
HAL Id: hal-01945835
https://hal.univ-grenoble-alpes.fr/hal-01945835

Submitted on 5 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dead-beat stabilizability of discrete-time switched linear
systems: algorithms and applications

Mirko Fiacchini, Gilles Millérioux

To cite this version:
Mirko Fiacchini, Gilles Millérioux. Dead-beat stabilizability of discrete-time switched linear systems:
algorithms and applications. IEEE Transactions on Automatic Control, 2019, 64 (9), pp.3839-3845.
�10.1109/TAC.2018.2887351�. �hal-01945835�

https://hal.univ-grenoble-alpes.fr/hal-01945835
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 0, NO. 00, 2014 1

Dead-beat stabilizability of discrete-time
switched linear systems: algorithms and applications

Mirko Fiacchini, Gilles Millérioux.

Abstract—This paper deals with dead-beat stabilizability of
autonomous discrete-time switched linear systems. Based on a
constructive necessary and sufficient condition for dead-beat
stabilizability, we propose two algorithms. The first one is
concerned with the problem of testing dead-beat stabilizability
and computing the shorter stabilizing mode sequence, whenever
it exists. The other one implements a method to construct a
switched system whose shorter dead-beat stabilizing sequence
has a prescribed length. Then, we present numerical assessments
and possible applications.

Index Terms—Switched systems, dead-beat stabilizability

I. INTRODUCTION

Switching systems are dynamical systems for which the
state dynamics vary between different operating modes ac-
cording to a switching sequence [1]. Such systems are found
in many practical and theoretical domains. For example they
are relevant models in networked control systems [2], [3],
in congestion control for computer networks [4], in viral
mitigation [5], as abstractions of more complex hybrid systems
[6], and other fields (see e.g. [7]–[9] and references therein).

This papers addresses the problem of finite-time stabiliz-
ability of discrete-time switched linear systems. The objective
is two-fold. First, we investigate the problem of checking
whether there exists a finite sequence of switches so that the
product of the dynamical matrices gives the null matrix. Sec-
ondly, we are concerned with building a dead-beat stabilizable
system with a sequence of switches of prescribed length. The
difficulty in obtaining some relevant results stems from the fact
that the question of deciding the stabilizability of a switching
system is known to be hard in general, see [7].

First, let us recall some existing results of closely related
problems. Dead-beat stabilizability has been addressed for
systems with control. In the survey [10], conditions for con-
trollability and observability of switched linear systems based
on the concept of A-invariant are provided. Special results
concerning the discrete-time case given by [11], [12] are
recalled. These papers provide bounds on the minimal length
of a controlling sequence for completely controllable systems.
The results are given for switched systems with nonsingular
transition matrices, defined as reversible in [10].

For switched linear autonomous systems, exponential sta-
bilizability has been addressed in the survey [8]. Therein, it
is recalled that the discrete-time counterpart of stabilizability
conditions for continuous-time autonomous switched linear
systems is not straightforward. Only a sufficient condition,

M. Fiacchini is with Univ. Grenoble Alpes, CNRS, Gipsa-lab, F-38000
Grenoble, France. mirko.fiacchini@gipsa-lab.fr

G. Millérioux is with Université de Lorraine, CRAN,
UMR 7039, France, CNRS, CRAN, UMR 7039, France.
gilles.millerioux@univ-lorraine.fr

proposed by the authors themselves, is presented. Another
criterion, probably less conservative, is given in [13] but is
also sufficient. General necessary and sufficient conditions
for exponential stabilizability are provided in [14] and their
computation-oriented relaxations are provided and analyzed
in [15] but the conditions are not appropriate for dead-beat
stabilizability.

Furthermore, we should note that dead-beat stabilizability
is closely related to the problem of mortality of a set of
matrices. Indeed, a set of matrices is mortal if the null matrix
can be expressed as the product of finite length of matrices.
This problem is discussed in the papers [16]–[18]. It is proved
that the decidability on the mortality of a set of matrices is
unsolvable except for some particular cases whose mortality
problem results NP-complete, e.g. pairs of integer matrices. In
the paper [16], it is proved that the problem is unsolvable for
finite sets of 3× 3 matrices over the integers.

Finally, another closely related issue is the dead-beat sta-
bility for autonomous switched linear discrete-time systems.
Unlike dead-beat stabilizability, the problems boils down to
checking whether every sufficiently long sequence of switches
leads to the null matrix. In [19], dead-beat stability has
been used to characterize flatness of discrete-time controlled
switched linear systems. The issue has been tackled with the
notion of nilpotent semigroups. Dead-beat stability has been
examined in [20] as well, in which constraints on the switching
sequence are considered.

This literature overview shows that the problem of char-
acterizing dead-beat stabilizability for discrete-time switched
linear systems is an open problem. A constructive necessary
and sufficient condition has been published in the preliminary
paper [21]. In the present paper, we go further. It is proved
that a system is dead-beat stabilizable if and only if there
exists one switching sequence that stabilizes the whole state
space. Next, such a condition is used for defining a complete
algorithm to test if a given switched system is dead-beat
stabilizable. This algorithm considerably outperforms the brute
force exhaustive search approach. Furthermore, the condition
is used to define a second algorithm for constructing dead-beat
stabilizable switched systems. Finally, numerical evaluations
and possible applications, namely flatness and cryptography,
are presented.

