
HAL Id: hal-01949810
https://hal.univ-grenoble-alpes.fr/hal-01949810

Submitted on 26 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Systems Level Regulation of Cardiac Energy Fluxes Via
Metabolic Cycles: Role of Creatine, Phosphotransfer

Pathways, and AMPK Signaling
Valdur Saks, Uwe Schlattner, Malgorzata Tokarska-Schlattner, Theo

Wallimann, Rafaela Bagur Quetglas, Sarah Zorman, Martin Pelosse, Pierre
dos Santos, Francois Boucher, Tuuli Käämbre, et al.

To cite this version:
Valdur Saks, Uwe Schlattner, Malgorzata Tokarska-Schlattner, Theo Wallimann, Rafaela Bagur Quet-
glas, et al.. Systems Level Regulation of Cardiac Energy Fluxes Via Metabolic Cycles: Role of
Creatine, Phosphotransfer Pathways, and AMPK Signaling. Systems Biology of Metabolic and Sig-
naling Networks, Springer, pp.261-320, 2014, 9783642385056. �10.1007/978-3-642-38505-6_11�. �hal-
01949810�

https://hal.univ-grenoble-alpes.fr/hal-01949810
https://hal.archives-ouvertes.fr


Chapter 11

Systems Level Regulation of Cardiac Energy

Fluxes Via Metabolic Cycles: Role of

Creatine, Phosphotransfer Pathways,

and AMPK Signaling

Valdur Saks, Uwe Schlattner, Malgorzata Tokarska-Schlattner,

Theo Wallimann, Rafaela Bagur, Sarah Zorman, Martin Pelosse,

Pierre Dos Santos, François Boucher, Tuuli Kaambre, and Rita Guzun

V. Saks (*)

Laboratory of Fundamental and Applied Bioenergetics, Univ. Grenoble Alpes, Grenoble,

France

INSERM, U1055 Grenoble, France

Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn,

Estonia

e-mail: valdur.saks@ujf-grenoble.fr

U. Schlattner (*) • M. Tokarska-Schlattner • S. Zorman • M. Pelosse

Laboratory of Fundamental and Applied Bioenergetics, Univ. Grenoble Alpes, Grenoble,

France

INSERM, U1055 Grenoble, France

e-mail: uwe.schlattner@ujf-grenoble.fr

T. Wallimann
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Abstract Integrated mechanisms of regulation of energy metabolism at cellular,

tissue, and organ levels are analyzed from a systems biology perspective. These

integrated mechanisms comprise the coordinated function of three cycles of mass

and energy transfer and conversion: (1) the Randle cycle of substrate supply, (2) the

Krebs cycle coupled with energy transformation in mitochondrial oxidative phos-

phorylation, and (3) the kinase cycles of intracellular energy transfer and signal

transduction for regulation of energy fluxes. These cycles are extended and partially

governed by information transfer systems like those linked to protein kinase

signaling. In the heart, these cycles are closely related to the Ca2+ cycle during

excitation–contraction coupling. According to the view of integrated metabolic

cycles, the phosphocreatine/creatine kinase system represents a most important

subsystem determining the efficiency of regulation of metabolic and energy fluxes

in heart, brain, and oxidative skeletal muscles. It carries about 80 % of the energy

flux between mitochondria and cytoplasm in heart. The substrate uptake, respiration

rate, and energy fluxes are regulated in response to workload via phosphotransfer

pathways and Ca2+ cycling. We propose integrated network mechanisms to explain

the linear relationship between myocardial oxygen consumption and heart work

output under conditions of metabolic stability (metabolic aspect of

Frank–Starling’s law of the heart). The efficiency of energy transfer, force of

contraction, and metabolic regulation of respiration and energy fluxes depend

upon the intracellular concentration of total creatine, which is decreased in heart

failure. The role of creatine, creatine kinase, and adenylate kinase phosphotransfer

and AMP-activated protein kinase (AMPK) signaling systems and their interrela-

tionship with substrate supply and Ca2+ cycles are analyzed. Finally, an introduc-

tion to the AMPK signaling network is provided with a particular emphasis on the

heart in health and disease.

11.1 Introduction

In this chapter, we describe from a systems biology perspective the integration and

regulation of substrate and energy supply in living organisms and the role of the

creatine/creatine kinase (Cr/CK) system. Systems biology focuses on the

mechanisms of interactions between system components at molecular, cellular,
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and organ levels, giving rise to biological function. As such, systems biology

provides basic mechanistic insights about the principles that govern metabolic

behavior in living systems. According to Schrödinger, the metabolic activity of

living systems needs a continuous exchange of metabolites with the surroundings as

a form of extracting free energy from the medium. This process enables cells and

organisms to increase their internal organization such that they are able to perform

biological work from anabolic reactions (Schrödinger 1944). An increase of inter-

nal order implies a decrease of entropy that should be compensated by an entropy

increase in the environment. Catabolic and anabolic reactions are coupled to

mediate biological work (e.g., muscle contraction) through processes of free energy

conversion involving synthesis and utilization of ATP (Fig. 11.1). Coupling

between cellular work, anabolism, and catabolism is achieved by cyclic processes

involving mechanisms of feedback regulation. Herein, we introduce the theory of

integrated metabolic cycles. Cycles of substrate supply (Randle cycle), intracellular

energy conversion (Krebs cycle and mitochondrial oxidative phosphorylation), and

phosphotransfer reactions (kinase cycles) constitute conspicuous examples of both

substrate and energy provision and feedback regulation (Fig. 11.2). These cycles

closely interact with calcium (Ca2+) cycling (Fig. 11.2). Among the kinase cycles, a

key role is played by the Cr/CK system, adenylate kinase, and AMPK in skeletal

muscle, heart, brain, and other cell types (Wallimann et al. 1992, 2011; Schlattner

et al. 2006a, b; Schlattner and Wallimann 2004; Wallimann 1996, 2007; Saks

Fig. 11.1 General scheme of cellular metabolism. Catabolic reactions generating ATP (top),
through coupling to anabolic reactions (biosynthesis, bottom) using ATP, maintain cell structural

organization as an expression of the decrease of internal entropy (ΔSin < 0) and are also the source

of energy for cellular work (Wc). Abbreviations: ΔSex external entropy, ΔSin internal entropy, ΔSt
total entropy, ΔGex variatuion of Gibbs free energy. For further details, see text. Adapted from

(Saks 2007) with permission
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et al. 1978, 2007a, 2010, 2012; Saks 2007; Dzeja and Terzic 2003, 2009). In the

heart, contraction is initiated by excitation-contraction coupling that includes

processes linked to intracellular Ca2+ cycling (Bers 2002; Bers and Despa 2006).

Under physiological conditions, contractile force and cardiac work are regulated by

ventricular filling and sarcomere length-dependent mechanism (Frank-Starling’s

law) at constant amplitude of Ca2+ transients. A main regulatory motif of cardiac

energy fluxes is represented by metabolic feedback regulation through local

changes in Pi, ADP, AMP, Cr, and phosphocreatine (PCr) ratios (Saks

et al. 2006a, 2010, 2012; Bose et al. 2003; Dos Santos et al. 2000; Aliev

et al. 2012). Under conditions of adrenergic stimulation, cardiac Ca2+ cycling in

the cytoplasm and mitochondria becomes most important for energy flux regulation

(Balaban 2002; Griffiths and Rutter 2009; Tarasov et al. 2012; Glancy and Balaban

2012). Control and regulation of mitochondrial respiration by both adenine

nucleotides and Ca2+ have been analyzed in an integrated model of cardiomyocyte

function (Cortassa et al. 2009).

In this work, we aim to analyze regulatory interactions involved in the modula-

tion of energy supply and demand in the network comprised by Randle and Krebs

cycles and phosphotransfer pathways in the heart. Contribution of calcium cycling

to the regulation of energy supply–demand in the heart has been extensively

reviewed elsewhere (Balaban 2002, 2009a, b, 2012; Tarasov et al. 2012; Glancy

and Balaban 2012). The synchronization of the mitochondrial network in cardiac

cells is treated by Cortassa and Aon in Chap. 5.
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Fig. 11.2 General representation of regulation of energy fluxes via metabolic cycles at the cellular

level. The regulatory action that energy transfer cycles, such as the creatine kinase (CK) and

adenylate kinase systems (AK), exert on fuel supply is realized through the Randle cycle and

energy transforming Krebs cycle, coupled to oxidative phosphorylation. Any decrease in the use of

intracellular energy diminishes Krebs cycle activity and tends to favor the accumulation of

substrates
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11.2 Structural Basis of Functional Organization of

Cardiomyocyte Metabolism

In adult cardiac cells, mitochondria are localized at the A band level of sarcomeres

between Z-lines close to T-tubular system and sarcoplasmic reticulum (SR). Esti-

mation of the density distribution of mitochondria relative to their centers showed

that neighboring mitochondria in cardiomyocytes are aligned according to a rect-

angle with distance between centers equal to 1.97 � 0.43 μm and 1.43 � 0.43 μm
in the longitudinal and transverse direction, respectively (Vendelin et al. 2005).

High temporal resolution analysis of mitochondrial dynamics in adult

cardiomyocytes (one frame every 400 ms) revealed very rapid fluctuation of center

positions that did not exceed the limit of the organelle (Beraud et al. 2009). These

limited mitochondrial oscillations can be explained by inner membrane conforma-

tional changes likely elicited by changes in volume associated with energetic/redox

states (Hackenbrock 1968; Mannella 2006). In vivo imaging of mitochondrial

dynamics in cardiomyocytes showed separated individual organelles which do

not fuse with each other (Gonzalez-Granillo et al. 2012). Figure 11.3 shows

confocal images of mitochondria and α-actinin distribution in cardiomyocytes

from adult rats. In this figure the fluorescence immunolabelling of α-actinin is

used to mark sarcomeric Z-lines. Individual mitochondria regularly arranged

between Z-lines can be visualized by flavoprotein autofluorescence (Fig. 11.3,

green). The green fluorescence intensity profile shows the peaks distribution

corresponding to mitochondrial fluorescence; the regions of “zero” intensity of

α-actinin (Fig. 11.3 red) indicate intermyofibrillar localization of mitochondria

between Z-lines without apparent fusion/fission (Gonzalez-Granillo et al. 2012).

Possibly, fusion can happen in perinuclear mitochondrial clusters (Kuznetsov and

Margreiter 2009).

Regular arrangement and limited morphodynamics of mitochondria in adult

cardiomyocytes are determined by the cytoskeletal architecture, which includes

myofilaments, inter-myofilaments, microtubules, and other structural proteins.

Tubulin is one of the constituent cytoskeletal proteins with structural, transport,

and metabolic functions (see also Chap. 7). Herein, we will focus on the structural

role of β isotypes of tubulin. Tubulin is a heterodimeric complex formed by two

globular and two C-terminal tails (CTT) of α and β proteins. Globular α and β
proteins can be polymerized into microtubules, while α and β CTT can interact with

other intracellular structures and proteins. Tubulin has additional binding sites that

allow the filaments to join together laterally to form sheets of filaments. About 30 %

of tubulins in adult cardiomyocytes are polymerized and 70 % are in the

heterodimeric state (Tagawa et al. 1998). These two conformational states of protein

are in a dynamic balance driven by polymerization–depolymerization processes

(Sackett 2010). A study of the distribution of β tubulins by fluorescence confocal

microscopy showed that βIV tubulin is polymerized creating a dense mesh of mainly

longitudinally and obliquely oriented microtubules. βIII tubulin co-localizes with

alpha-actinine in Z-lines while βI tubulin forms randomly dispersed short polymers
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and dimers, and βII tubulin co-distributes with mitochondria (Saks et al. 2012;

Gonzalez-Granillo et al. 2012; Guzun et al. 2011a, 2012). These findings are in

agreement with data published first in 1990 by Saetersdal et al. regarding the link

between β tubulin and mitochondria as revealed by immunogold labeling

(Saetersdal et al. 1990). According to this study, β tubulin interacts with

mitochondria through the outer membrane (MOM) creating links between the

organelle and other cellular structures. The contribution of other cytoskeletal

proteins to structural and functional interactions with mitochondria is under inten-

sive investigation. Desmin and plectin are capable of interacting with voltage-

dependent anion channel (VDAC) at MOM (Capetanaki et al. 2007; Capetenaki

2002; Liobikas et al. 2001; Schroder et al. 2002). The 1b isotype of plectin of

cardiomyocytes co-localizes with mitochondria via direct interaction with VDAC,

whereas plectin 1d isotype is specifically associated with sarcomeric Z-disks

(Schroder et al. 2002).

