vol.27, issue.3, pp.130-139, 2012.

G. R. Steinberg, AMPK and the endocrine control of energy metabolism, Mol Cell Endocrinol, vol.366, issue.2, pp.125-131, 2013.

G. R. Steinberg and B. E. Kemp, AMPK in health and disease, Physiol Rev, vol.89, issue.3, pp.1025-78, 2009.

S. Stockler, P. W. Schutz, and G. S. Salomons, Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology, Subcell Biochem, vol.46, pp.149-66, 2007.

J. Stoppani, A. L. Hildebrandt, K. Sakamoto, D. Cameron-smith, L. J. Goodyear et al., AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle, Am J Physiol Endocrinol Metab, vol.283, issue.6, pp.1239-1287, 2002.

F. Streijger, F. Oerlemans, B. A. Ellenbroek, C. R. Jost, B. Wieringa et al., Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit, Behav Brain Res, vol.157, issue.2, pp.219-253, 2005.

V. Strogolova, M. Orlova, A. Shevade, and S. Kuchin, Mitochondrial porin Por1 and its homolog Por2 contribute to the positive control of Snf1 protein kinase in Saccharomyces cerevisiae, Eukaryot Cell, vol.11, issue.12, pp.1568-72, 2012.

M. Suter, U. Riek, R. Tuerk, U. Schlattner, T. Wallimann et al., Dissecting the role of 5 0 -AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase, J Biol Chem, vol.281, issue.43, pp.32207-32223, 2006.

A. Suzuki, S. Okamoto, S. Lee, K. Saito, T. Shiuchi et al., Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the alpha2 form of AMP-activated protein kinase, Mol Cell Biol, vol.27, issue.12, pp.4317-4344, 2007.

M. Tachikawa, S. Ikeda, J. Fujinawa, S. Hirose, S. Akanuma et al., Gamma-Aminobutyric acid transporter 2 mediates the hepatic uptake of guanidinoacetate, the creatine biosynthetic precursor, in rats, PLoS One, vol.7, issue.2, p.32557, 2012.

H. Taegtmeyer, Tracing cardiac metabolism in vivo: one substrate at a time, J Nucl Med, vol.51, issue.1, pp.80-87, 2010.

H. Taegtmeyer and J. S. Ingwall, Creatine-a dispensable metabolite, Circ Res, vol.112, issue.6, pp.878-80, 2013.

H. Taegtmeyer, C. R. Wilson, P. Razeghi, and S. Sharma, Metabolic energetics and genetics in the heart, Ann N Y Acad Sci, vol.1047, pp.208-226, 2005.

H. Tagawa, M. Koide, H. Sato, M. R. Zile, B. A. Carabello et al., Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading, Circ Res, vol.82, issue.7, pp.751-61, 1998.

E. Takimoto, Cyclic GMP-dependent signaling in cardiac myocytes, Circ J, vol.76, issue.8, pp.1819-1844, 2012.

A. I. Tarasov, E. J. Griffiths, and G. A. Rutter, Regulation of ATP production by mitochondrial Ca 2+, Cell Calcium, vol.52, issue.1, pp.28-35, 2012.

E. B. Taylor, W. J. Ellingson, J. D. Lamb, D. G. Chesser, C. L. Compton et al., Evidence against regulation of AMP-activated protein kinase and LKB1/STRAD/MO25 activity by creatine phosphate, Am J Physiol Endocrinol Metab, vol.290, issue.4, pp.661-670, 2006.

S. S. Taylor, C. Kim, C. Y. Cheng, S. H. Brown, J. Wu et al., Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design, Biochim Biophys Acta, vol.1784, issue.1, pp.16-26, 2008.

S. E. Telesco and R. Radhakrishnan, Structural systems biology and multiscale signaling models, Ann Biomed Eng, vol.40, issue.11, pp.2295-306, 2012.

M. Ten-hove, C. A. Lygate, A. Fischer, J. E. Schneider, A. E. Sang et al., Reduced inotropic reserve and increased susceptibility to cardiac ischemia/reperfusion injury in phosphocreatine-deficient guanidinoacetate-N-methyltransferase-knockout mice, Circulation, vol.111, pp.2477-85, 2005.

K. Tepp, N. Timohhina, V. Chekulayev, I. Shevchuk, T. Kaambre et al., Metabolic control analysis of integrated energy metabolism in permeabilized cardiomyocytes-experimental study, Acta Biochim Pol, vol.57, issue.4, pp.421-451, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00636009

C. Thornton, M. A. Snowden, and D. Carling, Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle, J Biol Chem, vol.273, issue.20, pp.12443-50, 1998.

R. Tian, N. Musi, D. 'agostino, J. Hirshman, M. F. Goodyear et al., Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy, Circulation, vol.104, issue.14, pp.1664-1673, 2001.