The paper is organized as follows. In Section II, the prob-
lems of dead-beat stability and stabilizability are presented.
Condition for dead-beat stability and dead-beat stabilizability
along with existing algorithms to test them are recalled. The
equivalence between dead-beat stabilizability and the existence
of one switching sequence that stabilizes the whole state
space is proved. In Section III, we provide two algorithms
for respectively testing and building dead-beat stabilizable

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 0, NO. 00, 2014 2

systems. Section IV presents a numerical example and two
possible practical applications of dead-beat stabilizable sys-
tems like flatness and cryptography. Some concluding remarks
are finally given in Section V.

Notation: Given n ∈ N, define Nn = {j ∈ N : 1 ≤
j ≤ n}. The set of q switching modes is I = Nq and the
related matrices forms a finite collection A ⊆ Rn×n, whose
i-th element is denoted with Ai, i.e. A = {Ai}i∈I , with Ai ∈
Rn×n for all i ∈ I. All the possible sequences of modes of
length N is IN =

∏N
j=1 I, with IN = ∅ if N = 0. The

length of a sequence σ is denoted by |σ| and |σ| = N if
σ ∈ IN . For all L,M ∈ N such that 0 ≤ L ≤ M , define
I [L:M] =

⋃M
N=L IN . Given σ ∈ IN and i, j ∈ NN with

i ≤ j, σi is the i-th element of σ and σ[i:j] the subsequence
of σ starting at σi and terminating at σj . The subsequence
σ[i:j] is the empty sequence if i > j. Given σ, δ sequences of
modes, (σ, δ) is their concatenation. Given σ ∈ IN , define
Aσ =

∏N
j=1Aσj

= AσN
· · ·Aσ1

and
∏n
j=mAσj

= I if m >
n where I stands for the identity matrix. Given a ∈ R, dae is
the smallest integer greater than or equal to a.

II. NECESSARY AND SUFFICIENT CONDITION FOR
DEAD-BEAT STABILIZABILITY

A. Problem statement

Consider the discrete-time switched linear system

xk+1 = Aσk
xk, (1)

where xk ∈ Rn is the state at time k ∈ N and σ : N → I is
the switching law. With slight abuse of notation, we employ
the index of σ, as in σk for instance, to denote both the
time realization of the switching law at instant k and the k-th
element of the sequence of modes σ ∈ IN , its meaning being
determined by the context.

Before addressing the issue of dead-beat stabilizability, let
us first recall a closely related problem, that is the robust dead-
beat (or finite-time) stability. This property stipulates that for
any sequences of switches, every state reaches the origin in
finite steps. More formally,

∃N ∈ N s.t. xN = 0 ∀σ ∈ IN ∀x0 ∈ Rn

which is equivalent to

∃N ∈ N s.t. Aσ = AσN
· · ·Aσ1

= 0 ∀σ ∈ IN .

The former condition is equivalent to state that the set A
generates a nilpotent semigroup whose usual definition is
recalled below.

Definition 1: A semigroup S is a set together with an
associative internal law. A semigroup S with an absorbing
element 0 is said to be nilpotent if there exists a positive integer
t ∈ N such that the internal law applied to any t elements of
S is always equal to 0. The smallest integer t is called the
class of nilpotency of S.

If S is a set of matrices the associative internal law is the
matrix multiplication and the absorbing element is the null
matrix.

Theorem 1 (Levitsky’s Theorem): Any semigroup of nilpo-
tent matrices can be triangularized.

This theorem is computationally useful since it gives a
way of testing nilpotency, and thus robust dead-beat stability,
by means of triangularization routines that are polynomially
complex with respect to the dimension n of the matrices.
Clearly, a necessary condition for the set {Ai}i∈Nq

to generate
a nilpotent semigroup is that every Ai is nilpotent for i ∈ Nq .

Similarly to dead-beat stability for which a necessary and
sufficient condition and an algorithm to test the condition
exist, we aim at providing a condition and an algorithm for
characterizing dead-beat stabilizability. We first give its formal
definition.

Definition 2: The system (1) is dead-beat stabilizable if for
every x ∈ Rn, there exist N(x) ∈ N and a finite sequence
σ(x) ∈ IN(x) such that Aσ(x)x = 0.

Thus, dead-beat stabilizability implies the existence of a
function, associating to every state, a stabilizing switching
sequence, that is a closed-loop control, if the switching is
considered as the control input. We prove below that a
system is dead-beat stabilizable if and only if there exists
one switching sequence that stabilizes the whole state space.
This would mean that the system is stabilizable through an
open-loop switching control. Recall that the existence of a
switching sequence exponentially stabilizing the whole space,
a condition often referred to as consistent stabilizability, is only
sufficient for exponential stabilizability, see [22], [23]. On the
other hand, as a peculiarity of dead-beat stabilizability, the
following theorem applies.

Theorem 2: The system (1) is dead-beat stabilizable if and
only if there exist N ∈ N and γ ∈ IN such that Aγ = 0.

Proof: Sufficiency is trivial. We must prove necessity, i.e.
that if the system is dead-beat stabilizable, then there exists a
finite mode sequence γ stabilizing the whole state space. We
proceed by contradiction. Suppose that there exists a dead-
beat stabilizable system for which Aσ 6= 0 for all σ ∈ IN and
every N ∈ N and recall that Aσ 6= 0 implies that ker(Aσ) < n.
Stabilizability implies that x ∈ ker(Aσ(x)) for every x ∈ Rn
and then ⋃

N∈N

⋃
σ∈IN

ker(Aσ) = Rn,

that is absurd since the space Rn cannot be expressed as the
union of countably many subspaces of dimensions smaller
than n. Indeed, the union of a (finite or infinite) sequence
of n-dimensional closed sets is an n-dimensional closed set,
see [24].