Recently it has been proposed that the T-tubular system, which represents a

network of tubular extensions from the sarcolemma, plays an important role in the
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Fig. 11.3 Fluorescence confocal microscopy of mitochondria and alpha-actinin distribution in

adult rat cardiomyocyte. (a) Regular distribution of individual mitochondria as visualized by

autofluorescence of flavoproteines (green color) in between Z-lines that are labeled with rhoda-

mine immunofluorescent for α-actinin (red color). (b) Analysis of fluorescence intensity along a

selected line: dotted ¼ α-actinin; solid ¼ flavoproteins. Note that peaks of green fluorescence

intensity corresponding to mitochondria are seen in the regions of “zero” intensity of red α-actinin
fluorescence. Reproduced from (Gonzalez-Granillo et al. 2012) with permission
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structural organization of cardiac cell metabolism. The T-tubular system of rat

ventricular cells creates a regular arrangement at the level of Z-line and along

myofibrils (Fig. 11.4c) (Soeller and Cannell 1999). This system becomes disorga-

nized with time in cardiac cells in culture. The functional role of T-tubules was

described to provide a rapid inward spread of electrical excitation and Ca2+ influx

that triggers Ca2+ release from the sarcoplasmic reticulum, as well as supply of each

mitochondrion with oxygen and substrates. By using electron tomography (Hayashi

et al. 2009) identified anatomical couplings between opposing membranes of

T-tubules and sarcoplasmic reticulum (SR), these forming so-called Calcium

Release Units (CRU). A close localization of mitochondria and CRU favors Ca2+

and metabolite microcompartmentation (Saks et al. 2012). Individual mitochondria

localize at the level of the A-band of sarcomeres and at the Z-line they are in close

contacts with jSR and the T-tubular system forming CRUs (Fig. 11.4b). This

junctional cisterns of arrangement separates mitochondria from each other, also

making their fusion unlikely. The 3D reconstruction of the T-tubular system in

cardiac cells (Soeller and Cannell 1999) appears as an elaborated and effective

system of Ca2+, substrate, and oxygen supply from the extracellular medium. Its

discovery about a decade ago profoundly changed our knowledge of the heart cell

structure and the implications for metabolic regulation. As a matter of fact,

according to this architecture no distinction is possible between intermyofibrillar

and subsarcolemmal mitochondria, since both are in close contact with the

T-tubular system. This is in agreement with results obtained from kinetic studies

(Saks et al. 2012) and the fact that no electrical conduction occurs between

individual mitochondria in cardiomyocytes (Beraud et al. 2009; Kuznetsov

et al. 2009; Collins and Bootman 2003; Nivala et al. 2011; Zorov et al. 2000).

Simultaneous measurements of sarcomere and mitochondrial dimensions in situ

along the longitudinal axis of cardiomyocytes identified mitochondria as micron-

sized spheres localized between sarcomeres and distributed throughout the cell in a

crystal-like lattice without any visible fusion. In this organized lattice, transient

mitochondrial depolarizations (flickers), elicited by ROS-induced opening of anion

channels in the inner membrane, may propagate in cells as depolarization waves

(Nivala et al. 2011; Yaniv et al. 2011). However, electron tomographic studies

clearly revealed that there is no mitochondrial reticulum in cardiac cells; instead a

regular lattice containing 5,000–10,000 single mitochondria seems to prevail

(Nivala et al. 2011). In the heart, this forms the structural basis of the mitochondrial

network described by Cortassa and Aon in Chap. 5. Taken together, all the data

described above indicate that mitochondrial respiration depends upon localized

events in their vicinity. These structurally organized functional domains—dubbed

Intracellular Energetic Units (ICEUs) (Saks 2007; Saks et al. 2001, 2012)

(Fig. 11.5)—comprise sites of ATP hydrolysis (myofibrillar ATPases, sarcoplasmic

reticulum ATPase (SERCA), ion pumps) connected to ATP synthesis through

phosphotransfer networks. Energy transduction within ICEUs involving the Randle

and Krebs cycles of fuel supply and oxidative phosphorylation are governed by

energy-demanding reactions. Next, we analyze cardiac energy metabolism from the

perspective of regulatory interactions occurring in metabolic cycles.
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11.3 Substrate Supply and Its Regulation (Randle and

Krebs Cycles)

11.3.1 Mechanisms of Regulation of Fatty Acids Oxidation
in Heart Muscle

Fatty acids are released from triacylglycerol (TAG) by activated lipoprotein lipase

(LPL) and transferred in the cytoplasm bound to proteins. Free fatty acid transfer

across mitochondrial membranes consumes ATP involving FFA conversion into an

Acyl-CoA derivative and the transport-competent acyl-carnitine form by carnitine

palmitoyl transferase (CPT). The MOM-localized CPT1 targeted by malonyl CoA

inhibition constitutes an important regulatory step of β-oxidation of FAs (β-FAO)
(Fig. 11.4) (Saks et al. 2006b). β-FAO is linked to the citric acid cycle and oxidative

phosphorylation through NAD+, FAD, and acyl-CoA. The NADH generated by the

Krebs cycle and β-FAO is oxidized in the electron transport chain. Increased ATP

utilization elicits ATP synthesis driven by the proton motive force, thus decreasing

the NADH/NAD+ ratio. Oxidation of the NADH pool increases the flux through the

Krebs cycle through NAD+-dependent isocitrate and α-ketoglutarate
deshydrogenases, thus decreasing acetyl-CoA (AcCoA) levels. NAD+ can also be

reduced in β-FAO catalyzed by β-hydroxyacyl-CoA dehydrogenase and in the

glycolytic pathway catalyzed by glyceraldehyde phosphate dehydrogenase

(GAPDH). However, the transfer of NADH reduction potential from glycolysis

towards the mitochondrial matrix via the malate–aspartate shuttle, being slower

than direct NAD+ use by β-FAO, will prioritize the latter one (Kobayashi and Neely
1979). Thus, the GAPDH dependence on cytoplasmic NADH/NAD+ ratio

associated with the slow kinetics of malate–aspartate shuttle will rather slow

down glycolysis. An increase in the rate of AcCoA utilization by the Krebs cycle

will thus increase β-FAO. An accumulation of AcCoA does not influence signifi-

cantly the rate of β-FAO due to the equilibrium constant of the reversible thiolase

reaction which is in favor of AcCoA production (Neely and Morgan 1974).

At low ATP demand (decreased workload), the high NADH/NAD+ ratio slows

down the flux through NAD+-dependent dehydrogenases, thus decreasing the rate

of AcCoA oxidation through the Krebs cycle. An increased intra-mitochondrial

AcCoA level is thought to favor its transfer towards the cytoplasm where it is

converted into malonyl-CoA, an inhibitor of CPT-1-controlled FA transport into

mitochondria. Malonyl-CoA levels are also controlled by acetyl-coA carboxylase

(ACC), a cytosolic enzyme catalyzing conversion of AcCoA into malonyl-CoA,

whose inactivation by AMPK during energy stress relieves CPT1 inhibition.

Preferential utilization of FAs involves inhibition of glucose transport, phospho-

fructokinase (PFK), and pyruvate dehydrogenase (PDH) reactions (Hue and

Taegtmeyer 2009; Taegtmeyer 2010; Taegtmeyer et al. 2005). Glucose transport

in muscle cells is realized through GLUT4, the expression of which in the sarco-

lemma is regulated by insulin and other signals. Increased NADH/NAD+ and
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Fig. 11.4 Metabolic cycles and signaling networks in cardiomyocyte—Intracellular Energy Units

(iEU). Free fatty acids (FFA, upper left) are taken up by a family of plasma membrane proteins

(fatty acid transporter protein, FATP1, fatty acid translocase, CD36), and in the cytoplasm FAs are

associated with fatty acid binding protein (FABP). FFAs are esterified to acyl-CoA via fatty acyl-

CoA synthetase. The resulting acyl-CoA is then transported into mitochondria via carnitine

palmitoyltransferase I (CPT and CPT II). Once inside, acyl-CoA becomes a substrate for the

β-oxidation pathway, resulting in AcCoA production. Each round of β-oxidation produces 1 mole-

cule of NADH, 1 molecule of FADH2, and 1 molecule of AcCoA. AcCoA enters the Krebs cycle,

where it is further oxidized to CO2 with the concomitant generation of 3 molecules of NADH,

1 molecule of FADH2 and 1 molecule of ATP. Glucose (GLU) is taken up by glucose transporter-4

(GLUT-4, at the left middle) and enters the Embden–Meyerhof pathway, which converts glucose

into 2 molecules of pyruvate (PYR). As a result of these reactions, 2 net ATP and 2 NADH are

produced. NADH is transferred into mitochondria via the malate–aspartate shuttle. OAA, oxalo-

acetate; Glut, glutamate; αKG, α-ketoglutarate; ASP, aspartate; MAL, malate. Most of the

metabolic energy derived from glucose can come from the entry of pyruvate into the Krebs

cycle and oxidative phosphorylation via AcCoA. NADH and FADH2 issued from both metabolic

pathways are oxidized in the respiratory chain. Mitochondrial creatine kinase (mtCK) catalyzes

the direct transphosphorylation of intramitochondrial ATP and cytosolic creatine (Cr) into ADP

and phosphocreatine (PCr). ADP enters the matrix space to stimulate oxidative phosphorylation,

while PCr is transferred via the cytosolic Cr/PCr shuttle to be used in the functional coupling

between CK and ATPases (acto-myosin ATPase and ion pumps, black circles). Feedback regula-

tion of substrate supply occurs in the following way: the glucose–fatty acid (Randle) cycle: if

glucose and FFAs are both present, FFAs inhibit the transport of glucose across the plasma

membrane, and acyl-CoA oxidation increases the mitochondrial ratios of AcCoA/CoA and of

NADH/NAD+ which inhibit the pyruvate dehydrogenase (PDH) complex. Citrate from increased

production in the Krebs cycle can inhibit phosphofructokinase (PFK). These changes would slow

down oxidation of glucose and pyruvate (PYR) and increase glucose-6-phosphate (G6P), which
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AcCoA /CoA ratios inhibit PDH. Their inhibitory effect is realized through pyru-

vate dehydrogenase kinase (PDK) that phosphorylates and inhibits PDH (Randle

1998). Citrate that escapes oxidation in the Krebs cycle is transported to the cytosol

where it inhibits PFK and glycolysis (Hue and Taegtmeyer 2009; Taegtmeyer 2010;

Taegtmeyer et al. 2005).

Cell signaling via AMPK provides a parallel control of most of these processes,

including substrate uptake via fatty acid and glucose transporters and flux via

β-FAO and glycolysis (see Sect. 5.5). Activation of AMPK during energy stress

situations stimulates all these activities.

Physiologically, the significance of the Randle cycle is to ensure the provision of

FAs to high-energy demanding organs such as muscle and liver. Also, glucose is

directed to organs such as brain, red blood cells, and other tissues dependent upon

glucose oxidation and possessing relatively small stores of glycogen.

11.3.2 Which Substrate Is Better: Reductionism Versus
Systems Biology

Living cells extract and transform energy from different sources distributing them

between organs, as a function of their energy needs and metabolic potential.

Unfortunately, there is not yet consensus on evaluating the amount of energy that

may be extracted from different carbon sources. A reason for this is differences

between reductionistic and systems biology type of approaches. The reductionist

explanation of the competitive use of different energy sources by distinct organs is

based on the oxygen needed to oxidize the different substrates and considerations of

coupling of oxidative phosphorylation. All electrons from NADH produced in

aerobic catabolism (i.e., from glycolysis and fatty acid oxidation) enter the respira-

tory chain via complex I, or electrons from FADH2 formed in β-FAO are carried via

electron transferring flavoprotein and complex III (Fig. 11.4), resulting in lower

ATP/O ratio. In this way, the yield of 38 ATP for 12 atoms of oxygen consumed

(P/O ¼ 3.16) for glucose (C6H12O6) oxidation and the yield of 129 ATP for

46 atoms of oxygen consumed (P/O ¼ 2.8) for palmitic acid (C16H32O2) oxidation

are assumed to be sufficient to conclude that glucose is the preferential fuel for

living organisms. This conclusion is further corroborated by measurements of

oxygen consumption by direct calorimetry. When one liter of oxygen is used to

burn substrates, the amount of energy obtained is 5.19 kcal/LO2 for glucose and

4.81 kcal/LO2 for palmitic acid (Leverve et al. 2006). However, these calculations

Fig. 11.4 (continued) would inhibit hexokinase (HK), and decrease glucose transport. G6P
glucose 6-phosphate, HK hexokinase, PFK phosphofructokinase, GLY glycogen, F1,6diP fruc-

tose-1,6-bisphosphate, GAPDH glyceraldehyde 3 phosphate dehydrogenase, 1,3DPG 1,3

diphosphoglycerate. AMPK signaling (orange) controls among others substrate uptake and flux

via glycolysis and fatty acid oxidation under conditions of starvation, hypoxia and other triggers of

energy stress. For details see text. Modified from (Saks et al. 2012) with permission
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do not take into account that under aerobic physiological conditions oxygen is not a

limiting factor for energy metabolism, but instead that there are many other factors

to be taken into account in the whole system. And these factors were indeed taken

into account by nature. Regarding the fuel supply to such a high-energy demanding

organ as is the heart, Clark and collaborators were the first to show that glucose

constituted less than 1/4 of the substrates oxidized by the isolated working

frog heart (Clark et al. 1937). These authors were not able to figure out which

substrate(s) were responsible for consuming the remnant oxygen. In 1954, Bing and

collaborators showed that the respiratory quotient (RQ, VCO2/VO2) in post-

absorptive state was about 0.7–0.75 while studying oxygen utilization during the

aerobic metabolism of fats, ketones, and amino acids by human heart (Bing

et al. 1954). This ratio was unchanged following overnight fasting but increased

above 1 after ingestion of a high fat diet. The authors assumed that this increase

could be due to utilization of intramuscular triacylglycerol (TAG) stores (Bing

et al. 1954). Similar data were obtained in skeletal muscle. The average respiratory

quotient (VCO2/VO2) of muscular tissue taken from de-pancreatized dogs was

about 0.7 (Bing et al. 1954).