N. Timohhina, R. Guzun, K. Tepp, C. Monge, M. Varikmaa et al., Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: some evidence for Mitochondrial Interactosome, J Bioenerg Biomembr, vol.41, issue.3, pp.259-75, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00422517

M. Tokarska-schlattner, M. Zaugg, R. Da-silva, E. Lucchinetti, M. C. Schaub et al., Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply, Am J Physiol Heart Circ Physiol, vol.289, issue.1, pp.37-47, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00390872

M. Tokarska-schlattner, R. F. Epand, F. Meiler, G. Zandomeneghi, D. Neumann et al., Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects, PLoS One, vol.7, issue.8, p.43178, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01930759

A. Torremans, B. Marescau, I. Possemiers, D. Van-dam, D. 'hooge et al., Biochemical and behavioural phenotyping of a mouse model for GAMT deficiency, J Neurol Sci, vol.231, issue.1-2, pp.49-55, 2005.

R. Townley and L. Shapiro, Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase, Science, vol.315, issue.5819, pp.1726-1735, 2007.

D. C. Turner, T. Wallimann, and H. M. Eppenberger, A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase, Proc Natl Acad Sci, vol.70, issue.3, pp.702-707, 1973.

K. Uda, M. Hoshijima, and T. Suzuki, A novel taurocyamine kinase found in the protist Phytophthora infestans, Comp Biochem Physiol B Biochem Mol Biol, vol.165, issue.1, pp.42-50, 2013.

M. M. Van-oort, J. M. Van-doorn, M. E. Hasnaoui, J. F. Glatz, A. Bonen et al., Effects of AMPK activators on the sub-cellular distribution of fatty acid transporters CD36 and FABPpm, Arch Physiol Biochem, vol.115, issue.3, pp.137-183, 2009.

M. Vendelin, O. Kongas, and V. Saks, Regulation of mitochondrial respiration in heart cells analyzed by reaction-diffusion model of energy transfer, Am J Physiol Cell Physiol, vol.278, issue.4, pp.747-64, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00392269

M. Vendelin, N. Beraud, K. Guerrero, T. Andrienko, A. V. Kuznetsov et al., Mitochondrial regular arrangement in muscle cells: a "crystal-like" pattern, Am J Physiol Cell Physiol, vol.288, issue.3, pp.757-67, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00391045

R. Ventura-clapier, D. Sousa, E. Veksler, and V. , Metabolic myopathy in heart failure, News Physiol Sci, vol.17, pp.191-197, 2002.

R. Ventura-clapier, A. Garnier, and V. Veksler, Energy metabolism in heart failure, J Physiol, vol.555, pp.1-13, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00290146

R. Viana, C. Aguado, E. I. Moreno, D. Viollet, B. Knecht et al., Role of AMP-activated protein kinase in autophagy and proteasome function, Biochem Biophys Res Commun, vol.369, issue.3, pp.964-972, 2008.

O. Vincent and M. Carlson, Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4, EMBO J, vol.18, issue.23, pp.6672-81, 1999.

M. Voss, J. Paterson, I. R. Kelsall, C. Martin-granados, C. J. Hastie et al., Ppm1E is an in cellulo AMP-activated protein kinase phosphatase, Cell Signal, vol.23, issue.1, pp.114-138, 2011.

T. Wallimann, Creatine kinase isoenzymes and myofibrillar structure, 1975.

T. Wallimann, 31P-NMR-measured creatine kinase reaction flux in muscle: a caveat!, J Muscle Res Cell Motil, vol.17, issue.2, pp.177-81, 1996.

T. Wallimann, Introduction-creatine: cheap ergogenic supplement with great potential for health and disease, Sub-Cell Biochem, vol.46, pp.1-16, 2007.

T. Wallimann, M. Wyss, D. Brdiczka, K. Nicolay, and H. M. Eppenberger, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis, Biochem J, vol.281, pp.21-40, 1992.

T. Wallimann, M. Tokarska-schlattner, D. Neumann, R. F. Epand, R. H. Andres et al., The phosphocreatine circuit: molecular and cellular physiology of creatine kinases, sensitivity to free radicals, and enhancement by creatine supplementation, Saks V (ed) Molecular system bioenergetics. Energy for life, pp.195-264, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01949890

T. Wallimann, M. Tokarska-schlattner, and U. Schlattner, The creatine kinase system and pleiotropic effects of creatine, Amino Acids, vol.40, issue.5, pp.1271-96, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00628573

K. Walsh, Akt signaling and growth of the heart, Circulation, vol.113, issue.17, pp.2032-2036, 2006.

M. Y. Wang and R. H. Unger, Role of PP2C in cardiac lipid accumulation in obese rodents and its prevention by troglitazone, Am J Physiol Endocrinol Metab, vol.288, issue.1, pp.216-237, 2005.

W. Wang, J. Fan, X. Yang, S. Furer-galban, L. De-silanes et al., AMP-activated kinase regulates cytoplasmic HuR, Mol Cell Biol, vol.22, issue.10, pp.3425-3461, 2002.