Hence, from Theorem 2, to characterize dead-beat stabiliz-
ability, it suffices to derive a necessary and sufficient condition
for the existence of N ∈ N and a finite sequence γ ∈ IN
such that for any initial condition x0 ∈ Rn, the state at time
N reaches the origin. That is

∃N ∈ N, ∃γ ∈ IN s.t. Aγ = 0. (2)

Remark 1: According to the considerations made in the
introduction on the notion of mortality, the existence of such
a N cannot, in general, be performed in finite time, resulting
in an unsolvable problem.

Clearly, robust stability, associated to the notion of nilpotent
semigroup, implies dead-beat stabilizability, related to mortal-
ity of a set of matrices.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 0, NO. 00, 2014 3

Remark 2: Beyond analysis purposes, let us notice that dead-
beat stabilizability can be interesting for control perspectives,
in particular flatness-based control for switched linear systems
in the form {

xk+1 = Aσk
xk +Bσk

uk,
yk = Cσk

xk +Dσk
uk,

(3)

where uk ∈ Rp is the input, yk ∈ Rm is the output and
Aσk

, Bσk
, Cσk

, Dσk
are state space matrices of appropriate

dimension. Recall that a non-autonomous dynamical system
(assumed to be square) is flat if there exist an output yk,
referred to as flat output, and an integer k0, such that all system
variables can be expressed, for k ≥ k0, as a function of the
flat output and a finite number of its backward and/or forward
shifts. It turns out that flatness of (3) can be characterized, see
[25], by considering the product of matrices

∏K
i=1 Pσ′k+i−1

,
where every Pσ′k+i−1

belongs to the finite set of matrices
defining the left inverse dynamics of (3) and is expressed in
terms of the state space matrices of (3). The switching rule
σ′ is a function of a finite number r of modes σk, . . . , σk−r
where r is the inherent delay of the system (coinciding with
the relative degree for a SISO system). It has been proved that
the system (3) is flat if and only if there exists a finite integer
K such that

K∏
i=1

Pσ′k+i−1
= 0 (4)

holds for any arbitrary sequences σ′. However, we can con-
sider a more flexible situation when both the modes σk and the
control input uk can be chosen at time k. In such a case, first,
we can be interested in an algorithm that finds a sequence of
switches which guarantees (4). Then, appropriately applying
such a mode sequence ensures that the the system (3) is flat
with flat output yk and a flatness-based control uk can be
designed separately.

In next subsection, we recall from [21] the necessary and
sufficient conditions to determine N and γ, whenever they
exist.

B. Necessary and sufficient condition

Denote by

Is = {i ∈ I : detAi = 0}, Ins = {i ∈ I : detAi 6= 0},
(5)

the sets of singular and nonsingular matrices in I and by qs
and qns the number of elements of Is and Ins, respectively.
Clearly, one has qs + qns = q where q is the number of
modes of the system (1). The following proposition will be
instrumental for the sequel.

Proposition 1 ([21]): The system (1) is dead-beat stabiliz-
able if and only if there exist m ∈ Nn finite mode sequences
σj ∈ Inj

with nj ∈ N, where j ∈ Nm, such that

m∑
j=1

dim

(
im

(
j−1∏
k=1

Aσk

)
∩ ker (Aσj)

)
= n, (6)

and with σjnj ∈ Is for every j ∈ Nm.

Proposition 1 asserts that the system (1) is dead-beat
stabilizable if and only if there exists a set of m switch-
ing sequences σj of finite length nj , with j ∈ Nm and
1 ≤ m ≤ n, whose last element is related to a singular
matrix, i.e. σjnj ∈ Is, and such that the intersection of the
kernel of Aσj and the image of the product

∏j−1
k=1 Aσk of

matrices has a dimension strictly greater than zero. Moreover,
the dimension of those intersections is equal to n but those
intersections do not necessarily span Rn. Besides, as shown by
Corollary 1 in [21], if the dead-beat stabilizability condition
is satisfied by the set of sequences σj with j ∈ Nm, it also
holds if the prefix of σ1 involving nonsingular matrices is
removed. All in all, every stabilizing sequence candidate starts
and terminates with a singular matrix. The reader can find in
Section IV-A an illustrative example of matrices, images and
kernels dimensions of a possible sequence γ for the mortal
set of 6 matrices of dimension n = 3 composed by 2 singular
matrix and 4 nonsingular ones given in (13), see Table I.

On one hand, given a finite set of matrices corresponding
to the modes of (1), we aim at an approach which is based
on the necessary and sufficient condition to find the shorter
stabilizing sequence γ that leads to (2). Clearly, such an
approach should perform better than the exhaustive search, that
is the brute-force test of all the possible switching sequences
that leads to (2). On the other hand, we are concerned with
proposing a method to build a dead-beat stabilizable system
with a prescribed length switching sequence. Both issues are
addressed in the following section.

III. ALGORITHMS

A. Algorithm to test dead-beat stabilizability

From the explanations given after Proposition 1, the ex-
pected algorithm can restrict the search to sequences γ =
(σ1, . . . , σm) ∈ IN such that Aγ = 0 is composed of m ∈ Nn
subsequences σj terminating with an element of Is and the
first subsequence σ1 is composed of only one singular matrix.
Clearly, there might be an infinite number of such sequences.
Thus, we propose an algorithm that finds all the stabilizing
sequences whose subsequences lengths are bounded by h̄+ 1
with h̄ ∈ N. As a consequence, the algorithm will find the
minimal length stabilizing sequence γ, provided that it does
not involve subsequences longer than h̄+1. Algorithm 1 given
below meets those requirements.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 0, NO. 00, 2014 4

Algorithm 1 Define the dead-beat stabilizing sequences γ of
the system (1) with subsequences length ≤ h̄+ 1.
Input: matrices A = {Ai}i∈I , sets I and Is, parameter h̄.