In the case of working heart, the preferential energy supply by FA can be

understood from calculations specifying energy needs to realize work, energy

content of different substrates per unit mass, and kinetics of reactions in Randle

and Krebs cycles, rather than by oxygen consumed for oxidizing different fuels. A

heart contracting with a frequency of 70 bpm exhibits a stroke volume of 0.07 L

(i.e., cardiac output—5 L/min) that supports a pressure of 13 kPa (equivalent of

120/70 mm Hg) and realizes a work equal to 65 J/min or 93.6 kJ/day. ATP

hydrolysis in the actomyosin reaction releases about 60 kJ/mol under physiological

conditions. For the heart to accomplish a work equivalent to 100 kJ/day about

2.8 mol of ATP are needed (n ¼ W/ΔGATP corrected for the reaction efficiency that

in the case of actomyosin is about 60 %). This amount of ATP can be obtained from

the oxidation of 0.074 mol glucose or 0.02 mol of palmitic acid. For glucose,

supplemented with an equivalent molecular weight of 10 mol of water, 26.5 g

glucose should be oxidized by the heart to perform work equivalent to 100 kJ/day.

For palmitic acid only 5.5 g of this FA are necessary to perform a similar amount of

work. Thus, the content of free energy per gram of mass that can be released during

oxidation and converted into chemical energy in the form of ATP is much higher for

FAs than for carbohydrates due to the much higher content of non-oxidized –C–C–

and –C–H chemical bonds. Depending on the amount of bound water the difference

in carbohydrates can range from three- to ninefold (Newsholme and Start 1973)

(Fig. 11.5b). Thus, the kinetics of mass transfer in substrate supply is much more

favorable when FAs, as compared to glucose, are used as substrates. And this fact

explains the choice made by nature: heart and oxidative skeletal muscle clearly

prefer FAs as substrates (Fig. 11.5a). Their preferred utilization by heart and

oxidative muscle is achieved by multiple regulatory mechanisms involved in the

Randle and Krebs cycles (Fig. 11.4).

Randle et al. (1963) were the first to propose the concept of selective supply of

FAs over glucose for heart muscle (Randle et al. 1963). The glucose–FA cycle or
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Randle cycle outlined the restrictions imposed on muscle glucose metabolism by

FA oxidation (Randle et al. 1963). Further mechanisms of regulation of the

glucose–FA cycle in working heart were described by Neely and Morgan (1974)

with new insights being revealed since then (Hue and Taegtmeyer 2009;

Taegtmeyer 2010; Taegtmeyer et al. 2005). These mechanisms account for changes

in the kinetics of fuels supply, mass transfer, and transformation including glucose

transport and glycolysis, FA transport, β-FAO, and the Krebs cycle in response to

variations in respiration rates and NADH oxidation.

11.4 Phosphotransfer Pathways (Kinase Cycles)

11.4.1 Creatine Biosynthesis and Transmembrane Transport

Creatine biosynthesis occurs in a two-step reaction; first, in the kidney and in

pancreas, the amino acids arginine and glycine are combined to form guanidino

acetic acid (GAA) by the enzyme AGAT (arginine-glycine amino-transferase), and

second, in the liver, where GAA, taken up from blood serum via GABA-2 (gamma-

aminobutyric acid transporte) (Tachikawa et al. 2012), is methylated to generate Cr

by GAMT (guanidine-acetic acid methyltransferase) using SAM (S-adenosine-

methionine) as a substrate (Wyss and Kaddurah-Daouk 2000). Creatine synthesized

in the liver is released into the bloodstream by a still unknown mechanism. Since

creatine is not produced in significant amounts in, e.g., heart, brain, skeletal, and

smooth muscle, where it plays an important functional role, it has to be imported by

these tissues from blood serum, using a specific creatine transporter (CRT) (Beard
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Fig. 11.5 The role of fatty acid oxidation in metabolism. (a) (i) ATP synthesis to oxygen

consumption ratio in mitochondria for glucose and palmitate oxidation and (ii) the Gibbs free

energy of ATP hydrolysis from the actin–myosin reaction obtained from the oxidation of one gram

of glucose in comparison with the oxidation of one gram of palmitate. (b) Comparison of the

myocardial oxygen extraction ratio of carbohydrates (glucose, pyruvate, and lactate) and

non-carbohydrates (fatty acids, amino acids, ketones) in a post-absorptive state and after ingestion

of FAs. In both states FAs oxidation is the prevalent source of energy for the heart [adapted from

Bing et al. (1954) with permission]
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and Braissant 2010). In this way, creatine participates in the regulation of metabo-

lism at the organ level. An increase in total Cr and PCr in cells also increases the

PCr/ATP ratio and thus energy charge (Wallimann et al. 2011). Mutations in either

of the genes coding for AGAT, GAMT (endogenous creatine synthesis), or CRT

(creatine transport) in humans lead to the so-called creatine deficiency syndrome

with a severe neuromuscular and neurological phenotype including developmental

delay of expressive language and cognitive speech, mental retardation, autistic-like

behavior, epilepsy, and brain atrophy (for review, see (Stockler et al. 2007)).

11.4.2 Direct Measurement of Energy Fluxes: Principal Role
of the Phosphocreatine Pathway in Energy Transfer
in the Heart

While Cr has been known for 175 years after its discovery by Michel Chevreul, the

hypothesis of the PCr pathway was formulated by Samuel Bessman (Bessman and

Carpenter 1985; Bessman and Fonyo 1966; Bessman and Geiger 1981) and inde-

pendently by Martin Klingenberg (1970, 1976, 2008; Wallimann 1975; Turner

et al. 1973; Saks et al. 1978) about 50 years ago. An important factual basis of

this hypothesis is given by the observation made by Belitzer and Tsybakova (1939),

who showed that Cr addition stimulated respiration in skeletal muscle

homogenates, resulting in PCr production (Belitzer and Tsybakova 1939). A fun-

damental contribution to the existence of a PCr pathway of energy transfer in heart,

muscle, brain, and other tissues was been made by Theo Wallimann’s group. They

showed that different CK isoenzymes belong to different compartments, with

MtCK in mitochondria and cytosol and MM-CK in myofibrils and the membrane

of sarcoplasmic reticulum. They also resolved the atomic structure of CKs and

characterized interaction mechanisms with neighboring structures (Wallimann

et al. 1992, 2007; Schlattner et al. 1998, 2006a, b; Schlattner and Wallimann

2004; Eder et al. 1999, 2000; Fritz-Wolf et al. 1996). MM-CK was also shown to

localize in the sarcolemmal membrane (Saks et al. 1977). Such in vivo compart-

mentation of CK and ATP in muscle cells represents the cellular basis of the CK

cycle, one of the phosphotransfer pathways of energy transport (Wallimann

et al. 1992, 2007; Schlattner et al. 2006a, b; Schlattner and Wallimann 2004;

Saks 2007, 2008, 2009; Aliev et al. 2012; Saks et al. 2007b). Detailed functional

studies combining the use of mathematical modeling with experimental data have

shown that within myofibrils, and in the subsarcolemmal area, the diffusion coeffi-

cient for ATP is decreased by factor of 105 as compared to water solution (Abraham

et al. 2002; Alekseev et al. 2012; Selivanov et al. 2004). Diffusion limitations result

in ATP compartmentation in cells, where the local ATP and ADP pools are

connected by the phosphotransfer pathways. An equally important and fundamental

contribution was been made by Dzeja and Terzic groups who measured quantita-

tively, using an isotope tracer method, energy fluxes between different cellular
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compartments involving kinase cycles (Dzeja and Terzic 2003, 2009; Dzeja

et al. 1999; Nemutlu et al. 2012). Most effective and informative in bioenergetic

studies of phosphoryl transfer has been the use of 18O transfer (see the Chap. 6).

This method is based on the following two reactions: ATP hydrolysis by water

molecules containing 18O and ATP resynthesis with formation of [18O]γATP
(Dzeja and Terzic 2009; Nemutlu et al. 2012):

ATPþ 18O
� �

H2O ! 18O
� �

Piþ ADP (11.1)

18O
� �

Piþ ADP ! 18O
� �

γATP (11.2)

Paul Boyer used this method for studying the ATP synthase reaction (Boyer

1997). Inclusion of [18O]Pi into [18O]γATP in the presence of uncouplers led him to

the conclusion of the rotational binding change mechanism of mitochondrial ATP

synthesis. Nelson Goldberg, Petras Dzeja, André Terzic, and coworkers have

successfully applied this method for studying the kinetics of phosphoryl-transfer

reactions and energy fluxes in vivo by measuring the rates of the following

reactions (Dzeja and Terzic 2003, 2009; Nemutlu et al. 2012):

Creatine kinase phosphotransfer:

18O
� �

γATPþ Cr ! 18O
� �

PCrþ ADP (11.3)

Adenylate kinase phosphotransfer:

18O
� �

γATPþ AMP ! 18O
� �

βADPþ ADP ! 18O
� �

βATPþ AMP (11.4)

Glycolytic phosphotransfer:

18O
� �

γATPþ Glucose ! 18O
� �

G6Pþ ADP (11.5)

If a direct transfer of ATP from mitochondria to MgATPases happens together

with its immediate hydrolysis for contraction as sometimes proposed in the litera-

ture, only isotope transfer reactions 1 and 2 could be observed. In an excellent series

of studies Dzeja’s group showed that in normal cardiac cells about 80–85 % of

phosphoryl groups are transferred out from mitochondria by the PCr flux, and about

10–15 % by adenylate kinase, with a minor contribution by glycolysis (Dzeja

et al. 1999). In the heart, these fluxes increase linearly with workload energy

demand under conditions of the Frank–Starling law (Saks et al. 2007c). Figure 11.6

shows that PCr fluxes measured experimentally can be quantitatively simulated

with a mathematical model of compartmentalized energy transfer (Dos Santos

et al. 2000; Aliev et al. 2012; Aliev and Saks 1997; Vendelin et al. 2000). This

model was based on the experimental data obtained in studies of mitochondrial PCr

synthesis in permeabilized cardiomyocytes. The role of the adenylate kinase system

becomes important in hypoxia and pathological situations (Dzeja et al. 1999).
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Recently this method has been used in quantitative studies of metabolic cycles in

human health and disease (Dzeja et al. 2011a).

11.4.3 Intracellular Energetic Units and Mitochondrial
Interactosome: Local Signaling and Frank–Starling
Law

In addition to the fundamental structural data from Wallimann and Schlattner and

energy flux determinations by Dzeja and Terzic, another important question

concerns the cellular mechanisms involved in the function of CKs and other

phosphotransfer pathways. This question was addressed by the group of Valdur

Saks utilizing permeabilized cells that enable the study of mitochondrial function in

their natural environment (Saks et al. 1991, 1998, 2007a, d; Saks and Strumia

Fig. 11.6 Comparison of experimental data of energy flux measurements with results of

simulations by mathematical models. ATP flux: the rate of ATP synthesis in mitochondria; CK

flux: energy flux carried into cytoplasm by phosphocreatine measured experimentally by the 18O

transfer method [data summarized from Dzeja and Terzic (2003), Dzeja et al. (1996, 2001, 2007,

2011a), Pucar et al. (2001)]; A–S: Aliev and Saks models of compartmentalized energy transfer

(Dos Santos et al. 2000; Aliev and Saks 1997). The mathematical model of the compartmentalized

energy transfer system in cardiac myocytes includes mitochondrial synthesis of ATP by ATP

synthase, PCr production in the coupled MtCK reaction, the myofibrillar and cytoplasmic CK

reactions, ATP utilization by actomyosin ATPase during the contraction cycle, and diffusional

exchange of metabolites between different compartments. The model gives a good fitting with the

experimental data, showing that about 85 % of energy produced in mitochondria as ATP flux is

transferred out of mitochondria as PCr flux, in agreement with the abundant experimental data

reported by Dzeja and colleagues
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1993). A central bioenergetic question in muscle cells relates to the mechanism of

PCr synthesis in mitochondria. This question arises because the equilibrium and

kinetic constants of all CK isoforms would favor only the resynthesis of MgATP

from PCr and MgADP (Saks et al. 2010; Guzun et al. 2009). Kinetic information

available is in agreement with the role of MM-CK at the sites of local ATP

regeneration in myofibrils and membranes of sarcolemmal and sarcoplasmic retic-

ulum, but this is not the case for PCr synthesis in mitochondria. More insight can be

obtained from the classical problem of cardiac physiology—the metabolic aspect of

the basic Frank–Starling law of the heart (Saks et al. 2006c, 2012). Discovered in

1914–1926, the Frank–Starling law states that under physiological conditions

contractile force, cardiac work, and the rate of oxygen consumption increase

manifold with the filling of the left ventricle (Starling and Visscher 1927). Later

it was found that this occurs without any changes in the ATP and PCr levels

(metabolic stability) and Ca2+ transients (Neely et al. 1972; Balaban et al. 1986).

