G. Chesi, Domain of attraction: analysis and control via SOS programming, vol.415, 2011.

D. P. Bertsekas, Infinite-time reachability of state-space regions by using feedback control, IEEE Transactions on Automatic Control, vol.17, pp.604-613, 1972.

E. G. Gilbert and K. Tan, Linear systems with state and control constraints: The theory and application of maximal output admissible sets, IEEE Transactions on Automatic Control, vol.36, pp.1008-1020, 1991.

I. Kolmanovsky and E. G. Gilbert, Theory and computation of disturbance invariant sets for discrete-time linear systems, Mathematical Problems in Engineering, vol.4, pp.317-367, 1998.

S. V. Rakovi´crakovi´c, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne, Invariant approximations of the minimal robust positively invariant set, IEEE Transactions on Automatic Control, vol.50, pp.406-410, 2005.

L. Magni, G. De-nicolao, L. Magnani, and R. Scattolini, A stabilizing modelbased predictive control algorithm for nonlinear systems, Automatica, vol.37, pp.1351-1362, 2001.

T. Alamo, A. Cepeda, M. Fiacchini, and E. F. Camacho, Convex invariant sets for discrete-time Lur'e systems, vol.45, pp.1066-1071, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00968209

M. Fiacchini, T. Alamo, and E. F. Camacho, On the computation of convex robust control invariant sets for nonlinear systems, Automatica, vol.46, issue.8, pp.1334-1338, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00968212

F. Blanchini and S. Miani, Set-Theoretic Methods in Control, 2008.

J. Aubin, Viability theory, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00636570

M. Fiacchini, Convex difference inclusions for systems analysis and design, 2010.

M. Fiacchini, T. Alamo, and E. F. Camacho, Invariant sets computation for convex difference inclusions systems, Systems & Control Letters, vol.61, issue.8, pp.819-826, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00984646

J. Aubin and A. Cellina, Differential inclusions: set-valued maps and viability theory, vol.264, 2012.

R. Riah, M. Fiacchini, and M. Alamir, Invariance-based analysis of cancer chemotherapy, Control Applications (CCA), 2015 IEEE Conference on, pp.1111-1116, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01208074

G. W. Swan, Role of optimal control theory in cancer chemotherapy, Mathematical biosciences, vol.101, issue.2, pp.237-284, 1990.

R. Martin, Optimal control drug scheduling of cancer chemotherapy, Automatica, vol.28, issue.6, pp.1113-1123, 1992.

L. G. De-pillis, W. Gu, and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, Journal of theoretical biology, vol.238, issue.4, pp.841-862, 2006.

A. S. Matveev and A. V. Savkin, Application of optimal control theory to analysis of cancer chemotherapy regimens, Systems & control letters, vol.46, issue.5, pp.311-321, 2002.

L. G. De-pillis, W. Gu, K. R. Fister, T. Head, K. Maples et al., Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls, Mathematical Biosciences, vol.209, issue.1, pp.292-315, 2007.

U. Ledzewicz, H. Schättler, and A. Onofrio, Optimal control for combination therapy in cancer, pp.1537-1542, 2008.

S. Chareyron and M. Alamir, Mixed immunotherapy and chemotherapy of tumors: Feedback design and model updating schemes, Journal of theoretical biology, vol.258, issue.3, pp.444-454, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00194681

M. Alamir, Robust feedback design for combined therapy of cancer, Optimal Control Applications and Methods, vol.35, issue.1, pp.77-88, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00747681

M. Alamir, On probabilistic certification of combined cancer therapies using strongly uncertain models
URL : https://hal.archives-ouvertes.fr/hal-01184148

E. Afenya, Acute leukemia and chemotherapy: a modeling viewpoint, Mathematical biosciences, vol.138, issue.2, pp.79-100, 1996.

E. K. Afenya and D. E. Bentil, Some perspectives on modeling leukemia, Mathematical biosciences, vol.150, issue.2, pp.113-130, 1998.

P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Tumor development under angiogenic signaling a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer research, vol.59, issue.19, pp.4770-4775, 1999.

L. G. De-pillis and A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, Computational and Mathematical Methods in Medicine, vol.3, issue.2, pp.79-100, 2001.

J. Murray, Optimal drug regimens in cancer chemotherapy for single drugs that block progression through the cell cycle, Mathematical biosciences, vol.123, issue.2, pp.183-213, 1994.

R. Riah, M. Fiacchini, and M. Alamir, Domain of attraction estimation of cancer chemotherapy model affected by state proportional uncertainty, Control Conference (ECC), pp.2133-2138, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01298958

R. T. Rockafellar, Convex Analysis, 1970.

S. Boyd and L. Vandenberghe, Convex Optimization, 2004.

D. P. Bertsekas, Convex Optimization Theory, 2009.