1: C ← ∅, . List of candidates
2: M ← ∅; . List of stabilizing sequences
3: for s ∈ Is do insert s in C . Candidates σ1

4: end for
5: while C is not empty do
6: extract σ from C . Candidate σ = (σ1, · · · , σj)
7: for s ∈ Is, δ ∈ I [0:h̄] do
8: if dim ker (AsAδAσ) > dim ker (Aσ) and
9: dim ker (AδAσ) = dim ker (Aσ) then

10: θ ← (σ, δ, s)
11: if dim ker (Aθ) = n then
12: insert θ in M . θ is stabilizing
13: else
14: insert θ in C . θ is a candidate
15: end if
16: end if
17: end for
18: end while
Output: M . List of stabilizing sequences

Some comments on the main steps of Algorithm 1 follow.
The structures C and M contain the sequences candidates to
dead-beat stabilize (1) and the stabilizing ones, respectively.
At Line 3, all the singular matrices are introduced in C, as the
first subsequence candidates. At every successive iterative step
(starting at Line 5), a candidate σ is considered and extracted
from C. The loop starting at Line 7 aims at searching all the
subsequence (δ, s) of length h̄+1 at most. At iteration p with
p ∈ Nm, the sequences σp = (δ, s) must be such that s ∈ Is
and

dim

(
im

(
p−1∏
k=1

Aσk

)
∩ ker(Aσp)

)
> 0 (7)

which ensures that every term involved in the sum (6) is strictly
greater that zero and thus, that the dimension reaches n for a
sufficient number of subsequences.

In practice and for the sake of numerical efficiency, the
search is performed according to the equivalent test given at
Line 8 which is based on the following lemma.

Lemma 1: ([26]) For every pair of matrices A ∈ Rm×n
and B ∈ Rn×p, we have that

dim ker(AB) = dim ker(B) + dim
(
im(B) ∩ ker(A)

)
.

Indeed, from Lemma 1, it is clear that (7) is equivalent to

dim ker

(
p∏
k=1

Aσk

)
> dim ker

(
p−1∏
k=1

Aσk

)
. (8)

Hence, at each iteration p, the subsequence σp = (δ, s)
makes drop down the dimension of the image of the prod-
uct of matrices associated to the new candidate sequence
(σ1, . . . , σp) or equivalently, it makes increase the kernel. The
obtained sequence is stored in M if the dimension of the
kernel reaches n or in C otherwise. Note that the test at Line
9 aims at disregarding subsequences δ (which may involve

singular matrices) leading to dim ker (AδAσ) < dim ker (Aσ)
and would cause redundancy.

Remark 3: Algorithm 1 computes all the mortal sequences
with subsequences length r = h̄+ 1 at most and thus can be
used to determine the shorter mortal sequence γ by increasing
the parameter h̄. Let us compare the computational complexity
of Algorithm 1 with respect to the brute force enumeration.
Recall that the number of sequences of q modes, with positive
length l ∈ N at most, is given by

∑l
i=1 q

i = (ql+1 − 1)/(q −
1) − 1. Consider first the case of balanced subsequences σj ,
that is such that σj have length r for i > 1. Thus, γ has length
l = (m−1)r+1 and Algorithm 1 has to inspect (m−1)qs(q

r−
1)/(q−1)+qs sequences, while the exhaustive search needs to
test all the (q(m−1)r+2−1)/(q−1)−1 sequences of lengths l
at most. For the general non-balanced case, denote with l ∈ N
the length of the shortest mortal sequence and r ∈ N the
length of its longer subsequence. Then d(l − 1)/(m − 1)e ≤
r ≤ l −m+ 1 which means that Algorithm 1 finds γ testing
between (m−1)qs(q

d(l−1)/(m−1)e+1−1)/(q−1)+qs and (m−
1)qs(q

l−m+2−1)/(q−1)+qs sequences. Summarizing, the key
idea is that Algorithm 1 performs an exhaustive search on m−
1 subsequences σj instead of on the whole γ = (σ1, . . . , σm),
where m ≤ n.

B. Algorithm to build a dead-beat stabilizable system

This section is devoted to the construction of dead-beat
stabilizable switched linear systems whose shorter sequence
γ such that Aγ = 0 has a prescribed length. According to
Proposition 1, it is recalled that such a sequence is composed
of m subsequences σj with j ∈ Nm. The first subsequence
reduces to one element (|σ1| = 1) and the corresponding
matrix is singular. We deliberately impose the length of the
other subsequences such that |σj | = rj with rj ∈ N, for j ≥ 1.
Hence, the length of the expected sequence is 1 +

∑p
j=2 r

p.
The prescribed number of singular and nonsingular matrices
are qs and qns, respectively. We aim at an iterative algorithm
which consists in computing successively the subsequences σj

with j > 1.
At Step p ∈ N with 2 ≤ p ≤ n and given σj with j ∈

Np−1 obtained at Step p − 1, the algorithm must compute a
subsequence σp = (δp, sp) of given length rp such that:
• the last element Asp is one of the singular matrices Is;
• the condition

dim ker

(
AspAδp

p−1∏
k=1

Aσk

)
= dim ker

(
p−1∏
k=1

Aσk

)
+ 1

(9)
holds.