The latter observation excludes any explanation involving a mechanism of control

of mitochondrial respiration by changes in intracellular Ca2+. A Ca2+-mediated

mechanism may be important only in the case of adrenergic activation of the heart

(Tarasov et al. 2012; Balaban 2012). Assuming that ATP, ADP, PCr, and Cr are

related through equilibrium relationships, the observation of metabolic stability was

interpreted to exclude any other explanation of workload dependence of cardiac

oxygen consumption than a mechanism involving the control of mitochondrial

respiration by ADP or Pi only. The popular assumption of CK equilibrium, as in

a mixed bag of enzymes (Wiseman and Kushmerick 1995), however, is in contra-

diction with the experimental evidence (Saks 2008; Guzun and Saks 2010). This

includes recent high-resolution 31P NMR experiments showing that the major part

of adenine nucleotides, notably ATP in muscle cells, exists associated with

macromolecules and that free ADP may be only transiently present in the cytoplasm

(Nabuurs et al. 2010, 2013). We have shown that both high PCr fluxes in the heart

detected by Dzeja and collaborators (Dzeja and Terzic 2003, 2009; Dzeja

et al. 1999; Nemutlu et al. 2012) and the linear dependence of the rate of oxygen

consumption on cardiac work may be explained by local signaling and metabolic

channeling of adenine nucleotides in nonequilibrium CK reactions (Saks

et al. 2012; Guzun et al. 2009; Timohhina et al. 2009). Actually, CK can catalyze

within the same cell either the forward or the backward reaction depending on in

which microcompartment the enzyme is located and where it functions as part of

different multienzyme complexes.

Mechanisms involving the interaction of mitochondria and CKs with other

cellular structures and multienzyme complexes are central for understanding meta-

bolic stability in the heart. This implies a different perspective in the framework of

systems biology. Figure 11.7a shows the localization of the tubulin isotype βII
following the pattern of mitochondrial distribution in cardiac cells (Saks et al. 2012;

Gonzalez-Granillo et al. 2012; Guzun et al. 2011b, 2012). Tubulin βII is part of the
heterodimer tubulin that binds to VDAC in MOM, thus modulating the close

probability of this channel specifically so that it is permeated by Cr or PCr but

limited for ATP or ADP (Guzun et al. 2009; Timohhina et al. 2009). In cardiac
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cells, the heterodimeric tubulin αβII and VDAC form a supercomplex with MtCK

and the ATP synthasome—the mitochondrial interactosome (MI) (Fig. 11.7b)

(Timohhina et al. 2009). Within this supramolecular structure, ATP and ADP

cycle between ATP synthasome and MtCK maintaining oxidative phosphorylation

effectively coupled to the synthesis of PCr. In the MI, MtCK functions

Fig. 11.7 Mitochondrial Interactosome. (a) Confocal image of a cardiomyocyte labeled with

MitoTracker Red for mitochondria; scale bar 14 μm. (b) Scheme depicting the mitochondrial

interactosome, a macromolecular complex formed by the ATP synthasome, in turn constituted by

ATP synthase (subunits in different colors), adenine nucleotide translocase (ANC, orange),
inorganic phosphate carrier (PIC, yellow), coupled to the respiratory complexes (I-IV, purple
circles) in the mitochondrial inner membrane (MIM), octameric mitochondrial CK (MtCK,

backbone structure with dimers in different color) in the intermembrane space (IMS) and the

voltage-dependent anion channel (VDAC, gray-blue) in the mitochondrial outer membrane

(MOM) interacting with cytoskeletal proteins tubulin (gray, surface structure representation)

and putative linker protein (LP, purple). Metabolite fluxes are indicated by arrows in different

colors. For ATP synthase, subunits of the F1 part (greek letters) and F0 part (latin letters) are
indicated, as well as the rotation of the rotor (yellow arrow). For the respiratory chain, proton

pumping (H+, yellow arrows) and some redox centers (FMN, FAD) are indicated, as well as the

two electron carriers coenzyme Q (CoQ/CoQH2) and cytochrome c (cytc). Adapted from

(Timohhina et al. 2009) and (Schlattner et al. 2009) with permission. Art work of the ATP

synthasome in this figure was reproduced with kind permission from P.L. Pedersen and is the

result of the combined efforts of Drs. Young H. Ko and David J. Blum; MtCK structure and

membrane topology is reproduced from (Schlattner et al. 2006b) with permission
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unidirectionally toward PCr synthesis utilizing mitochondrial ATP supplied by

ANT (direct channeling). This process moves ADP back into mitochondria,

because of the differential permeability of VDAC in interaction with tubulin that

impedes ADP release from mitochondria. These coupled reactions of oxidative

phosphorylation and PCr synthesis in MI are effectively regulated by Cr (Fig. 11.8).

In the presence of an extra-mitochondrial ADP trapping system (pyruvate kinase,

PK; phosphoenolpyruvate, PEP), Cr addition rapidly increases the respiration rate

to its maximal value, revealing a preferential accessibility of the ADP produced by

MtCK to matrix ATPase, not to the cytosolic trapping system. Metabolic control

analysis of mitochondrial respiration in permeabilized cardiac cells showed high

flux control coefficients (FCC) for reactions involving ADP recycling coupled to

MtCK and PCr production (Fig. 11.9a). Actually, the sum of control coefficients

exceeds the theoretical value for linear systems by a factor of 4 (Tepp et al. 2011).

This can be interpreted in terms of MtCK-controlled reactions in MI acting as very

effective amplifiers of metabolic signals from cytoplasm (Tepp et al. 2011; Aon and

Cortassa 2012). According to Kholodenko, Westerhoff, and their coworkers, the

sum of the FCC of the metabolic pathway components exceeding one indicates a

direct channeling in the pathway (Moreno-Sanchez et al. 2008). On the contrary, in

isolated heart mitochondria and permeabilized cardiac fibers the sum of FCC of

respiratory chain complexes, ATP synthase, and metabolite carriers, estimated

under conditions of respiration activated by ADP, is close to 1, corresponding to

a linear metabolic pathway (Moreno-Sanchez et al. 2008; Kuznetsov et al. 1996;

Doussiere et al. 1984; Fell and Thomas 1995; Groen et al. 1982). The high

efficiency of energy flux control in MI makes this supercomplex a key site for the

feedback of metabolic regulation of mitochondrial respiration in cardiac cells (Saks

et al. 2012; Tepp et al. 2011).

Figure 11.9b depicts the possible role of both Cr and ADP in the control of

respiration in situ. Extra- and intra-mitochondrial ADP in the regulation of respira-

tion was studied by MgATP titration in the absence or presence of Cr, i.e., activated

MtCK (Saks et al. 2012; Guzun et al. 2009; Guzun and Saks 2010; Timohhina

et al. 2009). The influence of mitochondrial ADP alone on respiration was

estimated by removing extra-mitochondrial ADP through the PEP-PK trapping

system mimicking glycolytic ADP consumption. From Fig. 11.9b we can see that

stimulation of the extra-mitochondrial ADP producing system by MgATP alone

cannot effectively activate respiration. The high apparent Km for exogenous

MgATP (157.8 � 40.1 μM) corresponds to the apparent Km of myofibrillar ATPase

reaction for MgATP. However, when oxidative phosphorylation is stimulated by

both extra- and intra-mitochondrial ADP (in the presence of Cr to activate MtCK

and MM-CK in myofibrils), the respiration rate increases rapidly up to maximal

values and the apparent Km for ATP decreases from 157.8 � 40.1 μM to

24.9 � 0.8 μM. Removal of extra-mitochondrial ADP by PEP-PK provokes an

increase of Km for MgATP up to 2.04 � 0.10 mM. These results show that local

endogenous ADP in ICEUs is an important regulatory factor of respiration but only

in the presence of Cr and activated MtCK. The stimulatory effect of respiration by

endogenous ADP is strongly amplified by functional coupling of MtCK with ANT
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that increases adenine nucleotides recycling within the MI (Saks et al. 2012; Guzun

et al. 2009; Timohhina et al. 2009; Jacobus and Saks 1982). The loss of

Cr-stimulated respiration in transgenic MtCK-knockout mice confirms the central

role of MtCK in respiration regulation (Kay et al. 2000).

Fig. 11.8 Control of mitochondrial respiration by creatine in permeabilized cardiomyocytes. (a)

Schematic representations of an oxygraph experiment and of a mitochondrion in a permeabilized

cardiac cell, surrounded by cytoskeletal proteins and myofibrils. First, added ATP is hydrolyzed by

cellular ATPases and the ADP produced stimulates respiration. Phosphoenolpyruvate (PEP) and

pyruvate kinase (PK) continuously trap extra-mitochondrial ADP to regenerate ATP. Stepwise

addition of Cr in the presence of ATP stimulates mitochondrial creatine kinase (MtCK) that

controls respiration through continuous intra-mitochondrial re-cycling of ADP from ATP. (b)

Oxygraph recording of Cr stimulated respiration. This experiment enables the estimation of the

apparent affinity of MtCK for Cr. The left scale and the blue trace indicate the oxygen concentra-

tion (nmol O2 ml�1) in the experimental milieu. The right scale and the red trace denote the rate of
oxygen uptake (in nmol O2 min�1 nmol�1 cyt. aa3). Adapted from (Guzun et al. 2009) with

permission
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Taken together this information allows explaining the linear relationship

existing between oxygen consumption and cardiac work by local metabolic feed-

back signaling within ICUEs (Saks et al. 2010, 2012; Aliev et al. 2012) (Fig. 11.10).

Direct flux determination and mathematical modeling show that not more than

10 % of free energy is transported out of mitochondria by ATP flux needed to

equilibrate the information-carrying flux of ADP into mitochondria. According to

this model, ADP released from actomyosin cross-bridges stimulates the local

MM-CK reaction in the myofibrillar space within ICEUs while at the same time

forms a concentration gradient towards mitochondria (Fig. 11.10a–c) (Dos Santos

et al. 2000; Aliev et al. 2012; Aliev and Saks 1997; Vendelin et al. 2000). The

amplitude of displacement of MM-CK from equilibrium, as well as cyclic changes

in ADP, is proportionally increased with workload (Fig. 11.10b, c). The

rephosphorylation of ADP in the MM-CK reaction increases locally the Cr/PCr

ratio that is transferred towards MtCK via the CK/PCr shuttle. Regulation of VDAC

permeability by βII tubulin is a key element mediating the linear response of

mitochondrial respiration to local signaling within ICEUs. When MOM is perme-

able, as in isolated mitochondria, modulation of respiration is impossible because of

saturating ADP concentrations used under these conditions. The latter exceeds

manifold the apparent affinity of oxidative phosphorylation for free ADP

(Km
appADP ¼ 7.9 � 1.6 μM), even in diastolic phase (about 40 μM)

(Fig. 11.11a). On the contrary, when ADP diffusion is restricted at the level of
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Fig. 11.9 The energy flux control in permeabilized cardiomyocytes: creatine stimulation of
mitochondrial respiration. (a) Flux control coefficients for MtCK, adenine nucleotide translocase

(ANT), ATP synthasome (ATPsyn), respiratory complexes I (C I), III (C III), IV (C IV), and

inorganic phosphate carrier (PiC). The right panel shows the sum of flux control coefficients.

Reproduced from (Tepp et al. 2011) with permission. (b) The role of endogenous ADP produced in

MgATPase reactions at different concentrations of MgATP in the regulation of mitochondrial

respiration in permeabilized cardiomyocytes under different conditions: (square)—without ADP

trapping system (PEP-PK) and in the absence of Cr; ( filled circle)—without PEP-PK system but in

the presence of 20 mM Cr (i.e., activated MtCK); (triangle)—in the presence of both trapping

system for free ADP and 20 mM Cr. Reproduced from (Timohhina et al. 2009) with permission
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MOM, as in mitochondria in situ, the apparent Km for free ADP increases to about

370.75 � 30.57 μM and the respiration rate becomes almost linearly dependent on

local ADP concentration. Under these conditions, the initial respiratory rate can be

approximated by its linear dependence on ADP within the range of values

corresponding to the increase in workload (Fig. 11.11b) (Guzun et al. 2009;

Timohhina et al. 2009). Thus, cyclic changes in local ADP concentrations within

the myofibrillar space of ICEUs become an effective regulatory signal due to (1) the

nonequilibrium state of CK reactions, (2) the restricted VDAC permeability to

metabolites elicited by association with βII tubulin, and (3) the presence of
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Fig. 11.10 Mechanisms of regulation of mitochondrial respiration controlled by MtCK and of
energy fluxes in cardiac muscle cells. (a–c) Results from a mathematical model of cardiac energy

metabolism (Vendelin-Aliev-Saks-Dos Santos model). (a,b) Calculated net PCr production rates

in nonequilibrium steady state MtCK reaction (a) and cyclic changes in rates of ATP regeneration

in nonequilibrium myofibrillar MM-CK reaction (b) during contraction cycles at different

workloads corresponding to oscillations of [ADP]c indicated in Fig. 11.11. (c) Mathematically

modeled oscillations of ADP concentrations in the core of myofibrils over cardiac cycle at

workloads equivalent to 750 (black), 1,500 (red) and 2,250 (green) μmol ATP s�1 kg�1.