Y. Wang, E. Gao, L. Tao, W. B. Lau, Y. Yuan et al., AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin, Circulation, vol.119, issue.6, pp.835-879, 2009.

M. J. Watt, N. Dzamko, W. G. Thomas, S. Rose-john, M. Ernst et al., CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK, Nat Med, vol.12, issue.5, pp.541-549, 2006.

W. W. Winder and D. G. Hardie, AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes, Am J Physiol, vol.277, issue.1, pp.1-10, 1999.

R. W. Wiseman and M. J. Kushmerick, Creatine kinase equilibration follows solution thermodynamics in skeletal muscle. 31P NMR studies using creatine analogs, J Biol Chem, vol.270, issue.21, pp.12428-12466, 1995.

A. Woods, S. R. Johnstone, K. Dickerson, F. C. Leiper, L. G. Fryer et al., LKB1 is the upstream kinase in the AMP-activated protein kinase cascade, Curr Biol, vol.13, issue.22, pp.2004-2012, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00390855

A. Woods, K. Dickerson, R. Heath, S. P. Hong, M. Momcilovic et al., Ca 2+ / calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells, Cell Metab, vol.2, issue.1, pp.21-33, 2005.

Y. Wu, P. Song, J. Xu, M. Zhang, and M. H. Zou, Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase, J Biol Chem, vol.282, issue.13, pp.9777-88, 2007.

Q. Y. Wu, F. Li, H. Y. Guo, J. Cao, C. Chen et al., Disrupting of E79 and K138 interaction is responsible for human muscle creatine kinase deficiency diseases, Int J Biol Macromol, vol.54, pp.216-240, 2013.

M. Wyss and R. Kaddurah-daouk, Creatine and creatinine metabolism, Physiol Rev, vol.80, issue.3, pp.1107-213, 2000.

B. Xiao, R. Heath, P. Saiu, F. C. Leiper, P. Leone et al., Structural basis for AMP binding to mammalian AMP-activated protein kinase, Nature, vol.449, issue.7161, pp.496-500, 2007.

B. Xiao, M. J. Sanders, E. Underwood, R. Heath, F. V. Mayer et al., Structure of mammalian AMPK and its regulation by ADP, Nature, vol.472, issue.7342, pp.230-233, 2011.

M. Xie, D. Zhang, J. R. Dyck, Y. Li, H. Zhang et al., A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energysensor pathway, Proc Natl Acad Sci, vol.103, pp.17378-83, 2006.

Z. Xie, Y. Dong, M. Zhang, M. Z. Cui, R. A. Cohen et al., Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells, J Biol Chem, vol.281, issue.10, pp.6366-75, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00390882

S. Yamaguchi, H. Katahira, S. Ozawa, Y. Nakamichi, T. Tanaka et al., Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes, Am J Physiol Endocrinol Metab, vol.289, issue.4, pp.643-652, 2005.

Y. Yaniv, M. Juhaszova, S. Wang, K. W. Fishbein, D. B. Zorov et al., Analysis of mitochondrial 3D-deformation in cardiomyocytes during active contraction reveals passive structural anisotropy of orthogonal short axes, PLoS One, vol.6, issue.7, p.21985, 2011.

L. H. Young, AMP-activated protein kinase conducts the ischemic stress response orchestra, Circulation, vol.117, issue.6, pp.832-872, 2008.

V. G. Zaha and L. H. Young, AMP-activated protein kinase regulation and biological actions in the heart, Circ Res, vol.111, issue.6, pp.800-814, 2012.

P. Zhang, X. Hu, X. Xu, J. Fassett, G. Zhu et al., AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice, Hypertension, vol.52, issue.5, pp.918-942, 2008.

B. B. Zhang, G. Zhou, and C. Li, AMPK: an emerging drug target for diabetes and the metabolic syndrome, Cell Metab, vol.9, issue.5, pp.407-423, 2009.

L. Zhu, L. Chen, X. M. Zhou, Y. Y. Zhang, Y. J. Zhang et al., Structural insights into the architecture and allostery of full-length AMP-activated protein kinase, Structure, vol.19, issue.4, pp.515-537, 2011.

J. W. Zmijewski, S. Banerjee, H. Bae, A. Friggeri, E. R. Lazarowski et al., Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase, J Biol Chem, vol.285, issue.43, pp.33154-64, 2010.

D. B. Zorov, C. R. Filburn, L. O. Klotz, J. L. Zweier, and S. J. Sollott, Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes, J Exp Med, vol.192, issue.7, pp.1001-1015, 2000.

M. H. Zou, X. Y. Hou, C. M. Shi, D. Nagata, K. Walsh et al., Modulation by peroxynitrite of Akt-and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase, J Biol Chem, vol.277, issue.36, pp.32552-32559, 2002.

M. H. Zou, S. S. Kirkpatrick, B. J. Davis, J. S. Nelson, W. G. Wiles et al., Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species, J Biol Chem, vol.279, issue.42, pp.43940-51, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00390859