Actually, the last condition is a particular case of (8). Indeed,
it is recalled that, according to Proposition 1, the dimension of
the kernel between two consecutive subsequences σp−1 and σp

increases. Here, we impose that the kernel dimension increases
by one between iteration p− 1 and p. As a result, at Step p,
dim ker

(∏p−1
k=1 Aσk

)
= p − 1 and the total number m of

subsequences is equal to n.
After those considerations, we are able to detail the con-

structive procedure which is summarized in Algorithm 2. The

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 0, NO. 00, 2014 5

initialization (Line 4-13) consists in randomly computing the
qs singular matrices and qns − n + 1 nonsingular ones. In
particular the singular matrices are given by As = T−1

s ΛsTs
with:
(i) Λs a matrix with one eigenvalue 0 and the other ones ran-

domly generated but non-null. Without loss of generality,
we impose the following structure of Λs

Λs =


0 0 · · · 0

0
...
0

Λ̄s


with Λ̄s ∈ Rn−1×n−1 a nonsingular matrix.

(ii) Ts a randomly generated invertible matrix.
The columns of T−1

s are the eigenvectors of As, with the first
one related to the null eigenvalue.

The first iteration of Algorithm 2 (Line 15) consists in
choosing the only matrix composing σ1 among the singular
ones. Then, the algorithm must build a sequence of subse-
quences σp (Line 16-24) causing the kernel dimension to
increase of one, see (9). To this end, consider the following
lemma.

Lemma 2: ([26]) Given A ∈ Rm×n and B ∈ Rn×p then

dim ker (AX) = dim (im (B) ∩ ker(A))

holds, where X is a basis matrix of im (B).
Denoting with Xp−1 ∈ Rn×n−p+1 a basis matrix of∏p−1
j=1 Aσj , condition (9) is equivalent to

dim ker (AσpXp−1) = 1 (10)

from Lemmas 1 and 2.
This being the case, the computation at iteration p is detailed

hereafter.
(a) compute the random sequences αp and βp of modes

related to nonsingular matrices and such that |αp|+|βp| =
rp−2 (Line 17). Note that Aαp and Aβp are nonsingular;

(b) select sp ∈ Is, then Asp singular (Line 18);
(c) define (Line 19)

Bp = A−1
αp
T−1
sp RpC

−1
p

Cp =
[
Aβp

Xp−1 (Aβp
Xp−1)⊥

] (11)

with

Rp =


1 0 · · · 0

0
...
0

R̄p


where R̄p ∈ Rn−1×n−1

p is an arbitrary nonsingular matrix
and where V ⊥ is a basis of the subspace orthogonal
to the one spanned by the columns of V , implying the
nonsingularity of Cp.
The matrix Bp is such that

AspAαp
BpAβp

Xp−1 = T−1
sp ΛspRpC

−1
p Aβp

Xp−1

= T−1
sp ΛspRpI(:,n−p+1)

(12)
where I(:,n−p+1) is the matrix given by the first n−p+1
columns of the identity matrix (since M−1M(:,m) =

I(:,m) for all nonsingular M and positive m ∈ N).
Therefore, since

ΛspRp =


0 0 · · · 0

0
...
0

Λ̄spR̄p


then the kernel of AspAαp

BpAβp
Xp−1 is {y ∈ Rn−p+1 :

yi = 0 ∀i ≥ 2}. Hence, the dimension of the kernel of
AspAαpBpAβpXp−1 increases by 1;

(d) define the new mode ip such that Aip = Bp. The matrix
Aip is introduced in the matrix set of stabilizable system.
Define σp = (βp, ip, αp, sp) (Line 20-23)

Remark 4: The sequences αp and βp implicitly determine
the position of the matrix Bp within the the p-th subsequence.
As particular cases one could either consider an empty αp
and |βp| = rp − 2, leading to put Bp just before Asp , or an
empty βp and |αp| = rp−2 yielding Bp to be the first matrix
related to the p-th subsequence. Note moreover that Aαp and
Aβp

are composed by only nonsingular matrices. Also singular
ones could be considered, but this could lead to stabilizing
sequences whose length is smaller than the desired one, i.e.
1 +

∑p
j=2 r

p.

Algorithm 2 Build a dead-beat stabilizable system.
Input: qs and qns cardinalities of I and Is, subsequences

lengths rp.
1: Is ← ∅ . Initialization
2: Ins ← ∅
3: A ← ∅
4: for s ∈ Nqs do . Generate Is
5: generate As singular . Item (i)
6: insert s in Is
7: insert As in A
8: end for
9: for j ∈ Nqns−n+1 do . Generate a part of Ins

10: generate Aqs+j nonsingular . Item (ii)
11: insert qs + j in Ins
12: insert Aqs+j in A
13: end for
14: random selection of s1 ∈ Is . First step
15: σ1 ← s1

16: for p ∈ {i ∈ N : 2 ≤ i ≤ n} do . p-th step
17: random selection of αp and βp . Item (a)
18: random selection of sp ∈ Is . Item (b)
19: compute Bp . Item (c)
20: Aip ← Bp . Item (d)
21: insert ip in Ins
22: insert Aip in A
23: σp ← (βp, ip, αp, sp)
24: end for
Output: A . Matrix set of the stabilizable system

IV. APPLICATIONS

A numerical example and a potential application to cryp-
tography of the results presented in this paper are illustrated
in this section.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 0, NO. 00, 2014 6

A. Numerical example

This numerical example illustrates the construction of a
dead-beat stabilizable system by using Algorithm 2 and then,
the search of the shorter mortal sequence γ by using Algo-
rithm 1.