According to this model, the ATP cyclically produced during contractions (b) is associated with

cyclical oscillations of ADP and Pi concentrations in myofibrils (c) and subsequent PCr production

in the MtCK reaction (a). Reproduced from (Dos Santos et al. 2000; Aliev et al. 2012; Aliev and

Saks 1997; Vendelin et al. 2000) with permission. (d) Schematic representation of feedback

metabolic signaling in regulation of energy metabolism within ICEUs in cardiac cells. Due to

the nonequilibrium MtCK and cyclic MM-CK reactions, intracellular ATP utilization (output) and

mitochondrial ATP regeneration (input) are linked via cyclic fluctuations of cytosolic ADP and

Cr/PCr. See the text for explanation
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Cr. When these conditions are fulfilled, activation of the coupled MtCK within MI

by Cr induces ADP/ATP recycling and increases respiration rate, thus amplifying

the effect of cytoplasmic ADP; under these conditions, the apparent Km for ADP

becomes equal to 50.24 � 7.98 μM (Fig. 11.11a). These data suggest that modula-

tion of respiration by local changes in ADP concentration, under condition of

restriction of adenine nucleotide diffusion across mitochondrial membranes, is

mediated by the structural organization of the MI. The MtCK reaction amplifies

the ADP signal due to its functional coupling with ATP Synthasome (Fig. 11.7),

thus increasing the steady-state rate of adenine nucleotides cycling in mitochondria

and the rate of respiration. The coupled reactions of muscle type MM-CK in

myofibrils and MtCK in mitochondria perform under nonequilibrium conditions

and proceed in opposite directions (Fig. 11.10a–c) (Saks et al. 2012; Guzun

et al. 2009; Guzun and Saks 2010; Timohhina et al. 2009). This mode of function

results in separation of energy fluxes (mass and energy transfer by PCr) and

signaling (information transfer by oscillations of cytosolic ADP concentrations,

Pi and PCr/Cr ratio) that is amplified within the MI. As a result, reactions catalyzed

by different isoforms of compartmentalized CK tend to maintain the intracellular

metabolic stability. The separation of energy and information transfer is illustrated
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Fig. 11.11 The role of restriction of ADP diffusion in the regulation of mitochondrial respiration.
(a) Kinetic analysis of ADP-activated respiration. The ADP concentrations corresponding to

mathematically modeled fluctuations of ADP by Michaelis–Menten graph representation with

colored small arrows (black, red and green), contained in the area of physiological cytosolic ADP
concentration (indicated by a gray box). When MOM is permeable, as in isolated mitochondria (Δ,
Km

appADP—7.9 � 1.6 μM), the regulation of respiration is impossible because of a saturated

ADP concentration for the minimal workload. When the ADP diffusion is restricted at the level of

MOM, as in mitochondria in permeabilized cardiomyocytes (circle, Km
appADP—

370.75 � 30.57 μM), the respiration rates become linearly dependant on ADP concentrations, in

fact also on heart workloads in accordance with the Frank–Starling law (b). This linear dependence

under physiological conditions can be amplified by creatine (see large blue arrows in a) in the

presence of activated MtCK (Square, Km
appADP—50.24 � 7.98 μM). Reproduced from (Guzun

et al. 2009) with permission. (b) The metabolic aspect of the Frank-Starling’s law of the heart is

expressed by linear dependence between the increase of left ventricular end-diastolic volume and

the increase of respiration rates in the absence of measurable changes in the intracellular ATP and

PCr content. Reproduced from (Saks et al. 2006c) with permission
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by the scheme depicted in Fig. 11.10d. This scheme shows feedback regulation of

respiration in vivo according to Norbert Wiener’s cybernetic principles (Saks

et al. 2012; Guzun and Saks 2010): the usage of ATP (or release of free energy of

ATP hydrolysis, ΔGATP, to perform work, marked as output) and ATP regeneration

(or extraction of ΔGATP from substrates by oxidative phosphorylation, denoted as

input) are interconnected via the feedback signaling through oscillations of cyto-

plasmic concentrations of ADP, AMP, Pi, and Cr/PCr amplified within MI. In this

framework, the role of βII tubulin in association with MOM in cardiomyocytes

would be to induce the linear response of mitochondrial respiration to workload-

dependent metabolic signals. This elegant feedback mechanism of regulation of

respiration on a beat-to-beat basis ensures metabolic stability necessary for normal

heart function and explains well the metabolic aspect of the Frank–Starling’s law of

the heart (Saks 2007; Saks et al. 2006a, 2012). Importantly, recycling of adenine

nucleotides within MI when coupled to PCr production significantly decreases ROS

levels ensuring maximal efficiency of free energy transduction in mitochondria

while inhibiting permeability transition pore opening, thus protecting the heart

under stress conditions (Schlattner et al. 2006b; Meyer et al. 2006).

While the mechanisms described above represent local signaling within ICEUs,

important mechanisms of synchronization of mitochondrial activity between

ICEUs and their integration into structurally and functionally organized cellular

systems are described by Cortassa and Aon in Chap. 5. The role of Ca2+ cycle in

maintaining high respiratory activity of mitochondria within ICEUs has been

described by Balaban’s group and studied by mathematical modeling by

Cortassaet al. (2009).

11.4.4 Intracellular Creatine Concentration as a Regulatory
Factor in Heart Energetics

Many experimental and clinical studies have shown that intracellular Cr concentra-

tion is an important factor, determining the efficiency of intracellular energy

transfer in heart cells (Saks et al. 1978, 2012; Wyss and Kaddurah-Daouk 2000;

Nascimben et al. 1996). The results of an earlier work of ours published more than

30 years ago are reproduced in Fig. 11.12. This experiment shows that removal of

Cr from the frog heart cells results in decreased PCr content and diminished

contractile force; all parameters return to their initial value after restoration of Cr

content (Saks et al. 1978). Similar results were recently reported by (Nabuurs

et al. 2013) by assessing morphological, metabolic, and functional consequences

of systemic Cr depletion in skeletal muscle. These data were obtained in a mouse

model deficient in L-arginine:glycine amidino transferase (AGAT�/�) which

catalyzes the first step of Cr biosynthesis. In this work, systemic Cr depletion

resulted in mitochondrial dysfunction and intracellular energy deficiency, as well

as structural and physiological abnormalities. In vivo magnetic resonance
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spectroscopy showed a near-complete absence of Cr and PCr in resting hind limb

muscle of AGAT�/� mice. Compared to wild type, the inorganic phosphate/β-ATP
ratio was increased fourfold, while ATP levels were reduced to nearly half and

overall mitochondrial content was increased. The Cr-deficient AGAT�/� mice

presented with significantly reduced grip strength and suffered from severe muscle

atrophy. Oral Cr administration led to rapid accumulation in skeletal muscle (faster

than in brain) and reversed all muscle abnormalities revealing that the condition of

the AGAT�/� mice can be switched between Cr-deficient and normal simply by

dietary manipulation. The consequences of AGAT deficiency were more pro-

nounced than those of muscle-specific CK deficiency (Nabuurs et al. 2013),

which suggests a multifaceted involvement of Cr in addition to its role in the

PCr–CK system and in muscle energy homeostasis, as, e.g., by direct effects on

biomembranes (Tokarska-Schlattner et al. 2012). It was also shown by the group of

Stefan Neubauer in Oxford that a moderate elevation of total Cr levels in the heart

by approximately 50 % in transgenic mice overexpressing the Cr transporter (CRT)

conveyed significant protection and improved recovery of the hearts upon experi-

mental induction of ischemia/reperfusion (Lygate et al. 2012). In one of their most

important work the Neubauer’s group has shown that a decrease of PCr content in

the heart of patients with dilated cardiomyopathy is accompanied with significantly

increased mortality rates (Neubauer 2007).

The role of altered phosphotransfer pathways in heart pathology of animal

models, as well as human patients, is well documented and has been described in
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a number of reviews (Ingwall and Weiss 2004; Ingwall 2006; Ventura-Clapier

et al. 2002, 2004). Most recently, two younger Chinese patients with acute

myocardial infarction and presenting with muscle MM-CK deficiency have been

diagnosed with somatic mutations in the M-CK gene. These mutants at amino acid

E79 prevent correct folding and dimerization of M-CK. In parallel, correct targeting

of the enzyme to subcellular structures is hampered and enzymatic CK activity

dramatically lowered (Wu et al. 2013). These data with human cardiac infarction

patients have shown that active dimeric MM-CK together with its substrates Cr and

PCr are important for normal heart function.

Thus, the current opinion, supported by a host of data derived from different

experimental approaches and provided by a number of different independent

laboratories, is that Cr and PCr together with microcompartmentalized CK isoforms

are physiologically essential for normal body function, specifically for optimal

performance of skeletal and heart muscle, brain, neuronal cells, skin, retina and

auditory cell, spermatozoa, and other cells of intermittant high-energy requirements

(Wallimann et al. 1992, 2011). This fundamental hypothesis is strongly supported

by the more or less severe phenotypes observed in double and single CK isoenzyme

knockout mice, respectively (Steeghs et al. 1997; Streijger et al. 2005; Heerschap

et al. 2007), as well as by the phenotypes of AGAT and GAMT knockout mice,

presenting with disturbed energy metabolism body weight control, hampered fer-

tility, muscular dystrophy, and cognitive and behavioral impairment, etc. (Nabuurs

et al. 2013; Schmidt et al. 2004; ten Hove et al. 2005; Torremans et al. 2005).

In a most recent, provocative publication, entitled “Life without creatine”,

Lygate and colleagues purport that the phenotype of the GAMT knockout mouse

was basically “normal”. Specifically, they do not find a skeletal or cardiac muscle

phenotype (Lygate et al. 2013). This contradicts the phenotype of the same trans-

genic mouse described earlier (Schmidt et al. 2004; ten Hove et al. 2005; Kan

et al. 2005). Most importantly it is in contrast to the AGAT knockout creatine

deficiency mouse (Nabuurs et al. 2013). This latter AGAT knockout mouse, in

contrast to the GAMT knockout mouse, does not synthesize guanidine acetate

(GAA), which in the GAMT knockout skeletal muscle was shown to be

phosphorylated by CK to form an alternative energy-rich phosphagen, phospho-

GAA, which still can be utilized as high-energy phosphagen, albeit at lower

efficiency (Heerschap et al. 2007). Thus, it will be most important to reevaluate

cardiac energy metabolism and heart phenotype in the GAMT knockout mouse to

completely rule out any compensatory effects of the high concentrations of

phospho-GAA accumulated in these knockout mice and to rule out a still possible

contribution of phospho-GAA as an still alternative energy source. Corresponding

experiments with the pure creatine deficiency AGAT knockout, presenting with a

rather severe phenotype that is reversible by simple creatine supplementation

(Nabuurs et al. 2013), are warranted and should provide some answers to these

pending questions. To get a physiologically more meaningful answer to the true

function of CK in heart it will be paramount to stress the heart to maximal

performance and work output, where one would expect to see the true effects of

creatine deficiency also in this organ.
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In conclusion, until the enigma of the results provided by (Lygate et al. 2013)

(see above) is solved, all available data still indicate that the CK system together

with PCr and Cr is central to the regulatory mechanisms of metabolic and energy

fluxes in those cells under intermitantly fluctuating high-energy requirements,

including the heart (Taegtmeyer and Ingwall 2013).

11.5 The Signaling Network of AMP-Activated Protein

Kinase (AMPK) in the Heart

11.5.1 Protein Kinase Signaling Networks in Metabolic
Control of Cardiac Function

Metabolic cycles as described before provide immediate metabolic feedback for

changes in energy input (nutrient supply) and energy output (workload). They are

particularly important in the heart, an organ that maintains a high degree of

metabolic stability and a particularly well-controlled energy homeostasis. An

additional layer of regulation, which ascertains this metabolic stability, is achieved

by information transfer via protein kinase signaling. All major protein kinase

pathways were shown to play important roles in the heart, controlling contraction

force, contractility, and heart rate in particular during cardiac development, under

prolonged strong stimulation, and under emerging pathological conditions.

The possibly best studied example is the cyclic adenosine nucleotide (cAMP)-

dependent protein kinase A (PKA) (Taylor et al. 2008), together with its homolo-

gous cGMP-dependent protein kinase G (PKG) (Takimoto 2012). Their control of

cardiac contraction strength, ion fluxes, and hypertrophy relies on a precise spatio-

temporal regulation of substrate phosphorylation. In case of PKA, A-kinase anchor-

ing proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) play a

major role in this spatiotemporal organization and the occurrence of cAMP

microdomains (Edwards et al. 2012; Mika et al. 2012; Diviani et al. 2013). This

emphasizes the importance of cellular localization and organization for protein

kinase-mediated information fluxes, as already outlined above for cardiac CK

isoenzymes.

Also some other protein kinase signaling pathways have to be considered as

relevant for cardiac metabolism. Protein kinase B (PKB or Akt) is an essential

component of the growth response of an organism to nutritional input. In the heart,

it participates in the regulation of myocyte growth under physiological conditions

(Walsh 2006; Hers et al. 2011). PKC isoforms regulate cardiac contraction and

hypertrophic responses, as well as other signaling pathways in more pathological

situations such as ischemia and reperfusion injuries (Steinberg 2012). While

calcium-regulated PKD is a more recent addition to the kinome, less well studied

in respect to the cardiovascular system (Avkiran et al. 2008), members of the
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mitogen-activated protein kinase (MAPK) family are prominent regulators of

cardiac function with both protective and detrimental effects (Rose et al. 2010).

The protein kinase most relevant in the context of metabolic stability and energy

homeostasis, however, is AMP-activated protein kinase (AMPK). It has often been

described as a major “signaling hub,” “fuel gauge,” “metabolic sensor,” or “meta-

bolic master switch” because it plays a central role in sensing and regulating energy

homeostasis at the cellular, organ, and whole-body level (Winder and Hardie 1999;

Hardie and Carling 1997). Activation of AMPK is triggered by a diverse array of

signals linked to limited energy availability in physiological and pathological

situations, including extracellular (e.g., hormones, cytokines, nutrients) and intra-

cellular stimuli (e.g., AMP, ADP) (Hardie et al. 2012a). Activation involves

covalent phosphorylations and allosteric binding of AMP or ADP that cooperate

in a complex manner. In general, these regulations are coordinated to activate

AMPK in situations of energy deficits and aim at compensating ATP loss via

accelerated catabolism and inhibited anabolism. However, pleiotropic control

exerted by AMPK affects not only metabolic pathways but also other physiological

functions like cell growth and proliferation, cell polarity and motility, apoptosis,

autophagy, and central appetite control by regulating enzyme activities and gene

transcription. This has made the kinase also a prime pharmacological target for

treating metabolic disorders or possibly also cancer (Hardie 2007; Zhang

et al. 2009; Finckenberg and Mervaala 2010; Inoki et al. 2012; Srivastava

et al. 2012).

Although earlier work on AMPK mainly focused on tissues like liver and

skeletal muscle, more recent research has revealed novel molecular mechanisms

of AMPK regulation and downstream action that are relevant also to cardiovascular

function. Activation of the AMPK pathway plays a particularly important role in

the myocardial response to pathological stimuli like ischemia–reperfusion (Kudo

et al. 1995; Russell et al. 2004), pressure overload (Tian et al. 2001; Kim

et al. 2012), or heart failure (Sasaki et al. 2009). Pharmacological activation of

AMPK also holds promise as a therapeutic strategy for treating cardiovascular

diseases (e.g., Sasaki et al. 2009; Calvert et al. 2008; Shinmura et al. 2007). The

following paragraphs will briefly summarize the key elements of AMPK signaling

with an emphasis on metabolic regulation in the heart. For more complete reviews

of this issue, the reader is referred to some excellent recent overviews dedicated to

general AMPK signaling (Hardie et al. 2012a; Inoki et al. 2012; Carling et al. 2012;

Oakhill et al. 2012) or AMPK functions in the heart (Zaha and Young 2012; Harada

et al. 2012; Ahn et al. 2012; Horman et al. 2012) and other organs [see e.g., a recent

review series in Mol Cell Endocrinol (Steinberg 2013)]. Thus, AMPK signaling

may constitute a fourth module for a systems description of the cardiac metabolic

network.
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11.5.2 Network Elements: AMPK Isoforms and Their
Distribution in Cells and Tissues

AMPK is an evolutionary conserved and ubiquitously expressed serine/threonine

kinase that presents complex structural and functional features. Structurally, it

occurs in vertebrates as an obligatory heterotrimeric complex composed of one

catalytic subunit (α) and two regulatory subunits (β and γ). As a first layer of

complexity, all subunits exist in form of different isoforms (α1, α2, β1, β2, γ1, γ2,
and γ3) and splice variants (of γ2 and γ3), generating multiple heterotrimeric

complexes. The precise physiological significance of these isoforms is not yet

entirely clear. However, there is some evidence that they determine intracellular

distribution, protein recognition, or tissue-specific functions of AMPK, all of which

could provide selectivity for specific subsets of substrates within the ever increasing

list of AMPK substrates (Hardie et al. 2012a, b; Carling et al. 2012).

11.5.2.1 Subcellular Localization

The subcellular distribution and recruitment of AMPK to specific sites are likely an

important factor for its signaling function, but so far only few details are known, in

particular in heart. AMPK is generally observed as a soluble complex with diffuse

cytosolic localization, but at least α2-containing complexes in their activated form

can translocate into the nucleus to phosphorylate important substrates (e.g., tran-

scription factors, histones, histone deacetylases) as seen, e.g., after exercise in

skeletal muscle (McGee et al. 2003, 2008; Suzuki et al. 2007; McGee and

Hargreaves 2008). Minor but important portions of AMPK may associate with

cellular structures like specific membranes, where processes are regulated by

AMPK (e.g., ion channel activity, cell polarity, or cell junction formation) (Forcet

and Billaud 2007; Andersen and Rasmussen 2012; Nakano and Takashima 2012).

Myristoylation of the AMPK β-subunit can localize the kinase complex to

membranes and increases its activability, possibly favoring activation of

membrane-bound complexes (Suzuki et al. 2007; Oakhill et al. 2010).

AMPK may also be recruited into specific complexes via interaction with its

upstream kinases, downstream substrates, or more general scaffolding proteins.

However, the AMPK interactome is only partially known so far from some targeted

and non-biased interaction studies conducted by us and others (e.g., Ewing

et al. 2007; Moreno et al. 2009; Behrends et al. 2010; Klaus et al. 2012), and

more research is needed on this issue, in particular in the heart. AMPK interaction

with LKB1, its major upstream kinase in the heart, could localize AMPK to places

of LKB1 localization, including the mitochondrial surface or E-cadherin in

adherens junctions (Sebbagh et al. 2009). Scaffolding proteins can provide speci-

ficity in cell signaling by isolating activated kinases from bulk signaling and

directing the information flow into specific pathways. In heart, for example,

AMPK competes with p38 MAPK for binding to the scaffolding protein
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TAK-1-binding protein-1, thus blunting p38 activation during ischemia

(Li et al. 2005). Mitochondrial VDAC may represent yet another anchor protein

recruiting AMPK to this organelle (Strogolova et al. 2012). There is also some

evidence that AMPK subunit isoforms determine specific protein interactions. The

β-subunit may in some cases confer substrate specificity, as seen with the yeast and

plant orthologues (Vincent and Carlson 1999; Polge et al. 2008), but also putative

mammalian AMPK interactors (IntAct database, (Kerrien et al. 2012)). We recently

found the β2-isoform interacting with Mu- and Pi-type glutathione transferases

(GSTs) to favor glutathionylation of the α-subunit (Klaus et al. 2013). However,
in case of fumarate hydratase (FH), we identified a specific interaction with

α2-containing AMPK complexes (Klaus et al. 2012).

11.5.2.2 Expression Patterns

AMPK isoforms also show some differences in their tissue- and developmental-

specific expression patterns, also in heart, although the physiological significance is

still uncertain. While the α1β1γ1 complex is probably the most abundant in most

cell types, differences seem to occur in the amount of additional isoforms like α2-
and γ3 in skeletal muscle or β2 and a specific intermediate length γ2 splice variant

(γ2–3B) in the heart (Stapleton et al. 1996; Thornton et al. 1998; Li et al. 2006;

Pinter et al. 2012). There are also pathological and developmental changes in

cardiac AMPK expression. The α2, β2, and γ2 isoforms are all upregulated by

pressure overload or heart failure in rodents, although in patients rather the content

of α1, β1, and γ2 (an intermediate form) increases with different forms of cardio-

myopathy (Tian et al. 2001; Kim et al. 2012). During embryonic development in

rodents, γ1 increases while high levels of γ3 disappear, and the embryonically

predominant full-length γ2 form is replaced by γ2–3B in heart, but by short γ2b in

other tissues (Pinter et al. 2012). These developmental and tissue particularities

may also explain why γ2 gene mutations in the CBS domains cause heriditary

hypertrophic cardiomyopathy (see below) but no other pathological symptoms.

Full-length γ2 and γ2–3B share an N-terminal domain with unknown function

that could localize the AMPK complex to specific compartments or signaling

pathways (Pinter et al. 2012). Total AMPK activity increases after birth,

contributing to the switch to predominant use of fatty acids (Makinde

et al. 1997). AMPK levels may also be determined by ubiquitin-dependent

mechanisms (Qi et al. 2008; Moreno et al. 2010), but its role in the heart is not

known.

11.5.3 Network Elements: Molecular Structure of AMPK

Given the interest in AMPK as a putative drug target in metabolic diseases, recent

years have seen intense efforts to elucidate the molecular structure of AMPK.
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By solving several X-ray structures for AMPK domains and truncated core

complexes, the topology of the heterotrimer, the conserved global fold of large

parts of the subunits, and the putative activation mechanisms could be deduced

(Townley and Shapiro 2007; Amodeo et al. 2007; Xiao et al. 2007, 2011; Chen

et al. 2009; Oakhill et al. 2011). However, a high-resolution structure of full-length

heterotrimeric complex in both active and inactive states is still lacking. The so far

most complete X-ray structure covers most of the α1-subunit except a C-terminal

linker region (although not all of the sequence present is well resolved in the

electron density map), the C-terminal domain of the β2-subunit, and the entire

γ1-subunit (Xiao et al. 2007, 2011).

11.5.3.1 α-Subunit

The catalytic α-subunit contains an N-terminal serine-threonine kinase domain with

an activation loop carrying the critical Thr172 residue. Phosphorylation of this

residue by upstream kinases is essential for AMPK activation and often used as an

indicator for AMPK activity (Hawley et al. 1996). The C-terminal α-domain carries

the motif interacting with the β-subunit and further structural determinants that are

involved in AMPK activation. These include an autoinhibitory domain (AID) and

loop(s) contacting the γ-subunit (called α-hook or α-RIM1 and α-RIM2) (Xiao

et al. 2007; Chen et al. 2009, 2013a; Pang et al. 2007). Their exact roles are,

however, disputed and further structural studies will be necessary to delineate their

function in autoinhibition and α–γ communication. Earlier in vitro studies

suggested that the α2 subunit has a higher sensitivity to allosteric activation by

AMP (Salt et al. 1998).

11.5.3.2 β-Subunit

The regulatory β-subunit is often described as a scaffold for α- and γ-subunits, a
function that indeed is provided by the C-terminal domain. The N-terminal domain

whose structure is not entirely resolved at molecular resolution carries additional

regulatory elements. A glycogen-binding domain (GBD) seems to provide regula-

tion of AMPK by glucose α1–6-branched glycogen that inhibits AMPK activation

(Polekhina et al. 2003; McBride et al. 2009). The N-terminal β-domain may also be

involved in protein interactions of AMPK (see above).

11.5.3.3 γ-Subunit

While α- and β-isoforms are very homologous, γ-subunits and their splice variants

differ in length. They all share the C-terminal part that consists of four

cystathionine β synthetase (CBS) domains that are arranged in tandem in

so-called Bateman domains (Bateman 1997). The symmetrical structure of this
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domain theoretically provides four binding sites for adenylates [referred to as sites

1–4 (Kemp et al. 2007; Hardie et al. 2011)], but only sites 1, 3, and 4 can be

occupied in the mammalian enzyme, while site 2 is nonfunctional. The precise role

of these sites is still unclear. Initial evidence suggested that site 4 binds AMP tightly

in a non-exchangeable manner, while site 1 is a high-affinity site for AMP involved

in allosteric activation (see below) and site 3 represents a lower affinity site

(binding AMP, ADP, and ATP) more involved in regulating α-Thr172 phosphory-

lation (Xiao et al. 2007). A more recent study suggests that also site 4 can bind ATP

(and causes site 3 to be empty) and that both sites 3 and 4 may play a role in

allosteric activation (Chen et al. 2012). The γ2- and γ3-isoforms contain N-terminal

extensions that are subject to truncation by RNA splicing and whose molecular

structure and function are currently unknown. Mutations in the CBS domains of the

AMPK γ2 subunit, expressed at particularly high levels in heart, cause the

Wolff–Parkinson–White (WPW) syndrome, a hereditary cardiomyopathy of vary-

ing severity, involving cardiac hypertrophy, contractile dysfunction, and

arrhythmias. Mutations impair adenylate binding and thus AMPK activation

(Scott et al. 2004; Burwinkel et al. 2005), but the major cause for the cardiomyopa-

thy is the increased AMP-independent basal AMPK activity. This leads to higher

glucose uptake, accumulation of glycogen in cardiac myocytes, and finally

impairment of normal heart muscle development (Burwinkel et al. 2005; Davies

et al. 2006).

11.5.4 Network Connectivity: AMPK Input Signals and
Upstream Regulation

AMPK integrates various intra- and extracellular signals and maintains cross talk

with other signaling pathways, all related to the cellular energy and nutrient state.

This makes the kinase a central signaling hub in sensing and regulating cellular

energetics and ATP-dependent functions. Indeed, most recent research revealed

that AMPK activation is much more complex than initially anticipated and depends

on multiple covalent modifications and allosteric effectors (Fig. 11.13). AMPK

regulation also evolved from a more simple state as, e.g., in the yeast AMPK

homologues that lack allosteric activation by AMP (see below) to the more complex

regulation present in mammals.