First, by using Algorithm 2, we construct a mortal set of
matrices in R3×3 for which the shorter sequence γ satisfying
Aγ = 0 has length 11. In particular, the first subsequence has
length 1 and the second and third ones have length 5, i.e.
r1 = 1 and r2 = r3 = 5. Moreover, we set the number of
singular matrices to be qs = 2 and that of nonsingular ones
to be qns = 4. The resulting matrices are

[
A1

A3

A5

∣∣∣∣A2

A4

A6

]
=


−11.0239 7.7564 −16.4615

6.9246 −4.7557 10.1980
11.8426 −8.3326 17.6842
0.5185 −1.2927 −0.6147
0.2137 0.3748 0.0275
0.4750 0.2060 −0.1329
−0.3712 0.5551 −0.4093
−0.7578 −0.5568 −0.1609
−0.5640 −0.8951 0.4093

∣∣∣∣∣∣∣∣∣∣

0.5558 −1.0979 −0.4113
−1.1203 −1.4158 −0.3680
−1.5327 0.0596 −1.3610
0.1960 −2.2309 2.4620
1.1627 −1.0204 0.7634
−1.0936 1.6483 −0.9587
1.6825 13.3531 −17.0264
−2.7298 −5.9840 13.4989
−1.5657 −14.2341 18.4099


(13)

with eigenvalues (2.1003,−0.1957, 0), (0.3802 +
0.7026i, 0.3802−0.7026i, 0), (−0.5181+0.3747i,−0.5181−
0.3747i, 0.5174), (1.1848,−2.2680,−1.1378),
(−1.0175 + 2.0238i,−1.0175 − 2.0238i, 0.2518) and
(0.2256, 6.9414 + 7.8336i, 6.9414 − 7.8336i), respectively.
The sequence of modes γ is (2, 5, 4, 3, 3, 2, 5, 3, 4, 6, 1), for
which the subsequences, image and kernel dimensions are
given in Table I.

TABLE I
SEQUENCE γ , SUBSEQUENCES, IMAGE AND KERNEL DIMENSIONS

Aγ A1·A6·A4·A3·A5· A2·A3·A3·A4·A5· A2

dim im(Aσ) 0 1 1 1 1 1 2 2 2 2 2

dimker(Aσ) 3 2 2 2 2 2 1 1 1 1 1

Aσj Aσ3 Aσ2 Aσ1

The time plot of xik (i = 1, 2, 3) for 10 different initial
conditions (randomly generated in the set ‖x‖∞ ≤ 1) are
depicted in Figure 1.

0 2 4 6 8 10 12
−2

0

2

k

x
1

0 2 4 6 8 10 12
−4

−2

0

2

4

k

x
2

0 2 4 6 8 10 12
−6

−4

−2

0

2

k
x

3

Fig. 1. Evolution in time of xik (i = 1, 2, 3)

To illustrate the benefit of using Algorithm 1, the sequence
γ has been searched by applying the brute force approach
and Algorithm 1 for comparison, using an Intel® Core™ i7-
6600U CPU @ 2.60GHz × 4 processor with 16GB of RAM.
The brute force approach needed 817s, that is more than 13
minutes, to find the solution. By comparison, Algorithm 1
found the solution in 0.105s. Additional examples highlighting
the efficiency of this algorithm can be found in the paper [21].

B. Cryptography

We illustrate here the potential relevance of dead-beat
stabilizability and the use of Algorithm 2 in the context of
cryptography. Actually, it is shown that dead-beat stabiliz-
ability may allow to break down a barrier in the design
of so-called statistical Self-Synchronizing Stream Ciphers,
statistical SSSC for short. They are an extension of the class of
deterministic Self-Synchronizing Stream Ciphers, often merely
named Self-Synchronizing Stream Ciphers. Roughly speaking,
SSSC (deterministic or statistical) are based on automata that
are dynamical systems operating on finite fields and that
must be designed to deliver sequences of symbols, named
keystreams, of high complexity from a statistical point of view.
Then, those sequences are used to scramble information to be
safely transmitted.

A well-admitted approach for the design of SSSC has
been first suggested in [27]. An alphabet denoted by A is
considered. It is a finite set of basic elements named symbols.
At the ciphering side, the automaton is governed by{

zk+1 = g(zk, ck),
wk = h(zk),

(14)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 0, NO. 00, 2014 7

where zk ∈ A is the internal state, g is the next-state
transition function, wk ∈ A is the keystream. The ciphertext
(cryptogram) is calculated by ck = e(mk, wk) where e is the
ciphering function and mk the plaintext to be encrypted.

At the deciphering side, the automaton is governed by{
ẑk+1 = g(ẑk, ck),
ŵk = h(ẑk),

(15)

where ẑk ∈ A is the internal state, g and h are identical to the
cipher functions and ŵk ∈ A is the keystream. The recovered
plaintext symbol is calculated by m̂k = d(ck, ŵk) where d is
the deciphering function fulfilling m̂k = mk if ŵk = wk.

If the functions g and h are such that there exist a function
` and an integer M verifying

zk = `(ck−1, . . . , ck−M), (16)

the automata (14) and (15) are said to have a finite input
memory and M is called the delay of memorization. If such
a function exists, it means that after a transient time equal to
M , the state zk of the cipher does no longer depend on the
initial state and so does the state ẑk of the decipher. Actually,
the states zk and ẑk coincide each other for any k ≥ M .
Hence, synchronization between the cipher and the decipher
is automatically achieved and the decryption succeeds. It is the
reason why such a cipher is called Self-Synchronizing Stream
Cipher. Two classes of automata are defined according to the
delay of synchronization:
• Deterministic: The delay of memorization is bounded by

the constant M and a priori fixed.
• Statistical: The bound of the delay of memorization is

not constant but is a random variable with respect to
the sequence of ciphertexts or the initial state vector.
Automata with a statistical delay of memorization have
never been deeply explored so far. We can mention [28]–
[30] for exceptions.

Till now, the usual method to obtain statistical Self-
Synchronizing Stream Ciphers is to switch between two au-
tomata with and without finite input memory property. This
hybrid architecture is equipped with a supervisor which is
scanning on-line and at both ends (cipher and decipher) a
sequence of cryptograms c of prescribed length. This sequence
is compared with a cryptogram of reference (called sync
pattern) of the same length. Then, when they coincide, the
supervisor of both the cipher and the decipher switches from
the automaton without input memory to the one with finite
input memory, guaranteeing self-synchronization in finite time
after the supervisor switch and so proper decryption.

Here, we show that dead-beat stabilizability can be inter-
esting to propose design methodologies leading to statistical
self-synchronizing architectures without supervisors. Obtain-
ing lighter architectures can be a central issue in embedded
systems. As a clue to tackle the problem, we propose nonlinear
automata in the form

zk+1 = Qσk
zk +Rσk

ck (17)

where Qσk
belongs to a finite set of matrices and σk is

a switching rule which depends in a nonlinear way on a

finite sequence of past ciphertexts ck, . . . , ck−s with s ∈
N. In other words, the switching function is of the form
σk = ϕ(ck, ck−1, · · · , ck−s) where ϕ is a surjective nonlinear
function which selects the mode σk at time k from the
knowledge of s past ciphertext symbols. In cryptography, such
nonlinear functions are commonly used and are called S-boxes.
The equation of the decipher is identical to (17) but involves
ẑk instead of zk.

The property of finite input memory with a statistical delay
of memorization is obtained whenever there exists at least a
switching sequence of length K so that

∏K
i=1Qσk+i−1

= 0. In
other words, the auxiliary system defined as xk+1 = Qσk

xk
is dead-beat stabilizable. The quantity M is a random variable
since it directly depends on the time before a stabilizing
switching sequence is expected to appear. The probability law
can be simply obtained whenever the ciphertext symbols are
uniformly distributed, which is a common feature of the cipher.

We illustrate such a design through a simple example with
n = 4 and q = 10 matrices Qi, with i ∈ I. To operate on the
field of two elements {0, 1}, we adapted the Algorithm 2 by
replacing the matrix product with the product modulo 2. We
obtained the following mortal set of matrices[

Q1

Q6

∣∣∣ Q2

Q7

∣∣∣ Q3

Q8

∣∣∣ Q4

Q9

∣∣∣ Q5

Q10

]
=


0 1 0 0
0 0 0 1
0 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 1

∣∣∣∣∣∣∣∣
0 1 0 0
1 0 0 0
0 0 1 0
0 0 1 1
0 1 0 0
0 0 1 1
0 0 1 0
1 0 0 0

∣∣∣∣∣∣∣∣
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 0
0 0 0 1

∣∣∣∣∣∣∣∣
0 1 0 0
0 0 1 0
1 0 1 0
0 0 1 1
1 1 1 1
0 1 0 0
0 0 1 0
0 1 0 1

∣∣∣∣∣∣∣∣
1 0 0 0
1 1 1 1
0 0 0 1
0 1 0 0
0 1 1 1
1 1 0 0
1 0 0 1
1 0 0 0


for which the shorter sequences γ generating the null matrix
have length K = 10. Note that Q1 is the only singular matrix.

Then, Nr = 1000 random switching sequences σ, with σk
uniformly distributed, have been generated. Recall that σk =
ϕ(ck, ck−1, · · · , ck−s).

0 200 400 600 800 1,000
0

2

4

6

8
·10−2

H
is

to
gr

am
of
n
k
/N

r

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

k

∑ k i=
1
n
i/
N
r

Fig. 2. Relative frequency histogram (top) and cumulative frequency (bottom)
of the synchronization instants in function of time, for Nr = 1000 uniformly
generated mode sequences.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 0, NO. 00, 2014 8

Denoting with ni the instant at which the i-th sequence
generates the null matrix, Figure 2 (top) shows an histogram
depicting the relative frequencies of switching sequences that
ensure synchronization within a given range of time. Figure 2
(bottom) shows the obtained approximation of the cumulative
probability distribution of synchronization with respect to the
time k. As expected, the probability tends towards 1 as k
increases. It is clear that the shape of the probability depends
on the length of the shorter sequences generating the null
matrix and the number of modes. Those parameters should
be included in the overall design parameters of the cipher and
the decipher but this matter is out of the scope of the paper.

V. CONCLUSION

In this paper, we have considered the problem of charac-
terizing the dead-beat stabilizability for discrete-time switched
linear systems. Based on a constructive necessary and suffi-
cient condition, we have proposed an algorithm to check the
dead-beat stabilizability of a system and to compute the shorter
stabilizing sequence, whenever it exists. It has been shown
through a complexity analysis and numerical examples, that
the algorithm significantly outperforms an exhaustive search
approach. Besides, from the condition, we have derived a
second algorithm to build a dead-beat stabilizable systems.
Possible applications have been discussed to highlight the
interest of the results.

REFERENCES

[1] D. Liberzon, Switching in Systems and Control, ser. Systems and
Control: Foundations and Applications. Boston, MA: Birkhuser, 2003.

[2] R. Alur, A. D’Innocenzo, K. H. Johansson, G. J. Pappas, and G. Weiss,
“Compositional modeling and analysis of multi-hop control networks,”
IEEE Transactions on Automatic control, vol. 56, no. 10, pp. 2345–2357,
2011.