11.5.4.1 Covalent Regulation by Phosphorylation

The phosphorylation state at α-Thr172 defines the primary activation of AMPK.

This is determined by the balance of different upstream kinases and phosphatases.

There are potentially three mammalian AMPK upstream kinases, with the major

one in most cell types, including heart, being Liver Kinase B1 (LKB1, also called
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Fig. 11.13 AMPK signaling. Large scheme: Activation of AMPK by intra- and extracellular
metabolic and endocrine signals and major fields of downstream signaling. Activation of AMPK

is determined by upstream kinases (covalent activation by LKB1, CamKKβ, inhibition by Akt and
PKA) and phosphatases. They mediate mainly extracellular signals carrying, e.g., information on

the energy and nutrient state of the cellular environment and the entire organism (endocrine

signals). Covalent activation also depends on some intracellular parameters (Ca2+, possibly also

ROS/RNS). As a second layer of regulation, AMPK is activated by ADP and in particular AMP

(allosteric regulation), both acting as second messengers of cellular energy stress. This signaling is

linked to conversion of nucleotides via the adenylate kinase (AK) and creatine kinase

(CK) reactions. Activated AMPK compensates for ATP loss by accelerating catabolism, inhibiting

anabolism, and further effects on cell motility, growth, proliferation, and others, via regulation of

key enzymes and transcription factors. For further details see text. Insert: Connection of AMPK
signaling and phosphotransfer reactions (CK and AK) (Neumann et al. 2003). Global cellular

concentration changes of phosphocreatine [PCr] and adenine nucleotides ([ATP], [ADP] and

[AMP]), inorganic phosphate [Pi], and creatine [Cr], calculated from the reactions of CK, AK,

and a generalized ATPase at decreasing “high-energy” phosphates (corresponding to a transition

from rest to high work-load). Note that with “high-energy” phosphate consumption, [ATP]

remains constant until more than 80 % of the PCr pool is consumed. Only then, there is a transient

increase in [ADP] and finally [AMP] starts to rise dramatically. The exponential rise in [AMP]

makes this nucleotide an ideal second messenger for a lowered cellular energy state. This

simplified model assumes that the CK and AK reactions work at equilibrium (which is unlikely

to be true in vivo) and does not account for specific subcellular localizations of CK and AK
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STK11). LKB1 is upstream of an entire family of 12 other AMPK-related kinases in

the human kinome, and like AMPK forms heterotrimers with two accessory

subunits, STRADα/β and MO25α/β (Hawley et al. 2003; Woods et al. 2003).

LKB1 has originally been identified as a tumor suppressor whose inactivating

mutations lead to the Peutz–Jeghers syndrome, an inherited susceptibility to differ-

ent human cancers (Alessi et al. 2006). However, LKB1 seems to mostly exhibit

constitutive activity and may thus not be the limiting step in AMPK activation. An

alternative upstream kinase much less expressed in heart is Ca2+/calmodulin-

dependent protein kinase kinase β (CamKKβ) that mediates Ca2+-dependent

AMPK activation (Hawley et al. 2005; Hurley et al. 2005; Woods et al. 2005).

Although such CamKKβ-mediated AMPK activation might anticipate an increas-

ing energy turnover that accompanies a rise in cytosolic Ca2+ during muscle

contraction, its role in the heart is not well understood. More recently, the

transforming growth factor-β-activated kinase-1 (TAK1) that phosphorylates the

yeast AMPK homologue Snf1 was proposed as an AMPK upstream kinase

(Momcilovic et al. 2006; Xie et al. 2006a). Although TAK-1 is present in heart, it

is not activated during ischemia and it is unclear whether it acts via direct AMPK

phosphorylation (Xie et al. 2006a).

Protein phosphatases are possibly the more critical parameter governing the

α-Thr172 phosphorylation state, and this may also apply to the heart. However,

their identity and regulatory role in vivo remain to be confirmed. Both seem to

depend on cell type and/or stimulus. Different phosphatases can act on AMPK,

including PP1, PP2A, and PP2C in vitro (Davies et al. 1995), as well as PP1-R6 in

MIN6 beta cells (Garcia-Haro et al. 2010) and metal-dependent phosphatase

PPM1E/F in HEK-293 cells in vivo (Voss et al. 2011). In heart and endothelial

cells, expression levels PP2C and 2A, respectively, correlate with AMPK activation

(Wang and Unger 2005; Wu et al. 2007).

The α-Thr172 phosphorylation state is further negatively controlled by hierar-

chical phosphorylation at other sites in the AMPK heterotrimer. Phosphorylation at

α1-Ser485 (α2-Ser491) by PKA or at α-Ser173 by PKB/Akt reduces α-Thr172
phosphorylation (Hurley et al. 2006; Horman et al. 2006; Djouder et al. 2010).

Further phosphorylation sites were identified in both α- and β-subunits, many of

them targeted by autophosphorylation, but their functional role remains uncertain.

11.5.4.2 Non-Covalent Allosteric Regulation by AMP and ADP

The activation of AMPK by low cellular energy state is triggered by increased

concentrations of AMP and, as discovered more recently, also of ADP, since the

kinase can sense AMP/ATP and ADP/ATP concentration ratios (Xiao et al. 2011;

Oakhill et al. 2011). In many cell types and in particular in heart, breakdown of ATP

to ADP at the onset of high workload or cellular stress has only minor immediate

effects on ATP levels. Due to the energy buffer and transfer function of the Cr/CK

system (see above), global and local ATP is rapidly replenished (Wallimann

et al. 2011; Neumann et al. 2003). Thus, ATP is not a very suitable signal for
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indicating developing energy deficits. However, minor decreases in ATP levels lead

to more pronounced relative increases in free ADP and even more in AMP due to

the adenylate kinase (AK) reaction (Fig. 11.13). Under these conditions, AK uses

two ADP to regenerate ATP and AMP, thus increasing AMP concentrations from

the sub-micromolar range under resting conditions to the lower micromolar range

(Frederich and Balschi 2002). To lesser extent, AMP levels also depend on

pyrophosphates (cleaving the β-phosphate bond of ATP) and the activity of AMP

degradation pathways [AMP-deaminase and 50-nucleotidase, whose inhibition may

be useful to activate AMPK (Kulkarni et al. 2011)]. As a consequence, a decrease in

ATP levels by only 10 % translates into a 10- to 100-fold increase in AMP, making

AMP an ideal second messenger of energy stress (Fig. 11.13, upper left). Regula-

tion of AMPK activation by the balance between ATP, ADP, and AMP

concentrations resembles to what was put forward by Atkinson 40 years ago as

“energy charge” regulation (Xiao et al. 2011; Oakhill et al. 2011; Atkinson 1968;

Hardie and Hawley 2001).

The molecular basis of allosteric AMPK activation is not yet fully understood,

but certainly involves multiple interconnected mechanisms. The nucleotide ratios

are sensed at the γ-subunit binding sites (sites 1, 3, and 4), which possess high

affinity for AMP and ADP, but less for ATP in its major, Mg2+-complexed form.

AMP or ADP binding to AMPK has several consequences: (1) it makes α-Thr172 a
better substrate for phosphorylation, (2) it protects P-α-Thr172 from dephosphory-

lation, and (3), only in case of AMP, it exerts direct allosteric activation of AMPK

(Xiao et al. 2011; Oakhill et al. 2011; Davies et al. 1995; Suter et al. 2006). All these

effects require close communication between the AMP-binding γ- and the catalytic
α-subunit. The three adenylate binding sites participate differentially in these

mechanisms. Diverging models have been proposed that involve different structural

elements of the α-subunit (Xiao et al. 2011; Chen et al. 2013a). We and our

collaborators have proposed that all these mechanisms involve an AMP-

(or ADP)- induced conformational switch within the full-length AMPK complex

that is not seen in the X-ray structures of AMPK core complexes solved so far

(Chen et al. 2009, 2012; Riek et al. 2008; Zhu et al. 2011).

11.5.4.3 Other Covalent and Non-Covalent Regulations

An increasing number of additional secondary protein modifications adds to the

complex scheme of AMPK activation. Myristoylation at Gly2 in the β-subunit
increases the sensitivity of AMPK for allosteric activation and promotes Thr172

phosphorylation (Oakhill et al. 2010). Acetylation of α-subunits is determined by

the reciprocal actions of the acetylase p300 and the histone deacetylase 1. AMPK

deacetylation promotes its activation via LKB1 interaction (Lin et al. 2012). LKB1

itself is also regulated by acetylation, since deacetylated LKB1 shifts from nucleus

to the cytosol, where it forms active complexes with STRAD (Lan et al. 2008).

Thus, acetylation is a potentially important factor for activating the LKB1–AMPK

pathway (Ruderman et al. 2010), but its role in the heart has not been examined so
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far. Glutathionylation at Cys299 and Cys304 in the α-subunit activates the kinase

under oxidative conditions in cellular models and is favored by binding to certain

GST isoforms (Klaus et al. 2013; Zmijewski et al. 2010). This latter mechanism

may be part of a more general redox regulation of the kinase (Han et al. 2010; Jeon

et al. 2012). ROS and RNS activate AMPK, but it is unclear whether this happens

via increases in [ADP] and [AMP], or whether noncanonical mechanisms at the

level of AMPK (like glutathionylation) or upstream kinases play a role. Vice versa,

AMPK regulates NADPH homeostasis and an entire battery of ROS-detoxifying

enzymes. Another non-covalent allosteric regulator is glycogen as well as other

synthetic branched oligosaccharides that inhibit AMPK activity by binding to the

β-GBD domain (McBride et al. 2009).

11.5.4.4 Upstream Regulation in Cardiac (Patho) Physiology

In the heart, AMPK activity is increased by a wide array of signals acting via

upstream kinases and modulation of adenylate levels under both pathological and

physiological stress and involving various hormones and cytokines (Zaha and

Young 2012). Classical physiological stimuli of AMPK are exercise or hypoxia.

Both also occur in the heart (Coven et al. 2003; Musi et al. 2005; Frederich

et al. 2005) and promote the metabolism of glucose and fatty acids via different

downstream targets (see below). However, it is unclear whether this activation is

due to altered energy state as in skeletal muscle or rather relies on alternative

upstream signaling. AMPK is also involved in the adaptive response of the heart to

caloric restriction (Chen et al. 2013b), but nutrient effects in the heart may be more

complex (Clark et al. 2004). Possibly, within the physiological range, the role of

cardiomyocyte AMPK is different from other cell types, because of the remarkable

metabolic stability of this organ maintained by multiple other mechanisms, including

the metabolic cycles outlined before.

As pathological stimulus, ischemia is the best studied in form of both no-flow

and partial ischemia in isolated perfused animal hearts, as well as regional ischemia

due to coronary ligation in vivo (Russell et al. 2004; Kudo et al. 1996; Wang

et al. 2009; Paiva et al. 2011; Kim et al. 2011a), for a review, see (Young 2008).

They both lead to rapid and lasting AMPK activation. As already mentioned,

besides energetic stress, oxidative stress may be a determinant of such activation,

acting through different forms of ROS (Sartoretto et al. 2011; Zou et al. 2002). In

endothelial cells, it is rather peroxynitrite formation that affects AMPK via the

protein kinase Cζ–LKB1 axis (Zou et al. 2004; Xie et al. 2006b), while in other

non-excitable cells it may be rather a ROS-induced Ca2+ release that triggers the

CamKKβ axis (Mungai et al. 2011). ROS-facilitated glutathionylation of AMPK

(see above) as observed in cellular systems represents yet another direct activation

mechanism, but still has to be verified in cardiomyocytes (Klaus et al. 2013;

Zmijewski et al. 2010). However, the signaling function of ROS may be lost at

more intense oxidative stress that simply inactivates AMPK. In models of

cardiotoxicity induced by the anticancer drug doxorubicine, AMPK has been
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found inactivated in most cases, despite pronounced oxidative, energetic, and

genotoxic stress (Tokarska-Schlattner et al. 2005; Gratia et al. 2012). This is

probably due to activation of PKB/Akt via DNA-damage signaling kinases that

induce the inhibitory cross talk via AMPKα1-Ser485 phosphorylation. In other

situations, also LKB1 may become inactivated (Dolinsky et al. 2009). Stress

resulting from many but not all forms of pressure overload also results in AMPK

activation, mainly increasing glucose uptake and glycolysis (Tian et al. 2001; Li

et al. 2007; Allard et al. 2007; Zhang et al. 2008), as well as changing the gene

expression profile (Hu et al. 2011).

Information about the cellular environment and whole-body energy and nutrient

state is connected to AMPK signaling via endocrine, paracrine, and autocrine

mechanisms. These include a diverse array of hormones and cytokines identified

in noncardiac cells that act via largely unknown cellular signaling cascades on

AMPK upstream kinases, including adiponectin (Shibata et al. 2004), leptin

(Minokoshi et al. 2004), resistin (Kang et al. 2011), ghrelin (Kola et al. 2005),

IL6 (Kelly et al. 2004), and CNTF (Watt et al. 2006). Regulation of AMPK by these

factors partially depends on the tissue. While in peripheral tissues leptin activates

and ghrelin inhibits AMPK in the regulation of fatty acid oxidation and glucose

uptake, their effects in hypothalamus are different, since they inhibit (leptin) or

stimulate (ghrelin) AMPK-controlled food intake [for reviews see (Kahn

et al. 2005; Steinberg and Kemp 2009)]. In the heart, AMPK seems to be involved

in the positive effects of adiponectin for cardioprotection during ischemia and for

reduced cardiac hypertrophy (Shibata et al. 2004, 2005). For example, AMPK

limits accumulation and densification of microtubules that occur in response to

hypertrophic stress (Fassett et al. 2013). Also leptin may modulate AMPK in the

heart, since impaired leptin signaling correlates with reduced AMPK activation and

metabolic defects or reduced postconditioning after ischemia (McGaffin et al. 2009;

Bouhidel et al. 2008). Proinflammatory cytokines like IL-6 rather reduce AMPK

protein and activation (Ko et al. 2009), although there may be opposite effects in

specific tissues like skeletal muscle due to a specific autocrine–paracrine effect

(Kelly et al. 2004). Other cytokines with functions in the heart include macrophage

migration inhibitory factor (MIF), which is involved in AMPK activation during

ischemia and hypoxia and its decrease with age in mice seems to reduce AMPK

activation during ischemia (Miller et al. 2008; Ma et al. 2010).

11.5.4.5 Evolution of Cellular Homeostasis Signaling Circuits

From a phylogenetic perspective, it is interesting to note that AMPK homologues

evolved early with eukaryotic life. However, yeast homologues of AMPK lack the

direct allosteric AMP-activation, although they already possess the ADP-regulation

of the α-Thr172 phosphorylation state (Mayer et al. 2011). Since such lower

eukaryotes neither express a CK/PCr system, it can be concluded that they still

tolerate larger fluctuations in energy state. It seems that those more sophisticated

regulatory circuits evolved only with multicellular life. It will be interesting to
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examine when during metazoan evolution AMP has been established as a second

messenger for energy stress and activation of AMPK. Creatine kinase and other

closely homologous phosphagen kinases have emerged quite early at the dawn of

the radiation of metazoans (Ellington 2001; Ellington and Suzuki 2007). Recently,

besides identifying arginine kinase in unicellular organisms, a novel taurocyamine

phosphagen kinase has been identified even in a unicellular protist (Uda

et al. 2013).

In addition, at least in vertebrates a crosstalk has evolved between AMPK

signaling and the Cr/CK system (Neumann et al. 2003; Ju et al. 2012). Although

AMPK is not directly activated by Cr as postulated earlier (Ponticos et al. 1998;

Ingwall 2002; Taylor et al. 2006), the PCr/Cr ratio will also determine cellular

ATP/ADP ratios via the CK reaction and thus indirectly AMPK activation, as well.

Knockdown of cytosolic CK activates AMPK (Li et al. 2013), and similar control of

AMPK signaling is observed when manipulating the cellular levels of adenylate

kinase isoenzymes (Dzeja et al. 2011b). Such indirect mechanisms may also cause

the additional AMPK activation observed after Cr supplementation in cellular

models of skeletal muscle (Ceddia and Sweeney 2004), in the muscles of patients

undergoing exercise programs in different pathological settings (Alves et al. 2012),

and in Huntington disease models (Mochel et al. 2012), although these findings

need further investigation.

Vice versa, AMPK complexes interact with cytosolic CKs and are able to

phosphorylate them (Ponticos et al. 1998; Dieni and Storey 2009). Since this does

not affect CK enzyme activity, at least in rodents (Ingwall 2002; Taylor et al. 2006)

this phosphosphorylation remained enigmatic. Our most recent unpublished data

indicate that BB-CK phosphorylation by AMPK may determine subcellular locali-

zation of this enzyme which is known to partially associate with ATP-requiring

cellular structures and ATPases. In myocytes, active AMPK may also increase

cellular Cr uptake by positively acting on Cr transporter (Alves et al. 2012; Darrabie

et al. 2011), while an inverse effect was found in kidney epithelial cells

(Li et al. 2010). If the latter cells are under energy stress, either physiological or

pathological, this mechanism would prevent them to spend additional energy

required for Cr uptake from the glomerular filtrate.

11.5.5 Network Connectivity: AMPK Output Signals and
Downstream Regulation

AMPK integrates a large number of signals from inside and outside the cell that

carry information on the nutrient and energy state from the cellular to organism

level with the aim to mount a coordinated response (Fig. 11.13). This response

includes compensation for ATP loss by stimulating catabolic and inhibiting several

anabolic pathways, but also control of many other energy-related biological

checkpoints in cell growth and proliferation, cell motility and polarity, apoptosis,
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autophagy, and central functions like appetite control. To date, about 50 AMPK

substrates have been described in different tissues, including metabolic enzymes,

transcription (co)factors, and other cellular signaling elements. They all are

activated or inactivated by phosphorylation at Thr or Ser residues within a more

or less conserved AMPK recognition motif. We will give here only some examples

pertinent to heart; more complete descriptions can be found in recent reviews

(Hardie et al. 2012a, b; Carling et al. 2012; Steinberg and Kemp 2009).

11.5.5.1 Metabolic Pathways

AMPK control of cellular substrate uptake, transport, and metabolism is the histor-

ically best described and possibly most important function of AMPK, also in the

heart, since it is critical for ATP generation (Fig. 11.5). Activated AMPK stimulates

cellular glucose and fatty acid uptake via translocation of GLUT4 (Kurth-Kraczek

et al. 1999; Yamaguchi et al. 2005) and FAT/CD36 (van Oort et al. 2009), respec-

tively, to the plasma membrane, involving among others phosphorylation of the

Rab-GTPase activating protein TBC1D1 (Frosig et al. 2010). The subsequent

substrate flux via glycolysis is increased by phosphorylation and activation of

6-phosphofructosekinase-2 (PFK2), whose product fructose-2,6-bisphosphate is

an allosteric activator of the glycolytic enzyme 6-phosphofructokinase-1 (Marsin

et al. 2000) and in long term by stimulation of hexokinase II (HKII) transcription

(Stoppani et al. 2002). Substrate flux via fatty acid β-oxidation is increased by

inhibition of mitochondria-associated acetyl-CoA carboxylase (ACC2), whose

product malonyl-CoA is an allosteric inhibitor of carnitine palmitoyltransferase

1 (CPT1), the rate-limiting enzyme for of mitochondrial fatty acid import and

oxidation (Merrill et al. 1997). At the same time, inhibition of cytosolic ACC1

will repress ATP-consuming fatty acid synthesis for which malonyl-CoA is the

precursor (Davies et al. 1992). In other organs with multiple anabolic functions like

liver, several other anabolic pathways like gluconeogenesis or triglyceride and

cholesterol synthesis are inhibited (Bultot et al. 2012; Muoio et al. 1999; Clarke

and Hardie 1990).

Active AMPK also affects gene expression of many of these metabolic enzymes

by phosphorylation of transcription (co)factors and histone deacetylases (HDACs).

Activation of peroxisome proliferator-activated receptor gamma co-activator-1

alpha (PGC-1α) increases the expression of nuclear-encoded mitochondrial genes

that favor mitochondrial biogenesis (Irrcher et al. 2003; Jager et al. 2007), and

further catabolic genes including substrate transporters (e.g., GLUT4). Mainly in

the liver, expression of several genes in anabolic lipogenesis (e.g., ACC1) and

gluconeogenesis is reduced via inhibition of ChREBP or SREBP (Kawaguchi

et al. 2002; Li et al. 2011) and CRTC2 or class II HDACs (Koo et al. 2005;

Mihaylova et al. 2011), respectively. Cellular redox regulation by AMPK also

occurs mainly at the transcriptional level. AMPK directly phosphorylates transcrip-

tion factor FOXO3, which increases transcription of many genes, mainly in oxida-

tive stress defense (Greer et al. 2007) and activates, possibly more indirectly, class
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III deacetylase SIRT1, which deacetylates and thus activates FOXO1/3 and

PGC-1α (Canto et al. 2009).

11.5.5.2 Protein Metabolism, Cell Growth, and Proliferation

AMPK also acts via cross talk with other major cellular signaling hubs. The most

important may be the mammalian target of rapamycin complex 1 (mTORC1) which

is inhibited by activated AMPK via multiple mechanisms, including phosphoryla-

tion of tuberous sclerosis complex protein-2 (TSC2) (Inoki et al. 2003) upstream of

mTORC1, or direct phosphorylating the mTORC1 subunit Raptor (Gwinn

et al. 2008). This reduces the multiple TORC1 functions in stimulation of protein

biosynthesis and cell cycle (Kwiatkowski and Manning 2005) and inhibition of

autophagy (Meijer and Codogno 2007). Autophagy is also directly stimulated by

AMPK-induced phosphorylation of the protein kinase ULK1 (Kim et al. 2011b;

Egan et al. 2011). AMPK further reduces protein synthesis more indirectly by

inhibiting eukaryotic elongation factor 2 kinase (eEF2K) (Browne et al. 2004)

and downregulating ribosomal RNA (Hoppe et al. 2009) and several cyclins

(Wang et al. 2002). Phosphorylation of the tumor suppressor p53 and the cyclin-

dependent kinase inhibitor p27KIP1 will both contribute to cell cycle arrest and

eventual autophagy (Imamura et al. 2001; Jones et al. 2005; Liang et al. 2007).

AMPK also stimulates protein-ubiquitination and proteasome-dependent degrada-

tion (Viana et al. 2008; Solaz-Fuster et al. 2008).

11.5.5.3 Cell Contractility, Dynamics, and Shape

AMPK phosphorylates cardiac troponin I (cTnI) during ischemia and thus increases

its calcium sensitivity, suggesting that AMPK activation improves myocyte con-

traction (Oliveira et al. 2012a). Cellular models also suggest that AMPK controls

microtubule dynamics through phosphorylation of the microtubule plus end protein

CLIP-170 (Nakano et al. 2010) and dynamics of cells and in particular of the

mitotic spindle via different indirect mechanisms that increase phosphorylation of

the non-muscle myosin regulatory light chain (MRLC) (Lee et al. 2007; Banko

et al. 2011).

11.5.5.4 Cellular Ion Homeostasis

The maintenance of ion gradients across cell membranes and intracellular ion

homeostasis are further highly energy-demanding processes. Thus it is little

surprising that AMPK, like CK, might also regulate these processes. Indeed,

different ion transporters are inhibited by AMPK, directly or indirectly, including

cystic fibrosis transmembrane conductance regulator Cl-channel (CFTR) (Hallows

et al. 2003) and ATP-sensitive potassium (KATP) channel (Kir6.2) (Chang
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et al. 2009), and several more cell-type specific ion transporters, like epithelial Na+

channel (eNaC) (Carattino et al. 2005), renal Na+-K+-2Cl- cotransporter (NKCC2)

(Fraser et al. 2007), and neuronal voltage-gated, delayed rectifier K+ channel

(Kv2.1), whose phosphorylation reduces the frequency of highly energy-consuming

action potentials (Ikematsu et al. 2011).

11.5.6 Modeling Signaling Networks in Heart and Beyond

Given the complexity and interconnectivity of cell signaling networks, only

recently emerging systems biology approaches hold promises for understanding

and predicting the higher order properties and behavior of such networks (Arkin

and Schaffer (2011) and following papers of this Cell Leading Edge Review series).

However, the mathematical modeling necessary for such systems approaches is still

in its infancy. Modeling needs a solid base of both quantitative and qualitative data,

including the spatiotemporal component as outlined above. So far, both bottom-up

and top-down systems approaches have been applied to obtain comprehensive

databases of protein kinase signaling. Typically, bottom-up, hypothesis-, or

model-driven approaches were used to study the role of individual components,

also facilitating first studies of dynamic systems properties. More recently, with the

broad availability of “omics” approaches, more top-down so-called hypothesis-free

studies have mapped interactomes and phosphoproteomes of protein kinases,

mainly in yeast (Breitkreutz et al. 2010; Bensimon et al. 2012; Oliveira

et al. 2012b). Such large-scale data are necessary to construct first network models

needed to advance mathematical modeling in this field. Indeed, progress is also

made in the computational methodology and the mathematical description of

signaling pathways (Frey et al. 2008; Ideker et al. 2011; Telesco and Radhakrishnan

2012). However, similar modeling approaches with mammalian cells, in particular

under physiological and pathological conditions relevant to humans, are still scarce

(Benedict et al. 2011; Basak et al. 2012; Rogne and Tasken 2013), except a strong

history of modeling in cardiac electrophysiology (Amanfu and Saucerman 2011).

Such models would be highly valuable for in silico drug target identification, drug

screening, and development (Benedict et al. 2011). Important steps in such

approaches are (1) to establish a network structure, (2) to obtain quantitative

dynamic datasets for basic systems properties, (3) to generate dynamic mathemati-

cal models, and (4) to test and iteratively improve the models by prediction and

experimental verification of systems perturbations (Frey et al. 2008). First models

also including AMPK signaling are currently emerging (Marcus 2008; Sonntag

et al. 2012), but sustained interdisciplinary efforts in the field will be necessary to

obtain models that allow meaningful predictions of AMPK systems behavior.
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