[3] R. M. Jungers, A. D’Innocenzo, and M. D. Di Benedetto, “Feedback
stabilization of dynamical systems with switched delays,” in Proc. of
the 51st IEEE Conference on Decision and Control, 2012, pp. 1325–
1330.

[4] R. Shorten, F. Wirth, and D. Leith, “A positive systems model of TCP-
like congestion control: asymptotic results,” IEEE/ACM Transactions on
Networking, vol. 14, no. 3, pp. 616–629, 2006.

[5] E. A. Hernandez-Vargas, R. H. Middleton, and P. Colaneri, “Optimal and
MPC switching strategies for mitigating viral mutation and escape,” in
Proc. of the 18th IFAC World Congress Milano (Italy) August, 2011.

[6] D. Liberzon and A. S. Morse, “Basic problems in stability and design
of switched systems,” IEEE Control Systems Magazine, vol. 19, no. 5,
pp. 59–70, 1999.

[7] R. Jungers, “The joint spectral radius,” Lecture Notes in Control and
Information Sciences, vol. 385, 2009.

[8] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched linear
systems: a survey of recent results,” IEEE Transaction on Automatic
Control, vol. 54, no. 2, pp. 308–322, 2009.

[9] R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King, “Stability criteria
for switched and hybrid systems,” SIAM review, vol. 49, no. 4, pp. 545–
592, 2007.

[10] Z. Sun and S. S. Ge, “Analysis and synthesis of switched linear control
systems,” Automatica, vol. 41, pp. 181–195, 2005.

[11] L. T. J. Conner and D. P. Stanford, “State deadbeat response and
observability in multi-modal systems,” SIAM Journal of Control and
Optimization, vol. 22, no. 4, pp. 630–644, 1984.

[12] ——, “The structure of the controllable set for multimodal systems,”
Linear Algebra and its Applications, vol. 95, pp. 171–180, 1987.

[13] J. C. Geromel and P. Colaneri, “Stability and stabilization of discrete-
time switched systems,” International Journal of Control, vol. 79, no. 7,
pp. 719–728, July 2006.

[14] M. Fiacchini and M. Jungers, “Necessary and sufficient condition for
stabilizability of discrete-time linear switched systems: A set-theory
approach,” Automatica, vol. 50, no. 1, pp. 75 – 83, 2014.

[15] M. Fiacchini, A. Girard, and M. Jungers, “On the stabilizability of
discrete-time switched linear systems: Novel conditions and compar-
isons,” IEEE Transactions on Automatic Control, vol. 61, no. 5, pp.
1181–1193, 2016.

[16] M. S. Paterson, “Unsolvability in 3 × 3 matrices,” Studies in Applied
Mathematics, vol. 49, no. 1, pp. 105–107, 1970.

[17] V. D. Blondel and J. N. Tsitsiklis, “When is a pair of matrices mortal?”
Information Processing Letters, vol. 63, pp. 283–286, 1997.

[18] O. Bournez and M. Branicky, “The mortality problem for matrices of
low dimensions,” Theory of Computing Systems, vol. 35, no. 4, pp. 433–
448, 2002.

[19] J. Parriaux and G. Millérioux, “Nilpotent semigroups for the characteri-
zation of flat outputs of switched linear and LPV discrete-time systems,”
Systems and Control Letters, vol. 62, no. 8, pp. 679–685, 2013.

[20] M. Philippe, G. Millerioux, and R. Jungers, “Deciding the boundedness
and dead-beat stability of constrained switching systems,” Nonlinear
Analysis: Hybrid Systems, 2016.

[21] M. Fiacchini and G. Millérioux, “Dead-beat stabilizability of au-
tonomous switched linear discrete-time systems,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 4576–4581, 2017.

[22] Z. Sun, “Stabilizability and insensitivity of switched linear systems,”
IEEE Transactions on Automatic Control, vol. 49, no. 7, pp. 1133–1137,
2004.

[23] Z. Sun and S. S. Ge, Stability Theory of Switched Dynamical Systems.
Springer, 2011.

[24] K. Kuratowski, Introduction to Set Theory and Topology, ser. Inter-
national Series of Monographs on Pure and Applied Mathematics.
Pergamon, 1972.

[25] G. Millérioux and J. Daafouz, “Flatness of switched linear discrete-time
systems,” IEEE Trans. on Automatic Control, vol. 54, no. 3, pp. 615–
619, March 2009.

[26] C. D. Meyer, Matrix analysis and applied linear algebra. SIAM, 2000.
[27] U. M. Maurer, “New approaches to the design of self-synchronizing

stream cipher,” Advance in Cryptography, In Proc. Eurocrypt ’91,
Lecture Notes in Computer Science, pp. 548–471, 1991.

[28] A. Geraldy, B. Pfitzmann, and A.-R. Sadeghi, “Optimized self-
synchronizing mode of operation,” in Proceedings of Fast Software
Encryption International Workshop (FSE’2001), 2001.

[29] O. Jung and C. Ruland, “Encryption with statistical self-synchronization
in synchronous broaband networks,” in Proc. of Cryptographic Hard-
ware and Embedded Systems - CHES99, 1999, pp. 340–352.

[30] H. M. Heys, “An analysis of the statistical self-synchronization of stream
ciphers,” in Proc. of Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society, 2001, pp. 897–904.

	Introduction
	Necessary and sufficient condition for dead-beat stabilizability
	Problem statement
	Necessary and sufficient condition

	Algorithms
	Algorithm to test dead-beat stabilizability
	Algorithm to build a dead-beat stabilizable system

	Applications
	Numerical example
	Cryptography

	Conclusion
	References

